MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Visualization version   Unicode version

Theorem ssrabdv 3681
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1  |-  ( ph  ->  B  C_  A )
ssrabdv.2  |-  ( (
ph  /\  x  e.  B )  ->  ps )
Assertion
Ref Expression
ssrabdv  |-  ( ph  ->  B  C_  { x  e.  A  |  ps } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2  |-  ( ph  ->  B  C_  A )
2 ssrabdv.2 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ps )
32ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  B  ps )
4 ssrab 3680 . 2  |-  ( B 
C_  { x  e.  A  |  ps }  <->  ( B  C_  A  /\  A. x  e.  B  ps ) )
51, 3, 4sylanbrc 698 1  |-  ( ph  ->  B  C_  { x  e.  A  |  ps } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by:  mrcmndind  17366  symggen  17890  ablfac1eu  18472  lspsolvlem  19142  prdsxmslem2  22334  ovolicc2lem4  23288  abelth2  24196  perfectlem2  24955  umgrres1lem  26202  upgrres1  26205  cvmlift2lem11  31295  bj-rabtrAUTO  32929  mapdrvallem3  36935  idomsubgmo  37776  k0004ss2  38450  liminfvalxr  40015  smflimlem4  40982  perfectALTVlem2  41631
  Copyright terms: Public domain W3C validator