| Step | Hyp | Ref
| Expression |
| 1 | | lngid 25342 |
. . 3
⊢ LineG =
Slot (LineG‘ndx) |
| 2 | | fvex 6201 |
. . . 4
⊢
(EEG‘𝑁) ∈
V |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) ∈
V) |
| 4 | | eengstr 25860 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) Struct
〈1, ;17〉) |
| 5 | | isstruct 15870 |
. . . . . 6
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 ↔
((1 ∈ ℕ ∧ ;17
∈ ℕ ∧ 1 ≤ ;17)
∧ Fun ((EEG‘𝑁)
∖ {∅}) ∧ dom (EEG‘𝑁) ⊆ (1...;17))) |
| 6 | 5 | simp2bi 1077 |
. . . . 5
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 →
Fun ((EEG‘𝑁) ∖
{∅})) |
| 7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ → Fun
((EEG‘𝑁) ∖
{∅})) |
| 8 | | structcnvcnv 15871 |
. . . . . 6
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 →
◡◡(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅})) |
| 9 | 4, 8 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ◡◡(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅})) |
| 10 | 9 | funeqd 5910 |
. . . 4
⊢ (𝑁 ∈ ℕ → (Fun
◡◡(EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅}))) |
| 11 | 7, 10 | mpbird 247 |
. . 3
⊢ (𝑁 ∈ ℕ → Fun ◡◡(EEG‘𝑁)) |
| 12 | | opex 4932 |
. . . . . 6
⊢
〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 ∈ V |
| 13 | 12 | prid2 4298 |
. . . . 5
⊢
〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 ∈
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} |
| 14 | | elun2 3781 |
. . . . 5
⊢
(〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 ∈
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} →
〈(LineG‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
((𝔼‘𝑁) ∖
{𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 ∈
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| 15 | 13, 14 | ax-mp 5 |
. . . 4
⊢
〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 ∈
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) |
| 16 | | eengv 25859 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) =
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| 17 | 15, 16 | syl5eleqr 2708 |
. . 3
⊢ (𝑁 ∈ ℕ →
〈(LineG‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
((𝔼‘𝑁) ∖
{𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 ∈ (EEG‘𝑁)) |
| 18 | | fvex 6201 |
. . . . 5
⊢
(𝔼‘𝑁)
∈ V |
| 19 | | difexg 4808 |
. . . . . 6
⊢
((𝔼‘𝑁)
∈ V → ((𝔼‘𝑁) ∖ {𝑥}) ∈ V) |
| 20 | 18, 19 | ax-mp 5 |
. . . . 5
⊢
((𝔼‘𝑁)
∖ {𝑥}) ∈
V |
| 21 | 18, 20 | mpt2ex 7247 |
. . . 4
⊢ (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) ∈ V |
| 22 | 21 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) ∈ V) |
| 23 | 1, 3, 11, 17, 22 | strfv2d 15905 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) = (LineG‘(EEG‘𝑁))) |
| 24 | | eengbas 25861 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
| 25 | | elntg.1 |
. . . 4
⊢ 𝑃 = (Base‘(EEG‘𝑁)) |
| 26 | 24, 25 | syl6eqr 2674 |
. . 3
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) = 𝑃) |
| 27 | 26 | difeq1d 3727 |
. . . 4
⊢ (𝑁 ∈ ℕ →
((𝔼‘𝑁) ∖
{𝑥}) = (𝑃 ∖ {𝑥})) |
| 28 | 27 | adantr 481 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝔼‘𝑁) ∖ {𝑥}) = (𝑃 ∖ {𝑥})) |
| 29 | 26 | adantr 481 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) → (𝔼‘𝑁) = 𝑃) |
| 30 | | simpll 790 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
| 31 | | elntg.2 |
. . . . . 6
⊢ 𝐼 = (Itv‘(EEG‘𝑁)) |
| 32 | | simplrl 800 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁)) |
| 33 | 30, 26 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = 𝑃) |
| 34 | 32, 33 | eleqtrd 2703 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ 𝑃) |
| 35 | | simplrr 801 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥})) |
| 36 | 35 | eldifad 3586 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁)) |
| 37 | 36, 33 | eleqtrd 2703 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ 𝑃) |
| 38 | | simpr 477 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁)) |
| 39 | 38, 33 | eleqtrd 2703 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ 𝑃) |
| 40 | 30, 25, 31, 34, 37, 39 | ebtwntg 25862 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑧 Btwn 〈𝑥, 𝑦〉 ↔ 𝑧 ∈ (𝑥𝐼𝑦))) |
| 41 | 30, 25, 31, 39, 37, 34 | ebtwntg 25862 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑥 Btwn 〈𝑧, 𝑦〉 ↔ 𝑥 ∈ (𝑧𝐼𝑦))) |
| 42 | 30, 25, 31, 34, 39, 37 | ebtwntg 25862 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn 〈𝑥, 𝑧〉 ↔ 𝑦 ∈ (𝑥𝐼𝑧))) |
| 43 | 40, 41, 42 | 3orbi123d 1398 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
| 44 | 29, 43 | rabeqbidva 3196 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) → {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)} = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
| 45 | 26, 28, 44 | mpt2eq123dva 6716 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
| 46 | 23, 45 | eqtr3d 2658 |
1
⊢ (𝑁 ∈ ℕ →
(LineG‘(EEG‘𝑁))
= (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |