| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version Unicode version | ||
| Description: Deduction version of strfv 15907. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| strfv2d.e |
|
| strfv2d.s |
|
| strfv2d.f |
|
| strfv2d.n |
|
| strfv2d.c |
|
| Ref | Expression |
|---|---|
| strfv2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2d.e |
. . 3
| |
| 2 | strfv2d.s |
. . 3
| |
| 3 | 1, 2 | strfvnd 15876 |
. 2
|
| 4 | cnvcnv2 5588 |
. . . . 5
| |
| 5 | 4 | fveq1i 6192 |
. . . 4
|
| 6 | fvex 6201 |
. . . . 5
| |
| 7 | fvres 6207 |
. . . . 5
| |
| 8 | 6, 7 | ax-mp 5 |
. . . 4
|
| 9 | 5, 8 | eqtri 2644 |
. . 3
|
| 10 | strfv2d.f |
. . . 4
| |
| 11 | strfv2d.n |
. . . . . 6
| |
| 12 | strfv2d.c |
. . . . . . . 8
| |
| 13 | elex 3212 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | opelxpi 5148 |
. . . . . . 7
| |
| 16 | 6, 14, 15 | sylancr 695 |
. . . . . 6
|
| 17 | 11, 16 | elind 3798 |
. . . . 5
|
| 18 | cnvcnv 5586 |
. . . . 5
| |
| 19 | 17, 18 | syl6eleqr 2712 |
. . . 4
|
| 20 | funopfv 6235 |
. . . 4
| |
| 21 | 10, 19, 20 | sylc 65 |
. . 3
|
| 22 | 9, 21 | syl5eqr 2670 |
. 2
|
| 23 | 3, 22 | eqtr2d 2657 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-slot 15861 |
| This theorem is referenced by: strfv2 15906 opelstrbas 15978 eengbas 25861 ebtwntg 25862 ecgrtg 25863 elntg 25864 edgfiedgval 25902 |
| Copyright terms: Public domain | W3C validator |