MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 9046
Description: Lemma for ackbij2 9065. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 suceq 5790 . . . . 5 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
21pweqd 4163 . . . 4 (𝑎 = 𝐴 → 𝒫 suc 𝑎 = 𝒫 suc 𝐴)
32fveq2d 6195 . . 3 (𝑎 = 𝐴 → (card‘𝒫 suc 𝑎) = (card‘𝒫 suc 𝐴))
4 pweq 4161 . . . . 5 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
54fveq2d 6195 . . . 4 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
65, 5oveq12d 6668 . . 3 (𝑎 = 𝐴 → ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴)))
73, 6eqeq12d 2637 . 2 (𝑎 = 𝐴 → ((card‘𝒫 suc 𝑎) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)) ↔ (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴))))
8 vex 3203 . . . . . . . . 9 𝑎 ∈ V
98sucex 7011 . . . . . . . 8 suc 𝑎 ∈ V
109pw2en 8067 . . . . . . 7 𝒫 suc 𝑎 ≈ (2𝑜𝑚 suc 𝑎)
11 df-suc 5729 . . . . . . . . . 10 suc 𝑎 = (𝑎 ∪ {𝑎})
1211oveq2i 6661 . . . . . . . . 9 (2𝑜𝑚 suc 𝑎) = (2𝑜𝑚 (𝑎 ∪ {𝑎}))
13 nnord 7073 . . . . . . . . . . 11 (𝑎 ∈ ω → Ord 𝑎)
14 orddisj 5762 . . . . . . . . . . 11 (Ord 𝑎 → (𝑎 ∩ {𝑎}) = ∅)
15 snex 4908 . . . . . . . . . . . 12 {𝑎} ∈ V
16 2onn 7720 . . . . . . . . . . . . 13 2𝑜 ∈ ω
1716elexi 3213 . . . . . . . . . . . 12 2𝑜 ∈ V
18 mapunen 8129 . . . . . . . . . . . . 13 (((𝑎 ∈ V ∧ {𝑎} ∈ V ∧ 2𝑜 ∈ V) ∧ (𝑎 ∩ {𝑎}) = ∅) → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})))
1918ex 450 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ {𝑎} ∈ V ∧ 2𝑜 ∈ V) → ((𝑎 ∩ {𝑎}) = ∅ → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎}))))
208, 15, 17, 19mp3an 1424 . . . . . . . . . . 11 ((𝑎 ∩ {𝑎}) = ∅ → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})))
2113, 14, 203syl 18 . . . . . . . . . 10 (𝑎 ∈ ω → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})))
22 ovex 6678 . . . . . . . . . . . 12 (2𝑜𝑚 𝑎) ∈ V
2322enref 7988 . . . . . . . . . . 11 (2𝑜𝑚 𝑎) ≈ (2𝑜𝑚 𝑎)
2417, 8mapsnen 8035 . . . . . . . . . . 11 (2𝑜𝑚 {𝑎}) ≈ 2𝑜
25 xpen 8123 . . . . . . . . . . 11 (((2𝑜𝑚 𝑎) ≈ (2𝑜𝑚 𝑎) ∧ (2𝑜𝑚 {𝑎}) ≈ 2𝑜) → ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
2623, 24, 25mp2an 708 . . . . . . . . . 10 ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜)
27 entr 8008 . . . . . . . . . 10 (((2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ∧ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜)) → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
2821, 26, 27sylancl 694 . . . . . . . . 9 (𝑎 ∈ ω → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
2912, 28syl5eqbr 4688 . . . . . . . 8 (𝑎 ∈ ω → (2𝑜𝑚 suc 𝑎) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
308pw2en 8067 . . . . . . . . . 10 𝒫 𝑎 ≈ (2𝑜𝑚 𝑎)
3117enref 7988 . . . . . . . . . 10 2𝑜 ≈ 2𝑜
32 xpen 8123 . . . . . . . . . 10 ((𝒫 𝑎 ≈ (2𝑜𝑚 𝑎) ∧ 2𝑜 ≈ 2𝑜) → (𝒫 𝑎 × 2𝑜) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
3330, 31, 32mp2an 708 . . . . . . . . 9 (𝒫 𝑎 × 2𝑜) ≈ ((2𝑜𝑚 𝑎) × 2𝑜)
3433ensymi 8006 . . . . . . . 8 ((2𝑜𝑚 𝑎) × 2𝑜) ≈ (𝒫 𝑎 × 2𝑜)
35 entr 8008 . . . . . . . 8 (((2𝑜𝑚 suc 𝑎) ≈ ((2𝑜𝑚 𝑎) × 2𝑜) ∧ ((2𝑜𝑚 𝑎) × 2𝑜) ≈ (𝒫 𝑎 × 2𝑜)) → (2𝑜𝑚 suc 𝑎) ≈ (𝒫 𝑎 × 2𝑜))
3629, 34, 35sylancl 694 . . . . . . 7 (𝑎 ∈ ω → (2𝑜𝑚 suc 𝑎) ≈ (𝒫 𝑎 × 2𝑜))
37 entr 8008 . . . . . . 7 ((𝒫 suc 𝑎 ≈ (2𝑜𝑚 suc 𝑎) ∧ (2𝑜𝑚 suc 𝑎) ≈ (𝒫 𝑎 × 2𝑜)) → 𝒫 suc 𝑎 ≈ (𝒫 𝑎 × 2𝑜))
3810, 36, 37sylancr 695 . . . . . 6 (𝑎 ∈ ω → 𝒫 suc 𝑎 ≈ (𝒫 𝑎 × 2𝑜))
39 vpwex 4849 . . . . . . 7 𝒫 𝑎 ∈ V
40 xp2cda 9002 . . . . . . 7 (𝒫 𝑎 ∈ V → (𝒫 𝑎 × 2𝑜) = (𝒫 𝑎 +𝑐 𝒫 𝑎))
4139, 40ax-mp 5 . . . . . 6 (𝒫 𝑎 × 2𝑜) = (𝒫 𝑎 +𝑐 𝒫 𝑎)
4238, 41syl6breq 4694 . . . . 5 (𝑎 ∈ ω → 𝒫 suc 𝑎 ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎))
43 nnfi 8153 . . . . . . . . 9 (𝑎 ∈ ω → 𝑎 ∈ Fin)
44 pwfi 8261 . . . . . . . . 9 (𝑎 ∈ Fin ↔ 𝒫 𝑎 ∈ Fin)
4543, 44sylib 208 . . . . . . . 8 (𝑎 ∈ ω → 𝒫 𝑎 ∈ Fin)
46 ficardid 8788 . . . . . . . 8 (𝒫 𝑎 ∈ Fin → (card‘𝒫 𝑎) ≈ 𝒫 𝑎)
4745, 46syl 17 . . . . . . 7 (𝑎 ∈ ω → (card‘𝒫 𝑎) ≈ 𝒫 𝑎)
48 cdaen 8995 . . . . . . 7 (((card‘𝒫 𝑎) ≈ 𝒫 𝑎 ∧ (card‘𝒫 𝑎) ≈ 𝒫 𝑎) → ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)) ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎))
4947, 47, 48syl2anc 693 . . . . . 6 (𝑎 ∈ ω → ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)) ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎))
5049ensymd 8007 . . . . 5 (𝑎 ∈ ω → (𝒫 𝑎 +𝑐 𝒫 𝑎) ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)))
51 entr 8008 . . . . 5 ((𝒫 suc 𝑎 ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎) ∧ (𝒫 𝑎 +𝑐 𝒫 𝑎) ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))) → 𝒫 suc 𝑎 ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)))
5242, 50, 51syl2anc 693 . . . 4 (𝑎 ∈ ω → 𝒫 suc 𝑎 ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)))
53 carden2b 8793 . . . 4 (𝒫 suc 𝑎 ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)) → (card‘𝒫 suc 𝑎) = (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))))
5452, 53syl 17 . . 3 (𝑎 ∈ ω → (card‘𝒫 suc 𝑎) = (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))))
55 ficardom 8787 . . . . 5 (𝒫 𝑎 ∈ Fin → (card‘𝒫 𝑎) ∈ ω)
5645, 55syl 17 . . . 4 (𝑎 ∈ ω → (card‘𝒫 𝑎) ∈ ω)
57 nnacda 9023 . . . 4 (((card‘𝒫 𝑎) ∈ ω ∧ (card‘𝒫 𝑎) ∈ ω) → (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)))
5856, 56, 57syl2anc 693 . . 3 (𝑎 ∈ ω → (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)))
5954, 58eqtrd 2656 . 2 (𝑎 ∈ ω → (card‘𝒫 suc 𝑎) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)))
607, 59vtoclga 3272 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653   × cxp 5112  Ord word 5722  suc csuc 5725  cfv 5888  (class class class)co 6650  ωcom 7065  2𝑜c2o 7554   +𝑜 coa 7557  𝑚 cmap 7857  cen 7952  Fincfn 7955  cardccrd 8761   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  ackbij1lem14  9055
  Copyright terms: Public domain W3C validator