| Step | Hyp | Ref
| Expression |
| 1 | | cantnfs.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ On) |
| 2 | | cantnflt.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ On) |
| 3 | | cantnflt.a |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 4 | | oen0 7666 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴
↑𝑜 𝐶)) |
| 5 | 1, 2, 3, 4 | syl21anc 1325 |
. . 3
⊢ (𝜑 → ∅ ∈ (𝐴 ↑𝑜
𝐶)) |
| 6 | | fveq2 6191 |
. . . . 5
⊢ (𝐾 = ∅ → (𝐻‘𝐾) = (𝐻‘∅)) |
| 7 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 8 | | cantnfval.h |
. . . . . . 7
⊢ 𝐻 =
seq𝜔((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑𝑜 (𝐺‘𝑘)) ·𝑜 (𝐹‘(𝐺‘𝑘))) +𝑜 𝑧)), ∅) |
| 9 | 8 | seqom0g 7551 |
. . . . . 6
⊢ (∅
∈ V → (𝐻‘∅) = ∅) |
| 10 | 7, 9 | ax-mp 5 |
. . . . 5
⊢ (𝐻‘∅) =
∅ |
| 11 | 6, 10 | syl6eq 2672 |
. . . 4
⊢ (𝐾 = ∅ → (𝐻‘𝐾) = ∅) |
| 12 | 11 | eleq1d 2686 |
. . 3
⊢ (𝐾 = ∅ → ((𝐻‘𝐾) ∈ (𝐴 ↑𝑜 𝐶) ↔ ∅ ∈ (𝐴 ↑𝑜
𝐶))) |
| 13 | 5, 12 | syl5ibrcom 237 |
. 2
⊢ (𝜑 → (𝐾 = ∅ → (𝐻‘𝐾) ∈ (𝐴 ↑𝑜 𝐶))) |
| 14 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐶 ∈ On) |
| 15 | | eloni 5733 |
. . . . . . 7
⊢ (𝐶 ∈ On → Ord 𝐶) |
| 16 | 14, 15 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → Ord 𝐶) |
| 17 | | cantnflt.s |
. . . . . . . 8
⊢ (𝜑 → (𝐺 “ 𝐾) ⊆ 𝐶) |
| 18 | 17 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺 “ 𝐾) ⊆ 𝐶) |
| 19 | | cantnfcl.g |
. . . . . . . . . 10
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| 20 | 19 | oif 8435 |
. . . . . . . . 9
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) |
| 21 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐺:dom 𝐺⟶(𝐹 supp ∅) → 𝐺 Fn dom 𝐺) |
| 22 | 20, 21 | mp1i 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐺 Fn dom 𝐺) |
| 23 | | cantnflt.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ suc dom 𝐺) |
| 24 | 19 | oicl 8434 |
. . . . . . . . . . . . 13
⊢ Ord dom
𝐺 |
| 25 | | ordsuc 7014 |
. . . . . . . . . . . . 13
⊢ (Ord dom
𝐺 ↔ Ord suc dom 𝐺) |
| 26 | 24, 25 | mpbi 220 |
. . . . . . . . . . . 12
⊢ Ord suc
dom 𝐺 |
| 27 | | ordelon 5747 |
. . . . . . . . . . . 12
⊢ ((Ord suc
dom 𝐺 ∧ 𝐾 ∈ suc dom 𝐺) → 𝐾 ∈ On) |
| 28 | 26, 23, 27 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ On) |
| 29 | | ordsssuc 5812 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ On ∧ Ord dom 𝐺) → (𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺)) |
| 30 | 28, 24, 29 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺)) |
| 31 | 23, 30 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ⊆ dom 𝐺) |
| 32 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ⊆ dom 𝐺) |
| 33 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 34 | 33 | sucid 5804 |
. . . . . . . . 9
⊢ 𝑥 ∈ suc 𝑥 |
| 35 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 = suc 𝑥) |
| 36 | 34, 35 | syl5eleqr 2708 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ 𝐾) |
| 37 | | fnfvima 6496 |
. . . . . . . 8
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐾 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐾) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐾)) |
| 38 | 22, 32, 36, 37 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐾)) |
| 39 | 18, 38 | sseldd 3604 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ 𝐶) |
| 40 | | ordsucss 7018 |
. . . . . 6
⊢ (Ord
𝐶 → ((𝐺‘𝑥) ∈ 𝐶 → suc (𝐺‘𝑥) ⊆ 𝐶)) |
| 41 | 16, 39, 40 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺‘𝑥) ⊆ 𝐶) |
| 42 | | suppssdm 7308 |
. . . . . . . . . . 11
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 |
| 43 | | cantnfcl.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| 44 | | cantnfs.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 45 | | cantnfs.b |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ On) |
| 46 | 44, 1, 45 | cantnfs 8563 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 47 | 43, 46 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
| 48 | 47 | simpld 475 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 49 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐵⟶𝐴 → dom 𝐹 = 𝐵) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = 𝐵) |
| 51 | 42, 50 | syl5sseq 3653 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
| 52 | | onss 6990 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 53 | 45, 52 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ On) |
| 54 | 51, 53 | sstrd 3613 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
| 55 | 54 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐹 supp ∅) ⊆ On) |
| 56 | 23 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ∈ suc dom 𝐺) |
| 57 | 35, 56 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc 𝑥 ∈ suc dom 𝐺) |
| 58 | | ordsucelsuc 7022 |
. . . . . . . . . . 11
⊢ (Ord dom
𝐺 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺)) |
| 59 | 24, 58 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺) |
| 60 | 57, 59 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ dom 𝐺) |
| 61 | 20 | ffvelrni 6358 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐺 → (𝐺‘𝑥) ∈ (𝐹 supp ∅)) |
| 62 | 60, 61 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ (𝐹 supp ∅)) |
| 63 | 55, 62 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ On) |
| 64 | | suceloni 7013 |
. . . . . . 7
⊢ ((𝐺‘𝑥) ∈ On → suc (𝐺‘𝑥) ∈ On) |
| 65 | 63, 64 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺‘𝑥) ∈ On) |
| 66 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐴 ∈ On) |
| 67 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → ∅ ∈ 𝐴) |
| 68 | | oewordi 7671 |
. . . . . 6
⊢ (((suc
(𝐺‘𝑥) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺‘𝑥) ⊆ 𝐶 → (𝐴 ↑𝑜 suc (𝐺‘𝑥)) ⊆ (𝐴 ↑𝑜 𝐶))) |
| 69 | 65, 14, 66, 67, 68 | syl31anc 1329 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (suc (𝐺‘𝑥) ⊆ 𝐶 → (𝐴 ↑𝑜 suc (𝐺‘𝑥)) ⊆ (𝐴 ↑𝑜 𝐶))) |
| 70 | 41, 69 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐴 ↑𝑜 suc (𝐺‘𝑥)) ⊆ (𝐴 ↑𝑜 𝐶)) |
| 71 | 35 | fveq2d 6195 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘𝐾) = (𝐻‘suc 𝑥)) |
| 72 | | simprl 794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ ω) |
| 73 | | simpl 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝜑) |
| 74 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺)) |
| 75 | | suceq 5790 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
| 76 | 75 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐻‘suc 𝑥) = (𝐻‘suc ∅)) |
| 77 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝐺‘𝑥) = (𝐺‘∅)) |
| 78 | | suceq 5790 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥) = (𝐺‘∅) → suc (𝐺‘𝑥) = suc (𝐺‘∅)) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → suc (𝐺‘𝑥) = suc (𝐺‘∅)) |
| 80 | 79 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐴 ↑𝑜 suc
(𝐺‘𝑥)) = (𝐴 ↑𝑜 suc (𝐺‘∅))) |
| 81 | 76, 80 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥)) ↔ (𝐻‘suc ∅) ∈ (𝐴 ↑𝑜 suc
(𝐺‘∅)))) |
| 82 | 74, 81 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥))) ↔ (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴 ↑𝑜 suc
(𝐺‘∅))))) |
| 83 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺)) |
| 84 | | suceq 5790 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
| 85 | 84 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc 𝑦)) |
| 86 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 87 | | suceq 5790 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥) = (𝐺‘𝑦) → suc (𝐺‘𝑥) = suc (𝐺‘𝑦)) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → suc (𝐺‘𝑥) = suc (𝐺‘𝑦)) |
| 89 | 88 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ↑𝑜 suc (𝐺‘𝑥)) = (𝐴 ↑𝑜 suc (𝐺‘𝑦))) |
| 90 | 85, 89 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥)) ↔ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) |
| 91 | 83, 90 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥))) ↔ (𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦))))) |
| 92 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺)) |
| 93 | | suceq 5790 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
| 94 | 93 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc suc 𝑦)) |
| 95 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → (𝐺‘𝑥) = (𝐺‘suc 𝑦)) |
| 96 | | suceq 5790 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥) = (𝐺‘suc 𝑦) → suc (𝐺‘𝑥) = suc (𝐺‘suc 𝑦)) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → suc (𝐺‘𝑥) = suc (𝐺‘suc 𝑦)) |
| 98 | 97 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑𝑜 suc (𝐺‘𝑥)) = (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))) |
| 99 | 94, 98 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥)) ↔ (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦)))) |
| 100 | 92, 99 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))))) |
| 101 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐹:𝐵⟶𝐴) |
| 102 | 20 | ffvelrni 6358 |
. . . . . . . . . . . 12
⊢ (∅
∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅)) |
| 103 | 51 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ 𝐵) |
| 104 | 102, 103 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ 𝐵) |
| 105 | 101, 104 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ 𝐴) |
| 106 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On) |
| 107 | | onelon 5748 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) ∈ On) |
| 108 | 106, 105,
107 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ On) |
| 109 | 54 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ On) |
| 110 | 102, 109 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On) |
| 111 | | oecl 7617 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On)
→ (𝐴
↑𝑜 (𝐺‘∅)) ∈ On) |
| 112 | 106, 110,
111 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴 ↑𝑜 (𝐺‘∅)) ∈
On) |
| 113 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ 𝐴) |
| 114 | | oen0 7666 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) ∧
∅ ∈ 𝐴) →
∅ ∈ (𝐴
↑𝑜 (𝐺‘∅))) |
| 115 | 106, 110,
113, 114 | syl21anc 1325 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (𝐴 ↑𝑜
(𝐺‘∅))) |
| 116 | | omord2 7647 |
. . . . . . . . . . 11
⊢ ((((𝐹‘(𝐺‘∅)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑𝑜
(𝐺‘∅)) ∈
On) ∧ ∅ ∈ (𝐴
↑𝑜 (𝐺‘∅))) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) ∈ ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 𝐴))) |
| 117 | 108, 106,
112, 115, 116 | syl31anc 1329 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) ∈ ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 𝐴))) |
| 118 | 105, 117 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) ∈ ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 𝐴)) |
| 119 | | peano1 7085 |
. . . . . . . . . . . 12
⊢ ∅
∈ ω |
| 120 | 119 | a1i 11 |
. . . . . . . . . . 11
⊢ (∅
∈ dom 𝐺 → ∅
∈ ω) |
| 121 | 44, 1, 45, 19, 43, 8 | cantnfsuc 8567 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ ω)
→ (𝐻‘suc
∅) = (((𝐴
↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
(𝐻‘∅))) |
| 122 | 120, 121 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = (((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
(𝐻‘∅))) |
| 123 | 10 | oveq2i 6661 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑𝑜
(𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
(𝐻‘∅)) =
(((𝐴
↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
∅) |
| 124 | | omcl 7616 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑𝑜
(𝐺‘∅)) ∈
On ∧ (𝐹‘(𝐺‘∅)) ∈ On)
→ ((𝐴
↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) ∈
On) |
| 125 | 112, 108,
124 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) ∈
On) |
| 126 | | oa0 7596 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↑𝑜
(𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) ∈ On → (((𝐴 ↑𝑜
(𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
∅) = ((𝐴
↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅)))) |
| 127 | 125, 126 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
∅) = ((𝐴
↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅)))) |
| 128 | 123, 127 | syl5eq 2668 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅))) +𝑜
(𝐻‘∅)) =
((𝐴
↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅)))) |
| 129 | 122, 128 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 (𝐹‘(𝐺‘∅)))) |
| 130 | | oesuc 7607 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On)
→ (𝐴
↑𝑜 suc (𝐺‘∅)) = ((𝐴 ↑𝑜 (𝐺‘∅))
·𝑜 𝐴)) |
| 131 | 106, 110,
130 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴 ↑𝑜 suc (𝐺‘∅)) = ((𝐴 ↑𝑜
(𝐺‘∅))
·𝑜 𝐴)) |
| 132 | 118, 129,
131 | 3eltr4d 2716 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) ∈ (𝐴 ↑𝑜 suc
(𝐺‘∅))) |
| 133 | 132 | ex 450 |
. . . . . . 7
⊢ (𝜑 → (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴 ↑𝑜 suc
(𝐺‘∅)))) |
| 134 | | ordtr 5737 |
. . . . . . . . . . . 12
⊢ (Ord dom
𝐺 → Tr dom 𝐺) |
| 135 | 24, 134 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Tr dom
𝐺 |
| 136 | | trsuc 5810 |
. . . . . . . . . . 11
⊢ ((Tr dom
𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺) |
| 137 | 135, 136 | mpan 706 |
. . . . . . . . . 10
⊢ (suc
𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺) |
| 138 | 137 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) |
| 139 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → 𝐴 ∈ On) |
| 140 | | eloni 5733 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 141 | 139, 140 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → Ord 𝐴) |
| 142 | 48 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → 𝐹:𝐵⟶𝐴) |
| 143 | 51 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐹 supp ∅) ⊆ 𝐵) |
| 144 | 20 | ffvelrni 6358 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅)) |
| 145 | 144 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅)) |
| 146 | 143, 145 | sseldd 3604 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘suc 𝑦) ∈ 𝐵) |
| 147 | 142, 146 | ffvelrnd 6360 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) |
| 148 | | ordsucss 7018 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝐴 → ((𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴 → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴)) |
| 149 | 141, 147,
148 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴) |
| 150 | | onelon 5748 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
| 151 | 139, 147,
150 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
| 152 | | suceloni 7013 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘(𝐺‘suc 𝑦)) ∈ On → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
| 153 | 151, 152 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
| 154 | 54 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐹 supp ∅) ⊆ On) |
| 155 | 154, 145 | sseldd 3604 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘suc 𝑦) ∈ On) |
| 156 | | oecl 7617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ∈ On) |
| 157 | 139, 155,
156 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ∈ On) |
| 158 | | omwordi 7651 |
. . . . . . . . . . . . . . 15
⊢ ((suc
(𝐹‘(𝐺‘suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ∈ On) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 𝐴))) |
| 159 | 153, 139,
157, 158 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 𝐴))) |
| 160 | 149, 159 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 𝐴)) |
| 161 | | oesuc 7607 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦)) = ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 𝐴)) |
| 162 | 139, 155,
161 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦)) = ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 𝐴)) |
| 163 | 160, 162 | sseqtr4d 3642 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))) |
| 164 | | eloni 5733 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦)) |
| 165 | 155, 164 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → Ord (𝐺‘suc 𝑦)) |
| 166 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
| 167 | 166 | sucid 5804 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ suc 𝑦 |
| 168 | 166 | sucex 7011 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc 𝑦 ∈ V |
| 169 | 168 | epelc 5031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦) |
| 170 | 167, 169 | mpbir 221 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑦 E suc 𝑦 |
| 171 | 45, 51 | ssexd 4805 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
| 172 | 44, 1, 45, 19, 43 | cantnfcl 8564 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| 173 | 172 | simpld 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 174 | 19 | oiiso 8442 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
| 175 | 171, 173,
174 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
| 176 | 175 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
| 177 | 137 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → 𝑦 ∈ dom 𝐺) |
| 178 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → suc 𝑦 ∈ dom 𝐺) |
| 179 | | isorel 6576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺‘𝑦) E (𝐺‘suc 𝑦))) |
| 180 | 176, 177,
178, 179 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝑦 E suc 𝑦 ↔ (𝐺‘𝑦) E (𝐺‘suc 𝑦))) |
| 181 | 170, 180 | mpbii 223 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘𝑦) E (𝐺‘suc 𝑦)) |
| 182 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺‘suc 𝑦) ∈ V |
| 183 | 182 | epelc 5031 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦)) |
| 184 | 181, 183 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦)) |
| 185 | | ordsucss 7018 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord
(𝐺‘suc 𝑦) → ((𝐺‘𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦))) |
| 186 | 165, 184,
185 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) |
| 187 | 20 | ffvelrni 6358 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ dom 𝐺 → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) |
| 188 | 177, 187 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) |
| 189 | 154, 188 | sseldd 3604 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐺‘𝑦) ∈ On) |
| 190 | | suceloni 7013 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑦) ∈ On → suc (𝐺‘𝑦) ∈ On) |
| 191 | 189, 190 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → suc (𝐺‘𝑦) ∈ On) |
| 192 | 3 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → ∅ ∈ 𝐴) |
| 193 | | oewordi 7671 |
. . . . . . . . . . . . . . . . 17
⊢ (((suc
(𝐺‘𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ↑𝑜 suc (𝐺‘𝑦)) ⊆ (𝐴 ↑𝑜 (𝐺‘suc 𝑦)))) |
| 194 | 191, 155,
139, 192, 193 | syl31anc 1329 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ↑𝑜 suc (𝐺‘𝑦)) ⊆ (𝐴 ↑𝑜 (𝐺‘suc 𝑦)))) |
| 195 | 186, 194 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐴 ↑𝑜 suc (𝐺‘𝑦)) ⊆ (𝐴 ↑𝑜 (𝐺‘suc 𝑦))) |
| 196 | | simprr 796 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦))) |
| 197 | 195, 196 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 (𝐺‘suc 𝑦))) |
| 198 | | peano2 7086 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 199 | 198 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → suc 𝑦 ∈ ω) |
| 200 | 8 | cantnfvalf 8562 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐻:ω⟶On |
| 201 | 200 | ffvelrni 6358 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑦 ∈ ω →
(𝐻‘suc 𝑦) ∈ On) |
| 202 | 199, 201 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐻‘suc 𝑦) ∈ On) |
| 203 | | omcl 7616 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↑𝑜
(𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) ∈ On) |
| 204 | 157, 151,
203 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) ∈ On) |
| 205 | | oaord 7627 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻‘suc 𝑦) ∈ On ∧ (𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ∈ On ∧ ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) ∈ On) → ((𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ↔ (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐻‘suc 𝑦)) ∈ (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐴 ↑𝑜 (𝐺‘suc 𝑦))))) |
| 206 | 202, 157,
204, 205 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → ((𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ↔ (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐻‘suc 𝑦)) ∈ (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐴 ↑𝑜 (𝐺‘suc 𝑦))))) |
| 207 | 197, 206 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐻‘suc 𝑦)) ∈ (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐴 ↑𝑜 (𝐺‘suc 𝑦)))) |
| 208 | 44, 1, 45, 19, 43, 8 | cantnfsuc 8567 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ suc 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐻‘suc 𝑦))) |
| 209 | 198, 208 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐻‘suc 𝑦))) |
| 210 | 209 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐻‘suc suc 𝑦) = (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐻‘suc 𝑦))) |
| 211 | | omsuc 7606 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ↑𝑜
(𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐴 ↑𝑜 (𝐺‘suc 𝑦)))) |
| 212 | 157, 151,
211 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 (𝐹‘(𝐺‘suc 𝑦))) +𝑜 (𝐴 ↑𝑜 (𝐺‘suc 𝑦)))) |
| 213 | 207, 210,
212 | 3eltr4d 2716 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐻‘suc suc 𝑦) ∈ ((𝐴 ↑𝑜 (𝐺‘suc 𝑦)) ·𝑜 suc (𝐹‘(𝐺‘suc 𝑦)))) |
| 214 | 163, 213 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)))) → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))) |
| 215 | 214 | exp32 631 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦)) → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))))) |
| 216 | 215 | a2d 29 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))))) |
| 217 | 138, 216 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦))))) |
| 218 | 217 | expcom 451 |
. . . . . . 7
⊢ (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑𝑜 suc (𝐺‘suc 𝑦)))))) |
| 219 | 82, 91, 100, 133, 218 | finds2 7094 |
. . . . . 6
⊢ (𝑥 ∈ ω → (𝜑 → (𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥))))) |
| 220 | 72, 73, 60, 219 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘suc 𝑥) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥))) |
| 221 | 71, 220 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘𝐾) ∈ (𝐴 ↑𝑜 suc (𝐺‘𝑥))) |
| 222 | 70, 221 | sseldd 3604 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘𝐾) ∈ (𝐴 ↑𝑜 𝐶)) |
| 223 | 222 | rexlimdvaa 3032 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ω 𝐾 = suc 𝑥 → (𝐻‘𝐾) ∈ (𝐴 ↑𝑜 𝐶))) |
| 224 | 172 | simprd 479 |
. . . . 5
⊢ (𝜑 → dom 𝐺 ∈ ω) |
| 225 | | peano2 7086 |
. . . . 5
⊢ (dom
𝐺 ∈ ω → suc
dom 𝐺 ∈
ω) |
| 226 | 224, 225 | syl 17 |
. . . 4
⊢ (𝜑 → suc dom 𝐺 ∈ ω) |
| 227 | | elnn 7075 |
. . . 4
⊢ ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω) → 𝐾 ∈ ω) |
| 228 | 23, 226, 227 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ω) |
| 229 | | nn0suc 7090 |
. . 3
⊢ (𝐾 ∈ ω → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥)) |
| 230 | 228, 229 | syl 17 |
. 2
⊢ (𝜑 → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥)) |
| 231 | 13, 223, 230 | mpjaod 396 |
1
⊢ (𝜑 → (𝐻‘𝐾) ∈ (𝐴 ↑𝑜 𝐶)) |