MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Structured version   Visualization version   GIF version

Theorem cfslb2n 9090
Description: Any small collection of small subsets of 𝐴 cannot have union 𝐴, where "small" means smaller than the cofinality. This is a stronger version of cfslb 9088. This is a common application of cofinality: under AC, (ℵ‘1) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb2n ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cfslb2n
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 5784 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
2 ordsson 6989 . . . . . . . . . 10 (Ord 𝐴𝐴 ⊆ On)
3 sstr 3611 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
43expcom 451 . . . . . . . . . 10 (𝐴 ⊆ On → (𝑥𝐴𝑥 ⊆ On))
51, 2, 43syl 18 . . . . . . . . 9 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ On))
6 onsucuni 7028 . . . . . . . . 9 (𝑥 ⊆ On → 𝑥 ⊆ suc 𝑥)
75, 6syl6 35 . . . . . . . 8 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ suc 𝑥))
87adantrd 484 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥 ⊆ suc 𝑥))
98ralimdv 2963 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 𝑥 ⊆ suc 𝑥))
10 uniiun 4573 . . . . . . 7 𝐵 = 𝑥𝐵 𝑥
11 ss2iun 4536 . . . . . . 7 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝑥𝐵 𝑥 𝑥𝐵 suc 𝑥)
1210, 11syl5eqss 3649 . . . . . 6 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝐵 𝑥𝐵 suc 𝑥)
139, 12syl6 35 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝐵 𝑥𝐵 suc 𝑥))
1413imp 445 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝐵 𝑥𝐵 suc 𝑥)
15 cfslb.1 . . . . . . . . . 10 𝐴 ∈ V
1615cfslbn 9089 . . . . . . . . 9 ((Lim 𝐴𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴)
17163expib 1268 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴))
18 ordsucss 7018 . . . . . . . 8 (Ord 𝐴 → ( 𝑥𝐴 → suc 𝑥𝐴))
191, 17, 18sylsyld 61 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
2019ralimdv 2963 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
21 iunss 4561 . . . . . 6 ( 𝑥𝐵 suc 𝑥𝐴 ↔ ∀𝑥𝐵 suc 𝑥𝐴)
2220, 21syl6ibr 242 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐵 suc 𝑥𝐴))
2322imp 445 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝑥𝐵 suc 𝑥𝐴)
24 sseq1 3626 . . . . . 6 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥))
25 eqss 3618 . . . . . . 7 ( 𝑥𝐵 suc 𝑥 = 𝐴 ↔ ( 𝑥𝐵 suc 𝑥𝐴𝐴 𝑥𝐵 suc 𝑥))
2625simplbi2com 657 . . . . . 6 (𝐴 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
2724, 26syl6bi 243 . . . . 5 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2827com3l 89 . . . 4 ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2914, 23, 28sylc 65 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
30 limsuc 7049 . . . . . . . . 9 (Lim 𝐴 → ( 𝑥𝐴 ↔ suc 𝑥𝐴))
3117, 30sylibd 229 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
3231ralimdv 2963 . . . . . . 7 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
3332imp 445 . . . . . 6 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ∀𝑥𝐵 suc 𝑥𝐴)
34 r19.29 3072 . . . . . . . 8 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → ∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥))
35 eleq1 2689 . . . . . . . . . 10 (𝑦 = suc 𝑥 → (𝑦𝐴 ↔ suc 𝑥𝐴))
3635biimparc 504 . . . . . . . . 9 ((suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3736rexlimivw 3029 . . . . . . . 8 (∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3834, 37syl 17 . . . . . . 7 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → 𝑦𝐴)
3938ex 450 . . . . . 6 (∀𝑥𝐵 suc 𝑥𝐴 → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4033, 39syl 17 . . . . 5 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4140abssdv 3676 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴)
42 vuniex 6954 . . . . . . . 8 𝑥 ∈ V
4342sucex 7011 . . . . . . 7 suc 𝑥 ∈ V
4443dfiun2 4554 . . . . . 6 𝑥𝐵 suc 𝑥 = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
4544eqeq1i 2627 . . . . 5 ( 𝑥𝐵 suc 𝑥 = 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴)
4615cfslb 9088 . . . . . 6 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴) → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥})
47463expia 1267 . . . . 5 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4845, 47syl5bi 232 . . . 4 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4941, 48syldan 487 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
50 eqid 2622 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥) = (𝑥𝐵 ↦ suc 𝑥)
5150rnmpt 5371 . . . . . . . 8 ran (𝑥𝐵 ↦ suc 𝑥) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
5243, 50fnmpti 6022 . . . . . . . . . 10 (𝑥𝐵 ↦ suc 𝑥) Fn 𝐵
53 dffn4 6121 . . . . . . . . . 10 ((𝑥𝐵 ↦ suc 𝑥) Fn 𝐵 ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥))
5452, 53mpbi 220 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)
55 relsdom 7962 . . . . . . . . . . 11 Rel ≺
5655brrelexi 5158 . . . . . . . . . 10 (𝐵 ≺ (cf‘𝐴) → 𝐵 ∈ V)
57 breq1 4656 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦 ≺ (cf‘𝐴) ↔ 𝐵 ≺ (cf‘𝐴)))
58 foeq2 6112 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)))
59 breq2 4657 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦 ↔ ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
6058, 59imbi12d 334 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦) ↔ ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6157, 60imbi12d 334 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦)) ↔ (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))))
62 cfon 9077 . . . . . . . . . . . . 13 (cf‘𝐴) ∈ On
63 sdomdom 7983 . . . . . . . . . . . . 13 (𝑦 ≺ (cf‘𝐴) → 𝑦 ≼ (cf‘𝐴))
64 ondomen 8860 . . . . . . . . . . . . 13 (((cf‘𝐴) ∈ On ∧ 𝑦 ≼ (cf‘𝐴)) → 𝑦 ∈ dom card)
6562, 63, 64sylancr 695 . . . . . . . . . . . 12 (𝑦 ≺ (cf‘𝐴) → 𝑦 ∈ dom card)
66 fodomnum 8880 . . . . . . . . . . . 12 (𝑦 ∈ dom card → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6765, 66syl 17 . . . . . . . . . . 11 (𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6861, 67vtoclg 3266 . . . . . . . . . 10 (𝐵 ∈ V → (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6956, 68mpcom 38 . . . . . . . . 9 (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
7054, 69mpi 20 . . . . . . . 8 (𝐵 ≺ (cf‘𝐴) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)
7151, 70syl5eqbrr 4689 . . . . . . 7 (𝐵 ≺ (cf‘𝐴) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵)
72 domtr 8009 . . . . . . 7 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵) → (cf‘𝐴) ≼ 𝐵)
7371, 72sylan2 491 . . . . . 6 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → (cf‘𝐴) ≼ 𝐵)
74 domnsym 8086 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
7573, 74syl 17 . . . . 5 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → ¬ 𝐵 ≺ (cf‘𝐴))
7675pm2.01da 458 . . . 4 ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴))
7776a1i 11 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴)))
7829, 49, 773syld 60 . 2 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
7978necon2ad 2809 1 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725   Fn wfn 5883  ontowfo 5886  cfv 5888  cdom 7953  csdm 7954  cardccrd 8761  cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-cf 8767  df-acn 8768
This theorem is referenced by:  tskuni  9605
  Copyright terms: Public domain W3C validator