MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 8144
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 8139 through phplem4 8142, nneneq 8143, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 3972 . . . . . . . 8 ∅ ⊆ 𝐵
2 sspsstr 3712 . . . . . . . 8 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 706 . . . . . . 7 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4013 . . . . . . . 8 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 2795 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 264 . . . . . . 7 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 208 . . . . . 6 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7090 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 952 . . . . . 6 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 491 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4039 . . . . . . . . . 10 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 3702 . . . . . . . . . . . . . . . . 17 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 3745 . . . . . . . . . . . . . . . . . 18 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4246 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4021 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 266 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 3626 . . . . . . . . . . . . . . . . . . 19 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 207 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18syl5ibr 236 . . . . . . . . . . . . . . . . 17 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
20 vex 3203 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
2120sucex 7011 . . . . . . . . . . . . . . . . . . 19 suc 𝑥 ∈ V
22 difss 3737 . . . . . . . . . . . . . . . . . . 19 (suc 𝑥 ∖ {𝑦}) ⊆ suc 𝑥
2321, 22ssexi 4803 . . . . . . . . . . . . . . . . . 18 (suc 𝑥 ∖ {𝑦}) ∈ V
24 ssdomg 8001 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 ∖ {𝑦}) ∈ V → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2523, 24ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
2612, 19, 25syl56 36 . . . . . . . . . . . . . . . 16 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2726imp 445 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
28 vex 3203 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
2920, 28phplem3 8141 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
3029ensymd 8007 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
31 domentr 8015 . . . . . . . . . . . . . . 15 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥) → 𝐵𝑥)
3227, 30, 31syl2an 494 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
3332exp43 640 . . . . . . . . . . . . 13 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
3433com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
3534imp 445 . . . . . . . . . . 11 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3635exlimiv 1858 . . . . . . . . . 10 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3711, 36mpcom 38 . . . . . . . . 9 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
38 endomtr 8014 . . . . . . . . . . . 12 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
39 sssucid 5802 . . . . . . . . . . . . 13 𝑥 ⊆ suc 𝑥
40 ssdomg 8001 . . . . . . . . . . . . 13 (suc 𝑥 ∈ V → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
4121, 39, 40mp2 9 . . . . . . . . . . . 12 𝑥 ≼ suc 𝑥
42 sbth 8080 . . . . . . . . . . . 12 ((suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
4338, 41, 42sylancl 694 . . . . . . . . . . 11 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
4443expcom 451 . . . . . . . . . 10 (𝐵𝑥 → (suc 𝑥𝐵 → suc 𝑥𝑥))
45 peano2b 7081 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
46 nnord 7073 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
4745, 46sylbi 207 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
4820sucid 5804 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
49 nordeq 5742 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
5047, 48, 49sylancl 694 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
51 nneneq 8143 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5245, 51sylanb 489 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5352anidms 677 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5453necon3bbid 2831 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
5550, 54mpbird 247 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
5644, 55nsyli 155 . . . . . . . . 9 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5737, 56syli 39 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5857com12 32 . . . . . . 7 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
59 psseq2 3695 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
60 breq1 4656 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
6160notbid 308 . . . . . . . 8 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
6259, 61imbi12d 334 . . . . . . 7 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
6358, 62syl5ibrcom 237 . . . . . 6 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6463rexlimiv 3027 . . . . 5 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
6510, 64syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
6665ex 450 . . 3 (𝐴 ∈ ω → (𝐵𝐴 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6766pm2.43d 53 . 2 (𝐴 ∈ ω → (𝐵𝐴 → ¬ 𝐴𝐵))
6867imp 445 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  wss 3574  wpss 3575  c0 3915  {csn 4177   class class class wbr 4653  Ord word 5722  suc csuc 5725  ωcom 7065  cen 7952  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956  df-dom 7957
This theorem is referenced by:  php2  8145  php3  8146
  Copyright terms: Public domain W3C validator