MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss1d Structured version   Visualization version   GIF version

Theorem suppofss1d 7332
Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss1d.5 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
Assertion
Ref Expression
suppofss1d (𝜑 → ((𝐹𝑓 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
2 ffn 6045 . . . . . . . 8 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 17 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
5 ffn 6045 . . . . . . . 8 (𝐺:𝐴𝐵𝐺 Fn 𝐴)
64, 5syl 17 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
7 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
8 inidm 3822 . . . . . . 7 (𝐴𝐴) = 𝐴
9 eqidd 2623 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
10 eqidd 2623 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
113, 6, 7, 7, 8, 9, 10ofval 6906 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹𝑓 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
1211adantr 481 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑓 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
13 simpr 477 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝐹𝑦) = 𝑍)
1413oveq1d 6665 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = (𝑍𝑋(𝐺𝑦)))
15 suppofss1d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑍𝑋𝑥) = 𝑍)
1615ralrimiva 2966 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
1716adantr 481 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍)
184ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐺𝑦) ∈ 𝐵)
19 simpr 477 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → 𝑥 = (𝐺𝑦))
2019oveq2d 6666 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → (𝑍𝑋𝑥) = (𝑍𝑋(𝐺𝑦)))
2120eqeq1d 2624 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐺𝑦)) → ((𝑍𝑋𝑥) = 𝑍 ↔ (𝑍𝑋(𝐺𝑦)) = 𝑍))
2218, 21rspcdv 3312 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑍𝑋𝑥) = 𝑍 → (𝑍𝑋(𝐺𝑦)) = 𝑍))
2317, 22mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2423adantr 481 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → (𝑍𝑋(𝐺𝑦)) = 𝑍)
2512, 14, 243eqtrd 2660 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑓 𝑋𝐺)‘𝑦) = 𝑍)
2625ex 450 . . 3 ((𝜑𝑦𝐴) → ((𝐹𝑦) = 𝑍 → ((𝐹𝑓 𝑋𝐺)‘𝑦) = 𝑍))
2726ralrimiva 2966 . 2 (𝜑 → ∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹𝑓 𝑋𝐺)‘𝑦) = 𝑍))
283, 6, 7, 7, 8offn 6908 . . 3 (𝜑 → (𝐹𝑓 𝑋𝐺) Fn 𝐴)
29 ssid 3624 . . . 4 𝐴𝐴
3029a1i 11 . . 3 (𝜑𝐴𝐴)
31 suppofssd.2 . . 3 (𝜑𝑍𝐵)
32 suppfnss 7320 . . 3 ((((𝐹𝑓 𝑋𝐺) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹𝑓 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹𝑓 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3328, 3, 30, 7, 31, 32syl23anc 1333 . 2 (𝜑 → (∀𝑦𝐴 ((𝐹𝑦) = 𝑍 → ((𝐹𝑓 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹𝑓 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)))
3427, 33mpd 15 1 (𝜑 → ((𝐹𝑓 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296
This theorem is referenced by:  frlmphllem  20119  rrxcph  23180
  Copyright terms: Public domain W3C validator