Proof of Theorem frlmphllem
Step | Hyp | Ref
| Expression |
1 | | frlmphl.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
2 | 1 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝐼 ∈ 𝑊) |
3 | | simp2 1062 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 ∈ 𝑉) |
4 | | frlmphl.y |
. . . . . . . . 9
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
5 | | frlmphl.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
6 | | frlmphl.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑌) |
7 | 4, 5, 6 | frlmbasmap 20103 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉) → 𝑔 ∈ (𝐵 ↑𝑚 𝐼)) |
8 | 2, 3, 7 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 ∈ (𝐵 ↑𝑚 𝐼)) |
9 | | elmapi 7879 |
. . . . . . 7
⊢ (𝑔 ∈ (𝐵 ↑𝑚 𝐼) → 𝑔:𝐼⟶𝐵) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔:𝐼⟶𝐵) |
11 | | ffn 6045 |
. . . . . 6
⊢ (𝑔:𝐼⟶𝐵 → 𝑔 Fn 𝐼) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 Fn 𝐼) |
13 | | simp3 1063 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ ∈ 𝑉) |
14 | 4, 5, 6 | frlmbasmap 20103 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑊 ∧ ℎ ∈ 𝑉) → ℎ ∈ (𝐵 ↑𝑚 𝐼)) |
15 | 2, 13, 14 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ ∈ (𝐵 ↑𝑚 𝐼)) |
16 | | elmapi 7879 |
. . . . . . 7
⊢ (ℎ ∈ (𝐵 ↑𝑚 𝐼) → ℎ:𝐼⟶𝐵) |
17 | 15, 16 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ:𝐼⟶𝐵) |
18 | | ffn 6045 |
. . . . . 6
⊢ (ℎ:𝐼⟶𝐵 → ℎ Fn 𝐼) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ℎ Fn 𝐼) |
20 | | inidm 3822 |
. . . . 5
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
21 | | eqidd 2623 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) = (𝑔‘𝑥)) |
22 | | eqidd 2623 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (ℎ‘𝑥) = (ℎ‘𝑥)) |
23 | 12, 19, 2, 2, 20, 21, 22 | offval 6904 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑔 ∘𝑓 · ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) |
24 | 23 | oveq1d 6665 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ((𝑔 ∘𝑓 · ℎ) supp 0 ) = ((𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) supp 0 )) |
25 | | ovexd 6680 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑔 ∘𝑓 · ℎ) ∈ V) |
26 | | funmpt 5926 |
. . . . . . 7
⊢ Fun
(𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) |
27 | 26 | a1i 11 |
. . . . . 6
⊢ ((𝑔 ∘𝑓
·
ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) → Fun (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) |
28 | | funeq 5908 |
. . . . . 6
⊢ ((𝑔 ∘𝑓
·
ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) → (Fun (𝑔 ∘𝑓 · ℎ) ↔ Fun (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))))) |
29 | 27, 28 | mpbird 247 |
. . . . 5
⊢ ((𝑔 ∘𝑓
·
ℎ) = (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) → Fun (𝑔 ∘𝑓 · ℎ)) |
30 | 23, 29 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → Fun (𝑔 ∘𝑓 · ℎ)) |
31 | | frlmphl.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
32 | 4, 31, 6 | frlmbasfsupp 20102 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑔 ∈ 𝑉) → 𝑔 finSupp 0 ) |
33 | 2, 3, 32 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑔 finSupp 0 ) |
34 | | frlmphl.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Field) |
35 | | isfld 18756 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
36 | 34, 35 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
37 | 36 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ DivRing) |
38 | | drngring 18754 |
. . . . . . . 8
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
39 | 37, 38 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
40 | 39 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 𝑅 ∈ Ring) |
41 | 5, 31 | ring0cl 18569 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
42 | 40, 41 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 0 ∈ 𝐵) |
43 | | frlmphl.t |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
44 | 5, 43, 31 | ringlz 18587 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 0 · 𝑥) = 0 ) |
45 | 40, 44 | sylan 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) ∧ 𝑥 ∈ 𝐵) → ( 0 · 𝑥) = 0 ) |
46 | 2, 42, 10, 17, 45 | suppofss1d 7332 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ((𝑔 ∘𝑓 · ℎ) supp 0 ) ⊆ (𝑔 supp 0 )) |
47 | | fsuppsssupp 8291 |
. . . . 5
⊢ ((((𝑔 ∘𝑓
·
ℎ) ∈ V ∧ Fun (𝑔 ∘𝑓
·
ℎ)) ∧ (𝑔 finSupp 0 ∧ ((𝑔 ∘𝑓 · ℎ) supp 0 ) ⊆ (𝑔 supp 0 ))) → (𝑔 ∘𝑓
·
ℎ) finSupp 0
) |
48 | 47 | fsuppimpd 8282 |
. . . 4
⊢ ((((𝑔 ∘𝑓
·
ℎ) ∈ V ∧ Fun (𝑔 ∘𝑓
·
ℎ)) ∧ (𝑔 finSupp 0 ∧ ((𝑔 ∘𝑓 · ℎ) supp 0 ) ⊆ (𝑔 supp 0 ))) → ((𝑔 ∘𝑓
·
ℎ) supp 0 ) ∈
Fin) |
49 | 25, 30, 33, 46, 48 | syl22anc 1327 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ((𝑔 ∘𝑓 · ℎ) supp 0 ) ∈
Fin) |
50 | 24, 49 | eqeltrrd 2702 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ((𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) supp 0 ) ∈
Fin) |
51 | 26 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → Fun (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥)))) |
52 | | mptexg 6484 |
. . . 4
⊢ (𝐼 ∈ 𝑊 → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) ∈ V) |
53 | 2, 52 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) ∈ V) |
54 | | fvex 6201 |
. . . . 5
⊢
(0g‘𝑅) ∈ V |
55 | 31, 54 | eqeltri 2697 |
. . . 4
⊢ 0 ∈
V |
56 | 55 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → 0 ∈ V) |
57 | | funisfsupp 8280 |
. . 3
⊢ ((Fun
(𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) ∧ (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) supp 0 ) ∈
Fin)) |
58 | 51, 53, 56, 57 | syl3anc 1326 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → ((𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) supp 0 ) ∈
Fin)) |
59 | 50, 58 | mpbird 247 |
1
⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ) |