| Step | Hyp | Ref
| Expression |
| 1 | | fndm 5990 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| 2 | 1 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
| 3 | 2 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
| 4 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 5 | 4 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐺‘𝑥) = 𝑍 ↔ (𝐺‘𝑦) = 𝑍)) |
| 6 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 7 | 6 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘𝑦) = 𝑍)) |
| 8 | 5, 7 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) ↔ ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍))) |
| 9 | 8 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍))) |
| 10 | 3, 9 | syl6bi 243 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝑦 ∈ dom 𝐹 → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍)))) |
| 11 | 10 | com23 86 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝑦 ∈ dom 𝐹 → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍)))) |
| 12 | 11 | imp31 448 |
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍)) |
| 13 | 12 | necon3d 2815 |
. . . . 5
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ≠ 𝑍 → (𝐺‘𝑦) ≠ 𝑍)) |
| 14 | 13 | ss2rabdv 3683 |
. . . 4
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐹 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
| 15 | | simpr1 1067 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝐴 ⊆ 𝐵) |
| 16 | 1 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → dom 𝐹 = 𝐴) |
| 17 | | fndm 5990 |
. . . . . . . 8
⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) |
| 18 | 17 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → dom 𝐺 = 𝐵) |
| 19 | 15, 16, 18 | 3sstr4d 3648 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → dom 𝐹 ⊆ dom 𝐺) |
| 20 | 19 | adantr 481 |
. . . . 5
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → dom 𝐹 ⊆ dom 𝐺) |
| 21 | | rabss2 3685 |
. . . . 5
⊢ (dom
𝐹 ⊆ dom 𝐺 → {𝑦 ∈ dom 𝐹 ∣ (𝐺‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
| 22 | 20, 21 | syl 17 |
. . . 4
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐺‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
| 23 | 14, 22 | sstrd 3613 |
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
| 24 | | fnfun 5988 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 25 | 24 | ad2antrr 762 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → Fun 𝐹) |
| 26 | | simpl 473 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → 𝐹 Fn 𝐴) |
| 27 | | ssexg 4804 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 28 | 27 | 3adant3 1081 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐴 ∈ V) |
| 29 | | fnex 6481 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) |
| 30 | 26, 28, 29 | syl2an 494 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝐹 ∈ V) |
| 31 | | simpr3 1069 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝑍 ∈ 𝑊) |
| 32 | | suppval1 7301 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍}) |
| 33 | 25, 30, 31, 32 | syl3anc 1326 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍}) |
| 34 | | fnfun 5988 |
. . . . . . 7
⊢ (𝐺 Fn 𝐵 → Fun 𝐺) |
| 35 | 34 | ad2antlr 763 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → Fun 𝐺) |
| 36 | | simpr 477 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → 𝐺 Fn 𝐵) |
| 37 | | simp2 1062 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐵 ∈ 𝑉) |
| 38 | | fnex 6481 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
| 39 | 36, 37, 38 | syl2an 494 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝐺 ∈ V) |
| 40 | | suppval1 7301 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐺 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
| 41 | 35, 39, 31, 40 | syl3anc 1326 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
| 42 | 33, 41 | sseq12d 3634 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍})) |
| 43 | 42 | adantr 481 |
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍})) |
| 44 | 23, 43 | mpbird 247 |
. 2
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
| 45 | 44 | ex 450 |
1
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) |