MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppfnss Structured version   Visualization version   GIF version

Theorem suppfnss 7320
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.)
Assertion
Ref Expression
suppfnss (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppfnss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fndm 5990 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
21eleq2d 2687 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
32ad2antrr 762 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹𝑦𝐴))
4 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
54eqeq1d 2624 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐺𝑥) = 𝑍 ↔ (𝐺𝑦) = 𝑍))
6 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76eqeq1d 2624 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑦) = 𝑍))
85, 7imbi12d 334 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) ↔ ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
98rspcv 3305 . . . . . . . . 9 (𝑦𝐴 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
103, 9syl6bi 243 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1110com23 86 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝑦 ∈ dom 𝐹 → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1211imp31 448 . . . . . 6 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))
1312necon3d 2815 . . . . 5 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍))
1413ss2rabdv 3683 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐹 ∣ (𝐺𝑦) ≠ 𝑍})
15 simpr1 1067 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐴𝐵)
161ad2antrr 762 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 = 𝐴)
17 fndm 5990 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
1817ad2antlr 763 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐺 = 𝐵)
1915, 16, 183sstr4d 3648 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 ⊆ dom 𝐺)
2019adantr 481 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → dom 𝐹 ⊆ dom 𝐺)
21 rabss2 3685 . . . . 5 (dom 𝐹 ⊆ dom 𝐺 → {𝑦 ∈ dom 𝐹 ∣ (𝐺𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
2220, 21syl 17 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐺𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
2314, 22sstrd 3613 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
24 fnfun 5988 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
2524ad2antrr 762 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐹)
26 simpl 473 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐹 Fn 𝐴)
27 ssexg 4804 . . . . . . . 8 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
28273adant3 1081 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐴 ∈ V)
29 fnex 6481 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐹 ∈ V)
3026, 28, 29syl2an 494 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐹 ∈ V)
31 simpr3 1069 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝑍𝑊)
32 suppval1 7301 . . . . . 6 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
3325, 30, 31, 32syl3anc 1326 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
34 fnfun 5988 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
3534ad2antlr 763 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐺)
36 simpr 477 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
37 simp2 1062 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐵𝑉)
38 fnex 6481 . . . . . . 7 ((𝐺 Fn 𝐵𝐵𝑉) → 𝐺 ∈ V)
3936, 37, 38syl2an 494 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐺 ∈ V)
40 suppval1 7301 . . . . . 6 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍𝑊) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
4135, 39, 31, 40syl3anc 1326 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
4233, 41sseq12d 3634 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4342adantr 481 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4423, 43mpbird 247 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
4544ex 450 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  wss 3574  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  funsssuppss  7321  suppofss1d  7332  suppofss2d  7333  lincresunit2  42267
  Copyright terms: Public domain W3C validator