MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxcph Structured version   Visualization version   GIF version

Theorem rrxcph 23180
Description: Generalized Euclidean real spaces are pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxcph (𝐼𝑉𝐻 ∈ ℂPreHil)

Proof of Theorem rrxcph
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 23175 . 2 (𝐼𝑉𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2622 . . 3 (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼))
4 eqid 2622 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2622 . . 3 (Scalar‘(ℝfld freeLMod 𝐼)) = (Scalar‘(ℝfld freeLMod 𝐼))
6 eqid 2622 . . . 4 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
7 rebase 19952 . . . 4 ℝ = (Base‘ℝfld)
8 remulr 19957 . . . 4 · = (.r‘ℝfld)
9 eqid 2622 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
10 eqid 2622 . . . 4 (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼))
11 re0g 19958 . . . 4 0 = (0g‘ℝfld)
12 refldcj 19966 . . . 4 ∗ = (*𝑟‘ℝfld)
13 refld 19965 . . . . 5 fld ∈ Field
1413a1i 11 . . . 4 (𝐼𝑉 → ℝfld ∈ Field)
15 fconstmpt 5163 . . . . 5 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
166, 7, 4frlmbasf 20104 . . . . . . . 8 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓:𝐼⟶ℝ)
17 ffn 6045 . . . . . . . 8 (𝑓:𝐼⟶ℝ → 𝑓 Fn 𝐼)
1816, 17syl 17 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 Fn 𝐼)
19183adant3 1081 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 Fn 𝐼)
20 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝐼𝑉)
2113a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ℝfld ∈ Field)
22 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
236, 7, 8, 4, 9frlmipval 20118 . . . . . . . . . . . . . . . . 17 (((𝐼𝑉 ∧ ℝfld ∈ Field) ∧ (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓𝑓 · 𝑓)))
2420, 21, 22, 22, 23syl22anc 1327 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓𝑓 · 𝑓)))
25 ovexd 6680 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ V)
26 inidm 3822 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝐼) = 𝐼
27 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
2818, 18, 20, 20, 26, 27, 27offval 6904 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑓𝑥))))
2918, 18, 20, 20, 26, 27, 27ofval 6906 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
3016ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
3130, 30remulcld 10070 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
3229, 31eqeltrd 2701 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓)‘𝑥) ∈ ℝ)
3325, 28, 32fmpt2d 6393 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓):𝐼⟶ℝ)
34 ovexd 6680 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓) ∈ V)
35 ffun 6048 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑓 · 𝑓):𝐼⟶ℝ → Fun (𝑓𝑓 · 𝑓))
3633, 35syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Fun (𝑓𝑓 · 𝑓))
376, 11, 4frlmbasfsupp 20102 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 finSupp 0)
38 0red 10041 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ∈ ℝ)
39 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
4039recnd 10068 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4140mul02d 10234 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
4220, 38, 16, 16, 41suppofss1d 7332 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0))
43 fsuppsssupp 8291 . . . . . . . . . . . . . . . . . . 19 ((((𝑓𝑓 · 𝑓) ∈ V ∧ Fun (𝑓𝑓 · 𝑓)) ∧ (𝑓 finSupp 0 ∧ ((𝑓𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0))) → (𝑓𝑓 · 𝑓) finSupp 0)
4434, 36, 37, 42, 43syl22anc 1327 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓) finSupp 0)
45 regsumsupp 19968 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑓 · 𝑓):𝐼⟶ℝ ∧ (𝑓𝑓 · 𝑓) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑓𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑓 · 𝑓)‘𝑥))
4633, 44, 20, 45syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑓 · 𝑓)‘𝑥))
47 suppssdm 7308 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 supp 0) ⊆ dom 𝑓
48 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐼⟶ℝ → dom 𝑓 = 𝐼)
4916, 48syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → dom 𝑓 = 𝐼)
5047, 49syl5sseq 3653 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ⊆ 𝐼)
5142, 50sstrd 3613 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓𝑓 · 𝑓) supp 0) ⊆ 𝐼)
5251sselda 3603 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → 𝑥𝐼)
5352, 29syldan 487 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑓 · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
5453sumeq2dv 14433 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑓 · 𝑓)‘𝑥) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5546, 54eqtrd 2656 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5624, 55eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
57563adant3 1081 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
58 simp3 1063 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0)
5957, 58eqtr3d 2658 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
6037fsuppimpd 8282 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ∈ Fin)
61 ssfi 8180 . . . . . . . . . . . . . . . 16 (((𝑓 supp 0) ∈ Fin ∧ ((𝑓𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0)) → ((𝑓𝑓 · 𝑓) supp 0) ∈ Fin)
6260, 42, 61syl2anc 693 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓𝑓 · 𝑓) supp 0) ∈ Fin)
6352, 31syldan 487 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
6430msqge0d 10596 . . . . . . . . . . . . . . . 16 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
6552, 64syldan 487 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
6662, 63, 65fsum00 14530 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
67663adant3 1081 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
6859, 67mpbid 222 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
6968r19.21bi 2932 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
7069adantlr 751 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
71303adantl3 1219 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7271recnd 10068 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
7372, 72mul0ord 10677 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
7473adantr 481 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
7570, 74mpbid 222 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0))
76 oridm 536 . . . . . . . . 9 (((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0) ↔ (𝑓𝑥) = 0)
7775, 76sylib 208 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → (𝑓𝑥) = 0)
78333adant3 1081 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓𝑓 · 𝑓):𝐼⟶ℝ)
7978adantr 481 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑓 · 𝑓):𝐼⟶ℝ)
80 ssid 3624 . . . . . . . . . . 11 ((𝑓𝑓 · 𝑓) supp 0) ⊆ ((𝑓𝑓 · 𝑓) supp 0)
8180a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓) supp 0) ⊆ ((𝑓𝑓 · 𝑓) supp 0))
82 simpl1 1064 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝐼𝑉)
83 0red 10041 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 0 ∈ ℝ)
8479, 81, 82, 83suppssr 7326 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) → ((𝑓𝑓 · 𝑓)‘𝑥) = 0)
85293adantl3 1219 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
8685eqeq1d 2624 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑓 · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) · (𝑓𝑥)) = 0))
8786, 73bitrd 268 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑓 · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
8887, 76syl6bb 276 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑓 · 𝑓)‘𝑥) = 0 ↔ (𝑓𝑥) = 0))
8988biimpa 501 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ ((𝑓𝑓 · 𝑓)‘𝑥) = 0) → (𝑓𝑥) = 0)
9084, 89syldan 487 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) → (𝑓𝑥) = 0)
91 undif 4049 . . . . . . . . . . . . 13 (((𝑓𝑓 · 𝑓) supp 0) ⊆ 𝐼 ↔ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) = 𝐼)
9251, 91sylib 208 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) = 𝐼)
9392eleq2d 2687 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) ↔ 𝑥𝐼))
94933adant3 1081 . . . . . . . . . 10 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) ↔ 𝑥𝐼))
9594biimpar 502 . . . . . . . . 9 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))))
96 elun 3753 . . . . . . . . 9 (𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) ↔ (𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))))
9795, 96sylib 208 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))))
9877, 90, 97mpjaodan 827 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) = 0)
9998ralrimiva 2966 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥𝐼 (𝑓𝑥) = 0)
100 fconstfv 6476 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0))
101 c0ex 10034 . . . . . . . 8 0 ∈ V
102101fconst2 6470 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ 𝑓 = (𝐼 × {0}))
103100, 102sylbb1 227 . . . . . 6 ((𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0) → 𝑓 = (𝐼 × {0}))
10419, 99, 103syl2anc 693 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (𝐼 × {0}))
105 isfld 18756 . . . . . . . . . . 11 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
10613, 105mpbi 220 . . . . . . . . . 10 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
107106simpli 474 . . . . . . . . 9 fld ∈ DivRing
108 drngring 18754 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
109107, 108ax-mp 5 . . . . . . . 8 fld ∈ Ring
1106, 11frlm0 20098 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
111109, 110mpan 706 . . . . . . 7 (𝐼𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
11215, 111syl5reqr 2671 . . . . . 6 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
1131123ad2ant1 1082 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
11415, 104, 1133eqtr4a 2682 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (0g‘(ℝfld freeLMod 𝐼)))
115 cjre 13879 . . . . 5 (𝑥 ∈ ℝ → (∗‘𝑥) = 𝑥)
116115adantl 482 . . . 4 ((𝐼𝑉𝑥 ∈ ℝ) → (∗‘𝑥) = 𝑥)
117 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1186, 7, 8, 4, 9, 10, 11, 12, 14, 114, 116, 117frlmphl 20120 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ PreHil)
119 df-refld 19951 . . . 4 fld = (ℂflds ℝ)
1206frlmsca 20097 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
12113, 120mpan 706 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
122119, 121syl5reqr 2671 . . 3 (𝐼𝑉 → (Scalar‘(ℝfld freeLMod 𝐼)) = (ℂflds ℝ))
123 simpr1 1067 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 𝑓 ∈ ℝ)
124 simpr3 1069 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 0 ≤ 𝑓)
125123, 124resqrtcld 14156 . . 3 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → (√‘𝑓) ∈ ℝ)
12662, 63, 65fsumge0 14527 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
127126, 55breqtrrd 4681 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (ℝfld Σg (𝑓𝑓 · 𝑓)))
128127, 24breqtrrd 4681 . . 3 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
1293, 4, 5, 118, 122, 9, 125, 128tchcph 23036 . 2 (𝐼𝑉 → (toℂHil‘(ℝfld freeLMod 𝐼)) ∈ ℂPreHil)
1302, 129eqeltrd 2701 1 (𝐼𝑉𝐻 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275  cr 9935  0cc0 9936   · cmul 9941  cle 10075  ccj 13836  Σcsu 14416  Basecbs 15857  s cress 15858  Scalarcsca 15944  ·𝑖cip 15946  0gc0g 16100   Σg cgsu 16101  Ringcrg 18547  CRingccrg 18548  DivRingcdr 18747  Fieldcfield 18748  fldccnfld 19746  fldcrefld 19950   freeLMod cfrlm 20090  ℂPreHilccph 22966  toℂHilctch 22967  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrxngp  40502
  Copyright terms: Public domain W3C validator