| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppr | Structured version Visualization version Unicode version | ||
| Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| suppr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. 2
| |
| 2 | ifcl 4130 |
. . 3
| |
| 3 | 2 | 3adant1 1079 |
. 2
|
| 4 | ifpr 4233 |
. . 3
| |
| 5 | 4 | 3adant1 1079 |
. 2
|
| 6 | breq1 4656 |
. . . . . 6
| |
| 7 | 6 | notbid 308 |
. . . . 5
|
| 8 | breq1 4656 |
. . . . . 6
| |
| 9 | 8 | notbid 308 |
. . . . 5
|
| 10 | sonr 5056 |
. . . . . . 7
| |
| 11 | 10 | 3adant3 1081 |
. . . . . 6
|
| 12 | 11 | adantr 481 |
. . . . 5
|
| 13 | simpr 477 |
. . . . 5
| |
| 14 | 7, 9, 12, 13 | ifbothda 4123 |
. . . 4
|
| 15 | breq1 4656 |
. . . . . 6
| |
| 16 | 15 | notbid 308 |
. . . . 5
|
| 17 | breq1 4656 |
. . . . . 6
| |
| 18 | 17 | notbid 308 |
. . . . 5
|
| 19 | so2nr 5059 |
. . . . . . . . 9
| |
| 20 | 19 | 3impb 1260 |
. . . . . . . 8
|
| 21 | 20 | 3com23 1271 |
. . . . . . 7
|
| 22 | imnan 438 |
. . . . . . 7
| |
| 23 | 21, 22 | sylibr 224 |
. . . . . 6
|
| 24 | 23 | imp 445 |
. . . . 5
|
| 25 | sonr 5056 |
. . . . . . 7
| |
| 26 | 25 | 3adant2 1080 |
. . . . . 6
|
| 27 | 26 | adantr 481 |
. . . . 5
|
| 28 | 16, 18, 24, 27 | ifbothda 4123 |
. . . 4
|
| 29 | breq2 4657 |
. . . . . . 7
| |
| 30 | 29 | notbid 308 |
. . . . . 6
|
| 31 | breq2 4657 |
. . . . . . 7
| |
| 32 | 31 | notbid 308 |
. . . . . 6
|
| 33 | 30, 32 | ralprg 4234 |
. . . . 5
|
| 34 | 33 | 3adant1 1079 |
. . . 4
|
| 35 | 14, 28, 34 | mpbir2and 957 |
. . 3
|
| 36 | 35 | r19.21bi 2932 |
. 2
|
| 37 | 1, 3, 5, 36 | supmax 8373 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-iota 5851 df-riota 6611 df-sup 8348 |
| This theorem is referenced by: supsn 8378 2resupmax 12019 tmsxpsval2 22344 esumsnf 30126 limsup10ex 40005 sge0sn 40596 |
| Copyright terms: Public domain | W3C validator |