MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supgtoreq Structured version   Visualization version   GIF version

Theorem supgtoreq 8376
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supgtoreq.1 (𝜑𝑅 Or 𝐴)
supgtoreq.2 (𝜑𝐵𝐴)
supgtoreq.3 (𝜑𝐵 ∈ Fin)
supgtoreq.4 (𝜑𝐶𝐵)
supgtoreq.5 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
supgtoreq (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))

Proof of Theorem supgtoreq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supgtoreq.4 . . . . 5 (𝜑𝐶𝐵)
2 supgtoreq.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
3 supgtoreq.2 . . . . . . 7 (𝜑𝐵𝐴)
4 supgtoreq.3 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
5 ne0i 3921 . . . . . . . . 9 (𝐶𝐵𝐵 ≠ ∅)
61, 5syl 17 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
7 fisup2g 8374 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
82, 4, 6, 3, 7syl13anc 1328 . . . . . . 7 (𝜑 → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
9 ssrexv 3667 . . . . . . 7 (𝐵𝐴 → (∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
103, 8, 9sylc 65 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
112, 10supub 8365 . . . . 5 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
121, 11mpd 15 . . . 4 (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
13 supgtoreq.5 . . . . 5 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
1413breq1d 4663 . . . 4 (𝜑 → (𝑆𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1512, 14mtbird 315 . . 3 (𝜑 → ¬ 𝑆𝑅𝐶)
16 fisupcl 8375 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
172, 4, 6, 3, 16syl13anc 1328 . . . . . . 7 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
183, 17sseldd 3604 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
1913, 18eqeltrd 2701 . . . . 5 (𝜑𝑆𝐴)
203, 1sseldd 3604 . . . . 5 (𝜑𝐶𝐴)
21 sotric 5061 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑆𝐴𝐶𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
222, 19, 20, 21syl12anc 1324 . . . 4 (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
23 orcom 402 . . . . . 6 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝑆 = 𝐶))
24 eqcom 2629 . . . . . . 7 (𝑆 = 𝐶𝐶 = 𝑆)
2524orbi2i 541 . . . . . 6 ((𝐶𝑅𝑆𝑆 = 𝐶) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2623, 25bitri 264 . . . . 5 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2726notbii 310 . . . 4 (¬ (𝑆 = 𝐶𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2822, 27syl6rbb 277 . . 3 (𝜑 → (¬ (𝐶𝑅𝑆𝐶 = 𝑆) ↔ 𝑆𝑅𝐶))
2915, 28mtbird 315 . 2 (𝜑 → ¬ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
3029notnotrd 128 1 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653   Or wor 5034  Fincfn 7955  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-sup 8348
This theorem is referenced by:  infltoreq  8408  supfirege  11009
  Copyright terms: Public domain W3C validator