![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version |
Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsup10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
Ref | Expression |
---|---|
limsup10ex | ⊢ (lim sup‘𝐹) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1730 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
2 | nnex 11026 | . . . . 5 ⊢ ℕ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
4 | limsup10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
5 | 0xr 10086 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
7 | 1re 10039 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
8 | 7 | rexri 10097 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
10 | 6, 9 | ifcld 4131 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
11 | 4, 10 | fmpti 6383 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
13 | eqid 2622 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
14 | 1, 3, 12, 13 | limsupval3 39924 | . . 3 ⊢ (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
15 | 14 | trud 1493 | . 2 ⊢ (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
16 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
17 | 4, 16 | limsup10exlem 40004 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
18 | 17 | supeq1d 8352 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < )) |
19 | xrltso 11974 | . . . . . . . . . 10 ⊢ < Or ℝ* | |
20 | suppr 8377 | . . . . . . . . . 10 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)) | |
21 | 19, 5, 8, 20 | mp3an 1424 | . . . . . . . . 9 ⊢ sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1) |
22 | 0le1 10551 | . . . . . . . . . . 11 ⊢ 0 ≤ 1 | |
23 | 0re 10040 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
24 | lenlt 10116 | . . . . . . . . . . . 12 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ 1 ↔ ¬ 1 < 0)) | |
25 | 23, 7, 24 | mp2an 708 | . . . . . . . . . . 11 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
26 | 22, 25 | mpbi 220 | . . . . . . . . . 10 ⊢ ¬ 1 < 0 |
27 | 26 | iffalsei 4096 | . . . . . . . . 9 ⊢ if(1 < 0, 0, 1) = 1 |
28 | 21, 27 | eqtri 2644 | . . . . . . . 8 ⊢ sup({0, 1}, ℝ*, < ) = 1 |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup({0, 1}, ℝ*, < ) = 1) |
30 | 18, 29 | eqtrd 2656 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1) |
31 | 30 | mpteq2ia 4740 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1) |
32 | 31 | rneqi 5352 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1) |
33 | eqid 2622 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1) | |
34 | 7 | elexi 3213 | . . . . . . 7 ⊢ 1 ∈ V |
35 | 34 | a1i 11 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℝ) → 1 ∈ V) |
36 | ren0 39626 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
37 | 36 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
38 | 33, 35, 37 | rnmptc 39353 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1}) |
39 | 38 | trud 1493 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 1) = {1} |
40 | 32, 39 | eqtri 2644 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1} |
41 | 40 | infeq1i 8384 | . 2 ⊢ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < ) |
42 | infsn 8410 | . . 3 ⊢ (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1) | |
43 | 19, 8, 42 | mp2an 708 | . 2 ⊢ inf({1}, ℝ*, < ) = 1 |
44 | 15, 41, 43 | 3eqtri 2648 | 1 ⊢ (lim sup‘𝐹) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 ifcif 4086 {csn 4177 {cpr 4179 class class class wbr 4653 ↦ cmpt 4729 Or wor 5034 ran crn 5115 “ cima 5117 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 supcsup 8346 infcinf 8347 ℝcr 9935 0cc0 9936 1c1 9937 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 ℕcn 11020 2c2 11070 [,)cico 12177 lim supclsp 14201 ∥ cdvds 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-fl 12593 df-ceil 12594 df-limsup 14202 df-dvds 14984 |
This theorem is referenced by: liminfltlimsupex 40013 |
Copyright terms: Public domain | W3C validator |