MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval2 Structured version   Visualization version   GIF version

Theorem tmsxpsval2 22344
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsval.a (𝜑𝐴𝑋)
tmsxpsval.b (𝜑𝐵𝑌)
tmsxpsval.c (𝜑𝐶𝑋)
tmsxpsval.d (𝜑𝐷𝑌)
Assertion
Ref Expression
tmsxpsval2 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)))

Proof of Theorem tmsxpsval2
StepHypRef Expression
1 tmsxps.p . . 3 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
2 tmsxps.1 . . 3 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 tmsxps.2 . . 3 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 tmsxpsval.a . . 3 (𝜑𝐴𝑋)
5 tmsxpsval.b . . 3 (𝜑𝐵𝑌)
6 tmsxpsval.c . . 3 (𝜑𝐶𝑋)
7 tmsxpsval.d . . 3 (𝜑𝐷𝑌)
81, 2, 3, 4, 5, 6, 7tmsxpsval 22343 . 2 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
9 xrltso 11974 . . . 4 < Or ℝ*
109a1i 11 . . 3 (𝜑 → < Or ℝ*)
11 xmetcl 22136 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑀𝐶) ∈ ℝ*)
122, 4, 6, 11syl3anc 1326 . . 3 (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*)
13 xmetcl 22136 . . . 4 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝐷𝑌) → (𝐵𝑁𝐷) ∈ ℝ*)
143, 5, 7, 13syl3anc 1326 . . 3 (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*)
15 suppr 8377 . . 3 (( < Or ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ* ∧ (𝐵𝑁𝐷) ∈ ℝ*) → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)))
1610, 12, 14, 15syl3anc 1326 . 2 (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)))
17 xrltnle 10105 . . . . 5 (((𝐵𝑁𝐷) ∈ ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ*) → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷)))
1814, 12, 17syl2anc 693 . . . 4 (𝜑 → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷)))
1918ifbid 4108 . . 3 (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷)))
20 ifnot 4133 . . 3 if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))
2119, 20syl6eq 2672 . 2 (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)))
228, 16, 213eqtrd 2660 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1483  wcel 1990  ifcif 4086  {cpr 4179  cop 4183   class class class wbr 4653   Or wor 5034  cfv 5888  (class class class)co 6650  supcsup 8346  *cxr 10073   < clt 10074  cle 10075  distcds 15950   ×s cxps 16166  ∞Metcxmt 19731  toMetSpctmt 22124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-xrs 16162  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-tms 22127
This theorem is referenced by:  txmetcnp  22352
  Copyright terms: Public domain W3C validator