Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss3 Structured version   Visualization version   GIF version

Theorem suppss3 29502
Description: Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
suppss3.1 𝐺 = (𝑥𝐴𝐵)
suppss3.a (𝜑𝐴𝑉)
suppss3.z (𝜑𝑍𝑊)
suppss3.2 (𝜑𝐹 Fn 𝐴)
suppss3.3 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
Assertion
Ref Expression
suppss3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppss3
StepHypRef Expression
1 suppss3.1 . . 3 𝐺 = (𝑥𝐴𝐵)
21oveq1i 6660 . 2 (𝐺 supp 𝑍) = ((𝑥𝐴𝐵) supp 𝑍)
3 simpl 473 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝜑)
4 eldifi 3732 . . . . 5 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
54adantl 482 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝑥𝐴)
6 suppss3.2 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
7 suppss3.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
8 fnex 6481 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
96, 7, 8syl2anc 693 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
10 suppss3.z . . . . . . . . . . . . 13 (𝜑𝑍𝑊)
11 suppimacnv 7306 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
129, 10, 11syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1312eleq2d 2687 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ 𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))))
14 elpreima 6337 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
156, 14syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1613, 15bitrd 268 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1716baibd 948 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1817notbid 308 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1918biimpd 219 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
2019expimpd 629 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
21 eldif 3584 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
22 fvex 6201 . . . . . . . 8 (𝐹𝑥) ∈ V
23 eldifsn 4317 . . . . . . . 8 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
2422, 23mpbiran 953 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍)
2524necon2bbii 2845 . . . . . 6 ((𝐹𝑥) = 𝑍 ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍}))
2620, 21, 253imtr4g 285 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → (𝐹𝑥) = 𝑍))
2726imp 445 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
28 suppss3.3 . . . 4 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
293, 5, 27, 28syl3anc 1326 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝐵 = 𝑍)
3029, 7suppss2 7329 . 2 (𝜑 → ((𝑥𝐴𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
312, 30syl5eqss 3649 1 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  wss 3574  {csn 4177  cmpt 4729  ccnv 5113  cima 5117   Fn wfn 5883  cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  eulerpartlems  30422
  Copyright terms: Public domain W3C validator