MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2b Structured version   Visualization version   Unicode version

Theorem tfr2b 7492
Description: Without assuming ax-rep 4771, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr2b  |-  ( Ord 
A  ->  ( A  e.  dom  F  <->  ( F  |`  A )  e.  _V ) )

Proof of Theorem tfr2b
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordeleqon 6988 . 2  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
2 eqid 2622 . . . . 5  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
32tfrlem15 7488 . . . 4  |-  ( A  e.  On  ->  ( A  e.  dom recs ( G )  <->  (recs ( G )  |`  A )  e.  _V ) )
4 tfr.1 . . . . . 6  |-  F  = recs ( G )
54dmeqi 5325 . . . . 5  |-  dom  F  =  dom recs ( G )
65eleq2i 2693 . . . 4  |-  ( A  e.  dom  F  <->  A  e.  dom recs ( G ) )
74reseq1i 5392 . . . . 5  |-  ( F  |`  A )  =  (recs ( G )  |`  A )
87eleq1i 2692 . . . 4  |-  ( ( F  |`  A )  e.  _V  <->  (recs ( G )  |`  A )  e.  _V )
93, 6, 83bitr4g 303 . . 3  |-  ( A  e.  On  ->  ( A  e.  dom  F  <->  ( F  |`  A )  e.  _V ) )
10 onprc 6984 . . . . . 6  |-  -.  On  e.  _V
11 elex 3212 . . . . . 6  |-  ( On  e.  dom  F  ->  On  e.  _V )
1210, 11mto 188 . . . . 5  |-  -.  On  e.  dom  F
13 eleq1 2689 . . . . 5  |-  ( A  =  On  ->  ( A  e.  dom  F  <->  On  e.  dom  F ) )
1412, 13mtbiri 317 . . . 4  |-  ( A  =  On  ->  -.  A  e.  dom  F )
152tfrlem13 7486 . . . . . 6  |-  -. recs ( G )  e.  _V
164eleq1i 2692 . . . . . 6  |-  ( F  e.  _V  <-> recs ( G
)  e.  _V )
1715, 16mtbir 313 . . . . 5  |-  -.  F  e.  _V
18 reseq2 5391 . . . . . . 7  |-  ( A  =  On  ->  ( F  |`  A )  =  ( F  |`  On ) )
194tfr1a 7490 . . . . . . . . . 10  |-  ( Fun 
F  /\  Lim  dom  F
)
2019simpli 474 . . . . . . . . 9  |-  Fun  F
21 funrel 5905 . . . . . . . . 9  |-  ( Fun 
F  ->  Rel  F )
2220, 21ax-mp 5 . . . . . . . 8  |-  Rel  F
2319simpri 478 . . . . . . . . 9  |-  Lim  dom  F
24 limord 5784 . . . . . . . . 9  |-  ( Lim 
dom  F  ->  Ord  dom  F )
25 ordsson 6989 . . . . . . . . 9  |-  ( Ord 
dom  F  ->  dom  F  C_  On )
2623, 24, 25mp2b 10 . . . . . . . 8  |-  dom  F  C_  On
27 relssres 5437 . . . . . . . 8  |-  ( ( Rel  F  /\  dom  F 
C_  On )  -> 
( F  |`  On )  =  F )
2822, 26, 27mp2an 708 . . . . . . 7  |-  ( F  |`  On )  =  F
2918, 28syl6eq 2672 . . . . . 6  |-  ( A  =  On  ->  ( F  |`  A )  =  F )
3029eleq1d 2686 . . . . 5  |-  ( A  =  On  ->  (
( F  |`  A )  e.  _V  <->  F  e.  _V ) )
3117, 30mtbiri 317 . . . 4  |-  ( A  =  On  ->  -.  ( F  |`  A )  e.  _V )
3214, 312falsed 366 . . 3  |-  ( A  =  On  ->  ( A  e.  dom  F  <->  ( F  |`  A )  e.  _V ) )
339, 32jaoi 394 . 2  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( A  e.  dom  F  <-> 
( F  |`  A )  e.  _V ) )
341, 33sylbi 207 1  |-  ( Ord 
A  ->  ( A  e.  dom  F  <->  ( F  |`  A )  e.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   dom cdm 5114    |` cres 5116   Rel wrel 5119   Ord word 5722   Oncon0 5723   Lim wlim 5724   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  ordtypelem3  8425  ordtypelem9  8431
  Copyright terms: Public domain W3C validator