MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem9 Structured version   Visualization version   GIF version

Theorem ordtypelem9 8431
Description: Lemma for ordtype 8437. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 8435 implies that either ran 𝑂𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
ordtypelem9.1 (𝜑𝑂 ∈ V)
Assertion
Ref Expression
ordtypelem9 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem9
Dummy variables 𝑎 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 8430 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 8426 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
10 frn 6053 . . . . 5 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → ran 𝑂𝐴)
119, 10syl 17 . . . 4 (𝜑 → ran 𝑂𝐴)
121, 2, 3, 4, 5, 6, 7ordtypelem2 8424 . . . . . . . . . . . . 13 (𝜑 → Ord 𝑇)
13 ordirr 5741 . . . . . . . . . . . . 13 (Ord 𝑇 → ¬ 𝑇𝑇)
1412, 13syl 17 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑇𝑇)
151tfr1a 7490 . . . . . . . . . . . . . . . 16 (Fun 𝐹 ∧ Lim dom 𝐹)
1615simpri 478 . . . . . . . . . . . . . . 15 Lim dom 𝐹
17 limord 5784 . . . . . . . . . . . . . . 15 (Lim dom 𝐹 → Ord dom 𝐹)
1816, 17ax-mp 5 . . . . . . . . . . . . . 14 Ord dom 𝐹
191, 2, 3, 4, 5, 6, 7ordtypelem1 8423 . . . . . . . . . . . . . . . 16 (𝜑𝑂 = (𝐹𝑇))
20 ordtypelem9.1 . . . . . . . . . . . . . . . 16 (𝜑𝑂 ∈ V)
2119, 20eqeltrrd 2702 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑇) ∈ V)
221tfr2b 7492 . . . . . . . . . . . . . . . 16 (Ord 𝑇 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2312, 22syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2421, 23mpbird 247 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ dom 𝐹)
25 ordelon 5747 . . . . . . . . . . . . . 14 ((Ord dom 𝐹𝑇 ∈ dom 𝐹) → 𝑇 ∈ On)
2618, 24, 25sylancr 695 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ On)
27 imaeq2 5462 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹𝑇))
2827raleqdv 3144 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑇 → (∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
2928rexbidv 3052 . . . . . . . . . . . . . . 15 (𝑎 = 𝑇 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
30 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑐 → (𝑧𝑅𝑡𝑐𝑅𝑡))
3130cbvralv 3171 . . . . . . . . . . . . . . . . . . . 20 (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡)
32 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑏 → (𝑐𝑅𝑡𝑐𝑅𝑏))
3332ralbidv 2986 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3431, 33syl5bb 272 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3534cbvrexv 3172 . . . . . . . . . . . . . . . . . 18 (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏)
36 imaeq2 5462 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3736raleqdv 3144 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3837rexbidv 3052 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3935, 38syl5bb 272 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
4039cbvrabv 3199 . . . . . . . . . . . . . . . 16 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
414, 40eqtri 2644 . . . . . . . . . . . . . . 15 𝑇 = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
4229, 41elrab2 3366 . . . . . . . . . . . . . 14 (𝑇𝑇 ↔ (𝑇 ∈ On ∧ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4342baib 944 . . . . . . . . . . . . 13 (𝑇 ∈ On → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4426, 43syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4514, 44mtbid 314 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
46 ralnex 2992 . . . . . . . . . . 11 (∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4745, 46sylibr 224 . . . . . . . . . 10 (𝜑 → ∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4847r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑏𝐴) → ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4919rneqd 5353 . . . . . . . . . . . . 13 (𝜑 → ran 𝑂 = ran (𝐹𝑇))
50 df-ima 5127 . . . . . . . . . . . . 13 (𝐹𝑇) = ran (𝐹𝑇)
5149, 50syl6eqr 2674 . . . . . . . . . . . 12 (𝜑 → ran 𝑂 = (𝐹𝑇))
5251adantr 481 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → ran 𝑂 = (𝐹𝑇))
5352raleqdv 3144 . . . . . . . . . 10 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
54 ffun 6048 . . . . . . . . . . . . . 14 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → Fun 𝑂)
559, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → Fun 𝑂)
56 funfn 5918 . . . . . . . . . . . . 13 (Fun 𝑂𝑂 Fn dom 𝑂)
5755, 56sylib 208 . . . . . . . . . . . 12 (𝜑𝑂 Fn dom 𝑂)
5857adantr 481 . . . . . . . . . . 11 ((𝜑𝑏𝐴) → 𝑂 Fn dom 𝑂)
59 breq1 4656 . . . . . . . . . . . 12 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
6059ralrn 6362 . . . . . . . . . . 11 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6158, 60syl 17 . . . . . . . . . 10 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6253, 61bitr3d 270 . . . . . . . . 9 ((𝜑𝑏𝐴) → (∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6348, 62mtbid 314 . . . . . . . 8 ((𝜑𝑏𝐴) → ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
64 rexnal 2995 . . . . . . . 8 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
6563, 64sylibr 224 . . . . . . 7 ((𝜑𝑏𝐴) → ∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏)
661, 2, 3, 4, 5, 6, 7ordtypelem7 8429 . . . . . . . . 9 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6766ord 392 . . . . . . . 8 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6867rexlimdva 3031 . . . . . . 7 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6965, 68mpd 15 . . . . . 6 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
7069ex 450 . . . . 5 (𝜑 → (𝑏𝐴𝑏 ∈ ran 𝑂))
7170ssrdv 3609 . . . 4 (𝜑𝐴 ⊆ ran 𝑂)
7211, 71eqssd 3620 . . 3 (𝜑 → ran 𝑂 = 𝐴)
73 isoeq5 6571 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
7472, 73syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
758, 74mpbid 222 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574   class class class wbr 4653  cmpt 4729   E cep 5028   Se wse 5071   We wwe 5072  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Ord word 5722  Oncon0 5723  Lim wlim 5724  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888   Isom wiso 5889  crio 6610  recscrecs 7467  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-oi 8415
This theorem is referenced by:  ordtypelem10  8432  ordtype2  8439
  Copyright terms: Public domain W3C validator