MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgphaus Structured version   Visualization version   Unicode version

Theorem tgphaus 21920
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tgphaus.1  |-  .0.  =  ( 0g `  G )
tgphaus.j  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tgphaus  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  {  .0.  }  e.  ( Clsd `  J )
) )

Proof of Theorem tgphaus
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 21882 . . . . 5  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
2 eqid 2622 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
3 tgphaus.1 . . . . . 6  |-  .0.  =  ( 0g `  G )
42, 3grpidcl 17450 . . . . 5  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
51, 4syl 17 . . . 4  |-  ( G  e.  TopGrp  ->  .0.  e.  ( Base `  G ) )
6 tgphaus.j . . . . . 6  |-  J  =  ( TopOpen `  G )
76, 2tgptopon 21886 . . . . 5  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
8 toponuni 20719 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
97, 8syl 17 . . . 4  |-  ( G  e.  TopGrp  ->  ( Base `  G
)  =  U. J
)
105, 9eleqtrd 2703 . . 3  |-  ( G  e.  TopGrp  ->  .0.  e.  U. J
)
11 eqid 2622 . . . . 5  |-  U. J  =  U. J
1211sncld 21175 . . . 4  |-  ( ( J  e.  Haus  /\  .0.  e.  U. J )  ->  {  .0.  }  e.  (
Clsd `  J )
)
1312expcom 451 . . 3  |-  (  .0. 
e.  U. J  ->  ( J  e.  Haus  ->  {  .0.  }  e.  ( Clsd `  J
) ) )
1410, 13syl 17 . 2  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus  ->  {  .0.  }  e.  ( Clsd `  J
) ) )
15 eqid 2622 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
166, 15tgpsubcn 21894 . . . . 5  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
17 cnclima 21072 . . . . . 6  |-  ( ( ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J )  /\  {  .0.  }  e.  (
Clsd `  J )
)  ->  ( `' ( -g `  G )
" {  .0.  }
)  e.  ( Clsd `  ( J  tX  J
) ) )
1817ex 450 . . . . 5  |-  ( (
-g `  G )  e.  ( ( J  tX  J )  Cn  J
)  ->  ( {  .0.  }  e.  ( Clsd `  J )  ->  ( `' ( -g `  G
) " {  .0.  } )  e.  ( Clsd `  ( J  tX  J
) ) ) )
1916, 18syl 17 . . . 4  |-  ( G  e.  TopGrp  ->  ( {  .0.  }  e.  ( Clsd `  J
)  ->  ( `' ( -g `  G )
" {  .0.  }
)  e.  ( Clsd `  ( J  tX  J
) ) ) )
20 cnvimass 5485 . . . . . . . . 9  |-  ( `' ( -g `  G
) " {  .0.  } )  C_  dom  ( -g `  G )
212, 15grpsubf 17494 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
221, 21syl 17 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( -g `  G
) : ( (
Base `  G )  X.  ( Base `  G
) ) --> ( Base `  G ) )
23 fdm 6051 . . . . . . . . . 10  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) ) )
2422, 23syl 17 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) ) )
2520, 24syl5sseq 3653 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  ( `' (
-g `  G ) " {  .0.  } ) 
C_  ( ( Base `  G )  X.  ( Base `  G ) ) )
26 relxp 5227 . . . . . . . 8  |-  Rel  (
( Base `  G )  X.  ( Base `  G
) )
27 relss 5206 . . . . . . . 8  |-  ( ( `' ( -g `  G
) " {  .0.  } )  C_  ( ( Base `  G )  X.  ( Base `  G
) )  ->  ( Rel  ( ( Base `  G
)  X.  ( Base `  G ) )  ->  Rel  ( `' ( -g `  G ) " {  .0.  } ) ) )
2825, 26, 27mpisyl 21 . . . . . . 7  |-  ( G  e.  TopGrp  ->  Rel  ( `' ( -g `  G )
" {  .0.  }
) )
29 dfrel4v 5584 . . . . . . 7  |-  ( Rel  ( `' ( -g `  G ) " {  .0.  } )  <->  ( `' ( -g `  G )
" {  .0.  }
)  =  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y } )
3028, 29sylib 208 . . . . . 6  |-  ( G  e.  TopGrp  ->  ( `' (
-g `  G ) " {  .0.  } )  =  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y } )
31 ffn 6045 . . . . . . . . . . . 12  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  ( -g `  G )  Fn  (
( Base `  G )  X.  ( Base `  G
) ) )
3222, 31syl 17 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  Fn  ( (
Base `  G )  X.  ( Base `  G
) ) )
33 elpreima 6337 . . . . . . . . . . 11  |-  ( (
-g `  G )  Fn  ( ( Base `  G
)  X.  ( Base `  G ) )  -> 
( <. x ,  y
>.  e.  ( `' (
-g `  G ) " {  .0.  } )  <-> 
( <. x ,  y
>.  e.  ( ( Base `  G )  X.  ( Base `  G ) )  /\  ( ( -g `  G ) `  <. x ,  y >. )  e.  {  .0.  } ) ) )
3432, 33syl 17 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( <. x ,  y >.  e.  ( `' ( -g `  G
) " {  .0.  } )  <->  ( <. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  } ) ) )
35 opelxp 5146 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  <->  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )
3635anbi1i 731 . . . . . . . . . . 11  |-  ( (
<. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  } )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( -g `  G ) `
 <. x ,  y
>. )  e.  {  .0.  } ) )
372, 3, 15grpsubeq0 17501 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
( x ( -g `  G ) y )  =  .0.  <->  x  =  y ) )
38373expb 1266 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G ) ) )  ->  ( ( x ( -g `  G
) y )  =  .0.  <->  x  =  y
) )
391, 38sylan 488 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y )  =  .0.  <->  x  =  y ) )
40 df-ov 6653 . . . . . . . . . . . . . . 15  |-  ( x ( -g `  G
) y )  =  ( ( -g `  G
) `  <. x ,  y >. )
4140eleq1i 2692 . . . . . . . . . . . . . 14  |-  ( ( x ( -g `  G
) y )  e. 
{  .0.  }  <->  ( ( -g `  G ) `  <. x ,  y >.
)  e.  {  .0.  } )
42 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( x ( -g `  G
) y )  e. 
_V
4342elsn 4192 . . . . . . . . . . . . . 14  |-  ( ( x ( -g `  G
) y )  e. 
{  .0.  }  <->  ( x
( -g `  G ) y )  =  .0.  )
4441, 43bitr3i 266 . . . . . . . . . . . . 13  |-  ( ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  }  <->  ( x (
-g `  G )
y )  =  .0.  )
45 equcom 1945 . . . . . . . . . . . . 13  |-  ( y  =  x  <->  x  =  y )
4639, 44, 453bitr4g 303 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( ( ( -g `  G ) `  <. x ,  y >. )  e.  {  .0.  }  <->  y  =  x ) )
4746pm5.32da 673 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  ( ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( -g `  G ) `
 <. x ,  y
>. )  e.  {  .0.  } )  <->  ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  /\  y  =  x ) ) )
4836, 47syl5bb 272 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( ( <.
x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  } )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  y  =  x ) ) )
4934, 48bitrd 268 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  ( <. x ,  y >.  e.  ( `' ( -g `  G
) " {  .0.  } )  <->  ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  /\  y  =  x ) ) )
50 df-br 4654 . . . . . . . . 9  |-  ( x ( `' ( -g `  G ) " {  .0.  } ) y  <->  <. x ,  y >.  e.  ( `' ( -g `  G
) " {  .0.  } ) )
51 eleq1 2689 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y  e.  ( Base `  G )  <->  x  e.  ( Base `  G )
) )
5251biimparc 504 . . . . . . . . . . 11  |-  ( ( x  e.  ( Base `  G )  /\  y  =  x )  ->  y  e.  ( Base `  G
) )
5352pm4.71i 664 . . . . . . . . . 10  |-  ( ( x  e.  ( Base `  G )  /\  y  =  x )  <->  ( (
x  e.  ( Base `  G )  /\  y  =  x )  /\  y  e.  ( Base `  G
) ) )
54 an32 839 . . . . . . . . . 10  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  y  =  x )  <->  ( ( x  e.  ( Base `  G
)  /\  y  =  x )  /\  y  e.  ( Base `  G
) ) )
5553, 54bitr4i 267 . . . . . . . . 9  |-  ( ( x  e.  ( Base `  G )  /\  y  =  x )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  y  =  x ) )
5649, 50, 553bitr4g 303 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  ( x ( `' ( -g `  G
) " {  .0.  } ) y  <->  ( x  e.  ( Base `  G
)  /\  y  =  x ) ) )
5756opabbidv 4716 . . . . . . 7  |-  ( G  e.  TopGrp  ->  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y }  =  { <. x ,  y >.  |  ( x  e.  ( Base `  G )  /\  y  =  x ) } )
58 opabresid 5455 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  ( Base `  G )  /\  y  =  x ) }  =  (  _I  |`  ( Base `  G ) )
5957, 58syl6eq 2672 . . . . . 6  |-  ( G  e.  TopGrp  ->  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y }  =  (  _I  |`  ( Base `  G ) ) )
609reseq2d 5396 . . . . . 6  |-  ( G  e.  TopGrp  ->  (  _I  |`  ( Base `  G ) )  =  (  _I  |`  U. J
) )
6130, 59, 603eqtrd 2660 . . . . 5  |-  ( G  e.  TopGrp  ->  ( `' (
-g `  G ) " {  .0.  } )  =  (  _I  |`  U. J
) )
6261eleq1d 2686 . . . 4  |-  ( G  e.  TopGrp  ->  ( ( `' ( -g `  G
) " {  .0.  } )  e.  ( Clsd `  ( J  tX  J
) )  <->  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
6319, 62sylibd 229 . . 3  |-  ( G  e.  TopGrp  ->  ( {  .0.  }  e.  ( Clsd `  J
)  ->  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
64 topontop 20718 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
657, 64syl 17 . . . 4  |-  ( G  e.  TopGrp  ->  J  e.  Top )
6611hausdiag 21448 . . . . 5  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
6766baib 944 . . . 4  |-  ( J  e.  Top  ->  ( J  e.  Haus  <->  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
6865, 67syl 17 . . 3  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  (  _I  |`  U. J
)  e.  ( Clsd `  ( J  tX  J
) ) ) )
6963, 68sylibrd 249 . 2  |-  ( G  e.  TopGrp  ->  ( {  .0.  }  e.  ( Clsd `  J
)  ->  J  e.  Haus ) )
7014, 69impbid 202 1  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  {  .0.  }  e.  ( Clsd `  J )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653   {copab 4712    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   TopOpenctopn 16082   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   Topctop 20698  TopOnctopon 20715   Clsdccld 20820    Cn ccn 21028   Hauscha 21112    tX ctx 21363   TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-t1 21118  df-haus 21119  df-tx 21365  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  tgpt1  21921  qustgphaus  21926
  Copyright terms: Public domain W3C validator