![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskpr | Structured version Visualization version GIF version |
Description: If 𝐴 and 𝐵 are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskpr | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1061 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
2 | prssi 4353 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ⊆ 𝑇) | |
3 | 2 | 3adant1 1079 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ⊆ 𝑇) |
4 | prfi 8235 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
5 | isfinite 8549 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
6 | 4, 5 | mpbi 220 | . . . 4 ⊢ {𝐴, 𝐵} ≺ ω |
7 | ne0i 3921 | . . . . 5 ⊢ (𝐴 ∈ 𝑇 → 𝑇 ≠ ∅) | |
8 | tskinf 9591 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) | |
9 | 7, 8 | sylan2 491 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → ω ≼ 𝑇) |
10 | sdomdomtr 8093 | . . . 4 ⊢ (({𝐴, 𝐵} ≺ ω ∧ ω ≼ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) | |
11 | 6, 9, 10 | sylancr 695 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) |
12 | 11 | 3adant3 1081 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) |
13 | tskssel 9579 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝐴, 𝐵} ⊆ 𝑇 ∧ {𝐴, 𝐵} ≺ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) | |
14 | 1, 3, 12, 13 | syl3anc 1326 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 ∅c0 3915 {cpr 4179 class class class wbr 4653 ωcom 7065 ≼ cdom 7953 ≺ csdm 7954 Fincfn 7955 Tarskictsk 9570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-r1 8627 df-tsk 9571 |
This theorem is referenced by: tskop 9593 tskwun 9606 tskun 9608 grutsk1 9643 |
Copyright terms: Public domain | W3C validator |