MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtr Structured version   Visualization version   GIF version

Theorem sdomdomtr 8093
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
sdomdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtr
StepHypRef Expression
1 sdomdom 7983 . . 3 (𝐴𝐵𝐴𝐵)
2 domtr 8009 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 488 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpl 473 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
5 simpr 477 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
6 ensym 8005 . . . . . 6 (𝐴𝐶𝐶𝐴)
7 domentr 8015 . . . . . 6 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
85, 6, 7syl2an 494 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐵𝐴)
9 domnsym 8086 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐴𝐵)
1110ex 450 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
124, 11mt2d 131 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 7978 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 698 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   class class class wbr 4653  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  sdomentr  8094  sucdom  8157  infsdomnn  8221  fodomfib  8240  marypha1lem  8339  r1sdom  8637  infxpenlem  8836  infunsdom1  9035  fin56  9215  fodomb  9348  pwcfsdom  9405  cfpwsdom  9406  canthp1lem2  9475  gchpwdom  9492  gchhar  9501  gchina  9521  tsksdom  9578  tskpr  9592  tskcard  9603  gruina  9640  lindsenlbs  33404
  Copyright terms: Public domain W3C validator