![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttukeylem2 | Structured version Visualization version GIF version |
Description: Lemma for ttukey 9340. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
Ref | Expression |
---|---|
ttukeylem2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝐷 ⊆ 𝐶) | |
2 | sspwb 4917 | . . . . . 6 ⊢ (𝐷 ⊆ 𝐶 ↔ 𝒫 𝐷 ⊆ 𝒫 𝐶) | |
3 | 1, 2 | sylib 208 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝒫 𝐷 ⊆ 𝒫 𝐶) |
4 | ssrin 3838 | . . . . 5 ⊢ (𝒫 𝐷 ⊆ 𝒫 𝐶 → (𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin)) | |
5 | sstr2 3610 | . . . . 5 ⊢ ((𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) | |
6 | 3, 4, 5 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
7 | ttukeylem.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
8 | ttukeylem.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
9 | ttukeylem.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
10 | 7, 8, 9 | ttukeylem1 9331 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
12 | 7, 8, 9 | ttukeylem1 9331 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
14 | 6, 11, 13 | 3imtr4d 283 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 → 𝐷 ∈ 𝐴)) |
15 | 14 | impancom 456 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ⊆ 𝐶 → 𝐷 ∈ 𝐴)) |
16 | 15 | impr 649 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∈ wcel 1990 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 –1-1-onto→wf1o 5887 ‘cfv 5888 Fincfn 7955 cardccrd 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-en 7956 df-dom 7957 df-fin 7959 |
This theorem is referenced by: ttukeylem6 9336 ttukeylem7 9337 |
Copyright terms: Public domain | W3C validator |