MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem2 Structured version   Visualization version   Unicode version

Theorem ttukeylem2 9332
Description: Lemma for ttukey 9340. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
ttukeylem.2  |-  ( ph  ->  B  e.  A )
ttukeylem.3  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
Assertion
Ref Expression
ttukeylem2  |-  ( (
ph  /\  ( C  e.  A  /\  D  C_  C ) )  ->  D  e.  A )
Distinct variable groups:    x, C    x, D    x, A    x, B    x, F
Allowed substitution hint:    ph( x)

Proof of Theorem ttukeylem2
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( (
ph  /\  D  C_  C
)  ->  D  C_  C
)
2 sspwb 4917 . . . . . 6  |-  ( D 
C_  C  <->  ~P D  C_ 
~P C )
31, 2sylib 208 . . . . 5  |-  ( (
ph  /\  D  C_  C
)  ->  ~P D  C_ 
~P C )
4 ssrin 3838 . . . . 5  |-  ( ~P D  C_  ~P C  ->  ( ~P D  i^i  Fin )  C_  ( ~P C  i^i  Fin ) )
5 sstr2 3610 . . . . 5  |-  ( ( ~P D  i^i  Fin )  C_  ( ~P C  i^i  Fin )  ->  (
( ~P C  i^i  Fin )  C_  A  ->  ( ~P D  i^i  Fin )  C_  A ) )
63, 4, 53syl 18 . . . 4  |-  ( (
ph  /\  D  C_  C
)  ->  ( ( ~P C  i^i  Fin )  C_  A  ->  ( ~P D  i^i  Fin )  C_  A ) )
7 ttukeylem.1 . . . . . 6  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
8 ttukeylem.2 . . . . . 6  |-  ( ph  ->  B  e.  A )
9 ttukeylem.3 . . . . . 6  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
107, 8, 9ttukeylem1 9331 . . . . 5  |-  ( ph  ->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A ) )
1110adantr 481 . . . 4  |-  ( (
ph  /\  D  C_  C
)  ->  ( C  e.  A  <->  ( ~P C  i^i  Fin )  C_  A
) )
127, 8, 9ttukeylem1 9331 . . . . 5  |-  ( ph  ->  ( D  e.  A  <->  ( ~P D  i^i  Fin )  C_  A ) )
1312adantr 481 . . . 4  |-  ( (
ph  /\  D  C_  C
)  ->  ( D  e.  A  <->  ( ~P D  i^i  Fin )  C_  A
) )
146, 11, 133imtr4d 283 . . 3  |-  ( (
ph  /\  D  C_  C
)  ->  ( C  e.  A  ->  D  e.  A ) )
1514impancom 456 . 2  |-  ( (
ph  /\  C  e.  A )  ->  ( D  C_  C  ->  D  e.  A ) )
1615impr 649 1  |-  ( (
ph  /\  ( C  e.  A  /\  D  C_  C ) )  ->  D  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   -1-1-onto->wf1o 5887   ` cfv 5888   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  ttukeylem6  9336  ttukeylem7  9337
  Copyright terms: Public domain W3C validator