MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Visualization version   GIF version

Theorem uptx 21428
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1 𝑇 = (𝑅 ×t 𝑆)
uptx.2 𝑋 = 𝑅
uptx.3 𝑌 = 𝑆
uptx.4 𝑍 = (𝑋 × 𝑌)
uptx.5 𝑃 = (1st𝑍)
uptx.6 𝑄 = (2nd𝑍)
Assertion
Ref Expression
uptx ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Distinct variable groups:   ,𝐹   ,𝐺   𝑃,   𝑄,   𝑅,   𝑇,   𝑆,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hint:   𝑍()

Proof of Theorem uptx
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 𝑈 = 𝑈
2 eqid 2622 . . . . 5 (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
31, 2txcnmpt 21427 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
4 uptx.1 . . . . 5 𝑇 = (𝑅 ×t 𝑆)
54oveq2i 6661 . . . 4 (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆))
63, 5syl6eleqr 2712 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇))
7 uptx.2 . . . . . 6 𝑋 = 𝑅
81, 7cnf 21050 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹: 𝑈𝑋)
9 uptx.3 . . . . . 6 𝑌 = 𝑆
101, 9cnf 21050 . . . . 5 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺: 𝑈𝑌)
11 ffn 6045 . . . . . . . 8 (𝐹: 𝑈𝑋𝐹 Fn 𝑈)
1211adantr 481 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 Fn 𝑈)
13 fo1st 7188 . . . . . . . . . . 11 1st :V–onto→V
14 fofn 6117 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
1513, 14ax-mp 5 . . . . . . . . . 10 1st Fn V
16 ssv 3625 . . . . . . . . . 10 (𝑋 × 𝑌) ⊆ V
17 fnssres 6004 . . . . . . . . . 10 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
1815, 16, 17mp2an 708 . . . . . . . . 9 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
1918a1i 11 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
20 ffvelrn 6357 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑥 𝑈) → (𝐹𝑥) ∈ 𝑋)
21 ffvelrn 6357 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑥 𝑈) → (𝐺𝑥) ∈ 𝑌)
22 opelxpi 5148 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ 𝑋 ∧ (𝐺𝑥) ∈ 𝑌) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2320, 21, 22syl2an 494 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑥 𝑈) ∧ (𝐺: 𝑈𝑌𝑥 𝑈)) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2423anandirs 874 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑥 𝑈) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2524, 2fmptd 6385 . . . . . . . . 9 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌))
26 ffn 6045 . . . . . . . . 9 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2725, 26syl 17 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
28 frn 6053 . . . . . . . . 9 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) → ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌))
2925, 28syl 17 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌))
30 fnco 5999 . . . . . . . 8 (((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
3119, 27, 29, 30syl3anc 1326 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
32 fvco3 6275 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
3325, 32sylan 488 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
34 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
35 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
3634, 35opeq12d 4410 . . . . . . . . . . 11 (𝑥 = 𝑧 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
37 opex 4932 . . . . . . . . . . 11 ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ V
3836, 2, 37fvmpt 6282 . . . . . . . . . 10 (𝑧 𝑈 → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3938adantl 482 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
4039fveq2d 6195 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
41 ffvelrn 6357 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑧 𝑈) → (𝐹𝑧) ∈ 𝑋)
42 ffvelrn 6357 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑧 𝑈) → (𝐺𝑧) ∈ 𝑌)
43 opelxpi 5148 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ∈ 𝑌) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4441, 42, 43syl2an 494 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑧 𝑈) ∧ (𝐺: 𝑈𝑌𝑧 𝑈)) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4544anandirs 874 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
46 fvres 6207 . . . . . . . . . 10 (⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
4745, 46syl 17 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
48 fvex 6201 . . . . . . . . . 10 (𝐹𝑧) ∈ V
49 fvex 6201 . . . . . . . . . 10 (𝐺𝑧) ∈ V
5048, 49op1st 7176 . . . . . . . . 9 (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧)
5147, 50syl6eq 2672 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧))
5233, 40, 513eqtrrd 2661 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐹𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
5312, 31, 52eqfnfvd 6314 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
54 uptx.5 . . . . . . . 8 𝑃 = (1st𝑍)
55 uptx.4 . . . . . . . . 9 𝑍 = (𝑋 × 𝑌)
5655reseq2i 5393 . . . . . . . 8 (1st𝑍) = (1st ↾ (𝑋 × 𝑌))
5754, 56eqtri 2644 . . . . . . 7 𝑃 = (1st ↾ (𝑋 × 𝑌))
5857coeq1i 5281 . . . . . 6 (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
5953, 58syl6eqr 2674 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
608, 10, 59syl2an 494 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
61 ffn 6045 . . . . . . . 8 (𝐺: 𝑈𝑌𝐺 Fn 𝑈)
6261adantl 482 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 Fn 𝑈)
63 fo2nd 7189 . . . . . . . . . . 11 2nd :V–onto→V
64 fofn 6117 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
6563, 64ax-mp 5 . . . . . . . . . 10 2nd Fn V
66 fnssres 6004 . . . . . . . . . 10 ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
6765, 16, 66mp2an 708 . . . . . . . . 9 (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
6867a1i 11 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
69 fnco 5999 . . . . . . . 8 (((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
7068, 27, 29, 69syl3anc 1326 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
71 fvco3 6275 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
7225, 71sylan 488 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
7339fveq2d 6195 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
74 fvres 6207 . . . . . . . . . 10 (⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7545, 74syl 17 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7648, 49op2nd 7177 . . . . . . . . 9 (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧)
7775, 76syl6eq 2672 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧))
7872, 73, 773eqtrrd 2661 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐺𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
7962, 70, 78eqfnfvd 6314 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
80 uptx.6 . . . . . . . 8 𝑄 = (2nd𝑍)
8155reseq2i 5393 . . . . . . . 8 (2nd𝑍) = (2nd ↾ (𝑋 × 𝑌))
8280, 81eqtri 2644 . . . . . . 7 𝑄 = (2nd ↾ (𝑋 × 𝑌))
8382coeq1i 5281 . . . . . 6 (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
8479, 83syl6eqr 2674 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
858, 10, 84syl2an 494 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
866, 60, 85jca32 558 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
87 eleq1 2689 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ( ∈ (𝑈 Cn 𝑇) ↔ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇)))
88 coeq2 5280 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑃) = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8988eqeq2d 2632 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐹 = (𝑃) ↔ 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
90 coeq2 5280 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑄) = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
9190eqeq2d 2632 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐺 = (𝑄) ↔ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
9289, 91anbi12d 747 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ((𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
9387, 92anbi12d 747 . . . 4 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))))
9493spcegv 3294 . . 3 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) → (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
956, 86, 94sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
96 eqid 2622 . . . . . . . 8 𝑇 = 𝑇
971, 96cnf 21050 . . . . . . 7 ( ∈ (𝑈 Cn 𝑇) → : 𝑈 𝑇)
98 cntop2 21045 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
99 cntop2 21045 . . . . . . . . 9 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
1007, 9txuni 21395 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
1014unieqi 4445 . . . . . . . . . 10 𝑇 = (𝑅 ×t 𝑆)
102100, 101syl6reqr 2675 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑇 = (𝑋 × 𝑌))
10398, 99, 102syl2an 494 . . . . . . . 8 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑇 = (𝑋 × 𝑌))
104103feq3d 6032 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (: 𝑈 𝑇: 𝑈⟶(𝑋 × 𝑌)))
10597, 104syl5ib 234 . . . . . 6 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ( ∈ (𝑈 Cn 𝑇) → : 𝑈⟶(𝑋 × 𝑌)))
106105anim1d 588 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
107 3anass 1042 . . . . 5 ((: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
108106, 107syl6ibr 242 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
109108alrimiv 1855 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
110 cntop1 21044 . . . . . . 7 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top)
111 uniexg 6955 . . . . . . 7 (𝑈 ∈ Top → 𝑈 ∈ V)
112110, 111syl 17 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ V)
113112adantr 481 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ V)
1148adantr 481 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹: 𝑈𝑋)
11510adantl 482 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺: 𝑈𝑌)
11657, 82upxp 21426 . . . . 5 (( 𝑈 ∈ V ∧ 𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
117113, 114, 115, 116syl3anc 1326 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
118 eumo 2499 . . . 4 (∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
119117, 118syl 17 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
120 moim 2519 . . 3 (∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
121109, 119, 120sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
122 df-reu 2919 . . 3 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
123 eu5 2496 . . 3 (∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
124122, 123bitri 264 . 2 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
12595, 121, 124sylanbrc 698 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  ∃*wmo 2471  ∃!wreu 2914  Vcvv 3200  wss 3574  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  ran crn 5115  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Topctop 20698   Cn ccn 21028   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365
This theorem is referenced by:  txcn  21429
  Copyright terms: Public domain W3C validator