MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnonp Structured version   Visualization version   Unicode version

Theorem wspthnonp 26744
Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.)
Hypothesis
Ref Expression
wwlknon.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
wspthnonp  |-  ( W  e.  ( A ( N WSPathsNOn  G ) B )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( A  e.  V  /\  B  e.  V )  /\  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G ) B ) W ) ) )
Distinct variable groups:    A, f    B, f    f, G    f, N    f, W
Allowed substitution hint:    V( f)

Proof of Theorem wspthnonp
Dummy variables  w  a  b  g  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . 5  |-  (Vtx `  g )  e.  _V
21, 1pm3.2i 471 . . . 4  |-  ( (Vtx
`  g )  e. 
_V  /\  (Vtx `  g
)  e.  _V )
32rgen2w 2925 . . 3  |-  A. n  e.  NN0  A. g  e. 
_V  ( (Vtx `  g )  e.  _V  /\  (Vtx `  g )  e.  _V )
4 df-wspthsnon 26726 . . . 4  |- WSPathsNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } ) )
5 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
65, 5jca 554 . . . . 5  |-  ( g  =  G  ->  (
(Vtx `  g )  =  (Vtx `  G )  /\  (Vtx `  g )  =  (Vtx `  G )
) )
76adantl 482 . . . 4  |-  ( ( n  =  N  /\  g  =  G )  ->  ( (Vtx `  g
)  =  (Vtx `  G )  /\  (Vtx `  g )  =  (Vtx
`  G ) ) )
84, 7el2mpt2cl 7251 . . 3  |-  ( A. n  e.  NN0  A. g  e.  _V  ( (Vtx `  g )  e.  _V  /\  (Vtx `  g )  e.  _V )  ->  ( W  e.  ( A
( N WSPathsNOn  G ) B )  ->  ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) ) ) ) )
93, 8ax-mp 5 . 2  |-  ( W  e.  ( A ( N WSPathsNOn  G ) B )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( A  e.  (Vtx `  G
)  /\  B  e.  (Vtx `  G ) ) ) )
10 simprl 794 . . 3  |-  ( ( W  e.  ( A ( N WSPathsNOn  G ) B )  /\  (
( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) ) ) )  ->  ( N  e. 
NN0  /\  G  e.  _V ) )
11 wwlknon.v . . . . . . . 8  |-  V  =  (Vtx `  G )
1211eleq2i 2693 . . . . . . 7  |-  ( A  e.  V  <->  A  e.  (Vtx `  G ) )
1311eleq2i 2693 . . . . . . 7  |-  ( B  e.  V  <->  B  e.  (Vtx `  G ) )
1412, 13anbi12i 733 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V )  <->  ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
) )
1514biimpri 218 . . . . 5  |-  ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  ->  ( A  e.  V  /\  B  e.  V ) )
1615adantl 482 . . . 4  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) ) )  -> 
( A  e.  V  /\  B  e.  V
) )
1716adantl 482 . . 3  |-  ( ( W  e.  ( A ( N WSPathsNOn  G ) B )  /\  (
( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) ) ) )  ->  ( A  e.  V  /\  B  e.  V ) )
18 eqid 2622 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
1918wspthnon 26743 . . . . . 6  |-  ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  ->  ( W  e.  ( A ( N WSPathsNOn  G ) B )  <-> 
( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G ) B ) W ) ) )
2019biimpd 219 . . . . 5  |-  ( ( A  e.  (Vtx `  G )  /\  B  e.  (Vtx `  G )
)  ->  ( W  e.  ( A ( N WSPathsNOn  G ) B )  ->  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G
) B ) W ) ) )
2120adantl 482 . . . 4  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) ) )  -> 
( W  e.  ( A ( N WSPathsNOn  G ) B )  ->  ( W  e.  ( A
( N WWalksNOn  G ) B )  /\  E. f 
f ( A (SPathsOn `  G ) B ) W ) ) )
2221impcom 446 . . 3  |-  ( ( W  e.  ( A ( N WSPathsNOn  G ) B )  /\  (
( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) ) ) )  ->  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G
) B ) W ) )
2310, 17, 223jca 1242 . 2  |-  ( ( W  e.  ( A ( N WSPathsNOn  G ) B )  /\  (
( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  (Vtx
`  G )  /\  B  e.  (Vtx `  G
) ) ) )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( A  e.  V  /\  B  e.  V )  /\  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G ) B ) W ) ) )
249, 23mpdan 702 1  |-  ( W  e.  ( A ( N WSPathsNOn  G ) B )  ->  ( ( N  e.  NN0  /\  G  e. 
_V )  /\  ( A  e.  V  /\  B  e.  V )  /\  ( W  e.  ( A ( N WWalksNOn  G ) B )  /\  E. f  f ( A (SPathsOn `  G ) B ) W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   NN0cn0 11292  Vtxcvtx 25874  SPathsOncspthson 26611   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  wspthneq1eq2  26745  wspthsnonn0vne  26813  wspthsswwlknon  26817
  Copyright terms: Public domain W3C validator