MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   GIF version

Theorem wspthsnonn0vne 26813
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)

Proof of Theorem wspthsnonn0vne
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . 3 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌))
2 eqid 2622 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
32wspthnonp 26744 . . . . 5 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)))
42wwlknon 26742 . . . . . . . . 9 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌)))
54adantl 482 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌)))
6 iswwlksn 26730 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑝 ∈ (WWalks‘𝐺) ∧ (#‘𝑝) = (𝑁 + 1))))
7 spthonisspth 26646 . . . . . . . . . . . . . . . . . . 19 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑓(SPaths‘𝐺)𝑝)
8 spthispth 26622 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
9 pthiswlk 26623 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
10 wlklenvm1 26517 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (#‘𝑓) = ((#‘𝑝) − 1))
119, 10syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓(Paths‘𝐺)𝑝 → (#‘𝑓) = ((#‘𝑝) − 1))
127, 8, 113syl 18 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (#‘𝑓) = ((#‘𝑝) − 1))
13 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) = (𝑁 + 1) → ((#‘𝑝) − 1) = ((𝑁 + 1) − 1))
1413eqeq2d 2632 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑝) = (𝑁 + 1) → ((#‘𝑓) = ((#‘𝑝) − 1) ↔ (#‘𝑓) = ((𝑁 + 1) − 1)))
15 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (#‘𝑓) = ((𝑁 + 1) − 1))
16 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
17 pncan1 10454 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
1918adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → ((𝑁 + 1) − 1) = 𝑁)
2015, 19eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (#‘𝑓) = 𝑁)
21 nnne0 11053 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2221adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → 𝑁 ≠ 0)
2320, 22eqnetrd 2861 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (#‘𝑓) ≠ 0)
24 spthonepeq 26648 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋 = 𝑌 ↔ (#‘𝑓) = 0))
2524necon3bid 2838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋𝑌 ↔ (#‘𝑓) ≠ 0))
2623, 25syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌))
2726expcom 451 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑓) = ((𝑁 + 1) − 1) → (𝑁 ∈ ℕ → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌)))
2827com23 86 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑓) = ((𝑁 + 1) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
2914, 28syl6bi 243 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑝) = (𝑁 + 1) → ((#‘𝑓) = ((#‘𝑝) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3029com13 88 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((#‘𝑓) = ((#‘𝑝) − 1) → ((#‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌))))
3112, 30mpd 15 . . . . . . . . . . . . . . . . 17 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((#‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3231exlimiv 1858 . . . . . . . . . . . . . . . 16 (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((#‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3332com12 32 . . . . . . . . . . . . . . 15 ((#‘𝑝) = (𝑁 + 1) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
3433adantl 482 . . . . . . . . . . . . . 14 ((𝑝 ∈ (WWalks‘𝐺) ∧ (#‘𝑝) = (𝑁 + 1)) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
356, 34syl6bi 243 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3635adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3736adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3837com12 32 . . . . . . . . . 10 (𝑝 ∈ (𝑁 WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
39383ad2ant1 1082 . . . . . . . . 9 ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
4039com12 32 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
415, 40sylbid 230 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
4241impd 447 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝) → (𝑁 ∈ ℕ → 𝑋𝑌)))
43423impia 1261 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)) → (𝑁 ∈ ℕ → 𝑋𝑌))
443, 43syl 17 . . . 4 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
4544exlimiv 1858 . . 3 (∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
461, 45sylbi 207 . 2 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ → (𝑁 ∈ ℕ → 𝑋𝑌))
4746impcom 446 1 ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  Vcvv 3200  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  cn 11020  0cn0 11292  #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  Pathscpths 26608  SPathscspths 26609  SPathsOncspthson 26611  WWalkscwwlks 26717   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  wspniunwspnon  26819  usgr2wspthons3  26857
  Copyright terms: Public domain W3C validator