![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version |
Description: Construct a weak universe from a given set. This version of wunex 9561 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wunex3.u | ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +𝑜 ω)) |
Ref | Expression |
---|---|
wunex3 | ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1rankid 8722 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
2 | rankon 8658 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
3 | omelon 8543 | . . . . . 6 ⊢ ω ∈ On | |
4 | oacl 7615 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +𝑜 ω) ∈ On) | |
5 | 2, 3, 4 | mp2an 708 | . . . . 5 ⊢ ((rank‘𝐴) +𝑜 ω) ∈ On |
6 | peano1 7085 | . . . . . 6 ⊢ ∅ ∈ ω | |
7 | oaord1 7631 | . . . . . . 7 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +𝑜 ω))) | |
8 | 2, 3, 7 | mp2an 708 | . . . . . 6 ⊢ (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +𝑜 ω)) |
9 | 6, 8 | mpbi 220 | . . . . 5 ⊢ (rank‘𝐴) ∈ ((rank‘𝐴) +𝑜 ω) |
10 | r1ord2 8644 | . . . . 5 ⊢ (((rank‘𝐴) +𝑜 ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +𝑜 ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +𝑜 ω)))) | |
11 | 5, 9, 10 | mp2 9 | . . . 4 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +𝑜 ω)) |
12 | wunex3.u | . . . 4 ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +𝑜 ω)) | |
13 | 11, 12 | sseqtr4i 3638 | . . 3 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ 𝑈 |
14 | 1, 13 | syl6ss 3615 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
15 | limom 7080 | . . . . . 6 ⊢ Lim ω | |
16 | 3, 15 | pm3.2i 471 | . . . . 5 ⊢ (ω ∈ On ∧ Lim ω) |
17 | oalimcl 7640 | . . . . 5 ⊢ (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +𝑜 ω)) | |
18 | 2, 16, 17 | mp2an 708 | . . . 4 ⊢ Lim ((rank‘𝐴) +𝑜 ω) |
19 | r1limwun 9558 | . . . 4 ⊢ ((((rank‘𝐴) +𝑜 ω) ∈ On ∧ Lim ((rank‘𝐴) +𝑜 ω)) → (𝑅1‘((rank‘𝐴) +𝑜 ω)) ∈ WUni) | |
20 | 5, 18, 19 | mp2an 708 | . . 3 ⊢ (𝑅1‘((rank‘𝐴) +𝑜 ω)) ∈ WUni |
21 | 12, 20 | eqeltri 2697 | . 2 ⊢ 𝑈 ∈ WUni |
22 | 14, 21 | jctil 560 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∅c0 3915 Oncon0 5723 Lim wlim 5724 ‘cfv 5888 (class class class)co 6650 ωcom 7065 +𝑜 coa 7557 𝑅1cr1 8625 rankcrnk 8626 WUnicwun 9522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-r1 8627 df-rank 8628 df-wun 9524 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |