MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex3 Structured version   Visualization version   Unicode version

Theorem wunex3 9563
Description: Construct a weak universe from a given set. This version of wunex 9561 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wunex3.u  |-  U  =  ( R1 `  (
( rank `  A )  +o  om ) )
Assertion
Ref Expression
wunex3  |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )

Proof of Theorem wunex3
StepHypRef Expression
1 r1rankid 8722 . . 3  |-  ( A  e.  V  ->  A  C_  ( R1 `  ( rank `  A ) ) )
2 rankon 8658 . . . . . 6  |-  ( rank `  A )  e.  On
3 omelon 8543 . . . . . 6  |-  om  e.  On
4 oacl 7615 . . . . . 6  |-  ( ( ( rank `  A
)  e.  On  /\  om  e.  On )  -> 
( ( rank `  A
)  +o  om )  e.  On )
52, 3, 4mp2an 708 . . . . 5  |-  ( (
rank `  A )  +o  om )  e.  On
6 peano1 7085 . . . . . 6  |-  (/)  e.  om
7 oaord1 7631 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  On  /\  om  e.  On )  -> 
( (/)  e.  om  <->  ( rank `  A )  e.  ( ( rank `  A
)  +o  om )
) )
82, 3, 7mp2an 708 . . . . . 6  |-  ( (/)  e.  om  <->  ( rank `  A
)  e.  ( (
rank `  A )  +o  om ) )
96, 8mpbi 220 . . . . 5  |-  ( rank `  A )  e.  ( ( rank `  A
)  +o  om )
10 r1ord2 8644 . . . . 5  |-  ( ( ( rank `  A
)  +o  om )  e.  On  ->  ( ( rank `  A )  e.  ( ( rank `  A
)  +o  om )  ->  ( R1 `  ( rank `  A ) ) 
C_  ( R1 `  ( ( rank `  A
)  +o  om )
) ) )
115, 9, 10mp2 9 . . . 4  |-  ( R1
`  ( rank `  A
) )  C_  ( R1 `  ( ( rank `  A )  +o  om ) )
12 wunex3.u . . . 4  |-  U  =  ( R1 `  (
( rank `  A )  +o  om ) )
1311, 12sseqtr4i 3638 . . 3  |-  ( R1
`  ( rank `  A
) )  C_  U
141, 13syl6ss 3615 . 2  |-  ( A  e.  V  ->  A  C_  U )
15 limom 7080 . . . . . 6  |-  Lim  om
163, 15pm3.2i 471 . . . . 5  |-  ( om  e.  On  /\  Lim  om )
17 oalimcl 7640 . . . . 5  |-  ( ( ( rank `  A
)  e.  On  /\  ( om  e.  On  /\  Lim  om ) )  ->  Lim  ( ( rank `  A
)  +o  om )
)
182, 16, 17mp2an 708 . . . 4  |-  Lim  (
( rank `  A )  +o  om )
19 r1limwun 9558 . . . 4  |-  ( ( ( ( rank `  A
)  +o  om )  e.  On  /\  Lim  (
( rank `  A )  +o  om ) )  -> 
( R1 `  (
( rank `  A )  +o  om ) )  e. WUni
)
205, 18, 19mp2an 708 . . 3  |-  ( R1
`  ( ( rank `  A )  +o  om ) )  e. WUni
2112, 20eqeltri 2697 . 2  |-  U  e. WUni
2214, 21jctil 560 1  |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   Oncon0 5723   Lim wlim 5724   ` cfv 5888  (class class class)co 6650   omcom 7065    +o coa 7557   R1cr1 8625   rankcrnk 8626  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-r1 8627  df-rank 8628  df-wun 9524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator