| Step | Hyp | Ref
| Expression |
| 1 | | relfunc 16522 |
. 2
⊢ Rel
(𝐴 Func 𝐶) |
| 2 | | relfunc 16522 |
. 2
⊢ Rel
(𝐵 Func 𝐷) |
| 3 | | funcpropd.1 |
. . . . . 6
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 4 | | funcpropd.2 |
. . . . . 6
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 5 | | funcpropd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 6 | | funcpropd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 7 | 3, 4, 5, 6 | catpropd 16369 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat)) |
| 8 | | funcpropd.3 |
. . . . . 6
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 9 | | funcpropd.4 |
. . . . . 6
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 10 | | funcpropd.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 11 | | funcpropd.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 12 | 8, 9, 10, 11 | catpropd 16369 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 13 | 7, 12 | anbi12d 747 |
. . . 4
⊢ (𝜑 → ((𝐴 ∈ Cat ∧ 𝐶 ∈ Cat) ↔ (𝐵 ∈ Cat ∧ 𝐷 ∈ Cat))) |
| 14 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (1st ‘𝑧) = (1st ‘𝑤)) |
| 15 | 14 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑓‘(1st ‘𝑧)) = (𝑓‘(1st ‘𝑤))) |
| 16 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (2nd ‘𝑧) = (2nd ‘𝑤)) |
| 17 | 16 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑓‘(2nd ‘𝑧)) = (𝑓‘(2nd ‘𝑤))) |
| 18 | 15, 17 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) = ((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤)))) |
| 19 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((Hom ‘𝐴)‘𝑧) = ((Hom ‘𝐴)‘𝑤)) |
| 20 | 18, 19 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) = (((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤))) |
| 21 | 20 | cbvixpv 7926 |
. . . . . . . . . 10
⊢ X𝑧 ∈
((Base‘𝐴) ×
(Base‘𝐴))(((𝑓‘(1st
‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) = X𝑤 ∈
((Base‘𝐴) ×
(Base‘𝐴))(((𝑓‘(1st
‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)) |
| 22 | 21 | eleq2i 2693 |
. . . . . . . . 9
⊢ (𝑔 ∈ X𝑧 ∈
((Base‘𝐴) ×
(Base‘𝐴))(((𝑓‘(1st
‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ↔ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤))) |
| 23 | 22 | anbi2i 730 |
. . . . . . . 8
⊢ ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ↔ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) |
| 24 | 3 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 25 | 4 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) →
(compf‘𝐴) = (compf‘𝐵)) |
| 26 | 5 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝐴 ∈ 𝑉) |
| 27 | 6 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝐵 ∈ 𝑉) |
| 28 | 24, 25, 26, 27 | cidpropd 16370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Id‘𝐴) = (Id‘𝐵)) |
| 29 | 28 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((Id‘𝐴)‘𝑥) = ((Id‘𝐵)‘𝑥)) |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥))) |
| 31 | 8, 9, 10, 11 | cidpropd 16370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Id‘𝐶) = (Id‘𝐷)) |
| 32 | 31 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Id‘𝐶) = (Id‘𝐷)) |
| 33 | 32 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((Id‘𝐶)‘(𝑓‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥))) |
| 34 | 30, 33 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → (((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ↔ ((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)))) |
| 35 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 36 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
| 37 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(comp‘𝐴) =
(comp‘𝐴) |
| 38 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(comp‘𝐵) =
(comp‘𝐵) |
| 39 | 3 | ad6antr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 40 | 4 | ad6antr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) →
(compf‘𝐴) = (compf‘𝐵)) |
| 41 | | simp-5r 809 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → 𝑥 ∈ (Base‘𝐴)) |
| 42 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → 𝑦 ∈ (Base‘𝐴)) |
| 43 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → 𝑧 ∈ (Base‘𝐴)) |
| 44 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) |
| 45 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) |
| 46 | 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 | comfeqval 16368 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚) = (𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚))) |
| 48 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 49 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 50 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 51 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 52 | 8 | ad6antr 772 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 53 | 9 | ad6antr 772 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 54 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) |
| 55 | 54 | ad5antr 770 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) |
| 56 | 55, 41 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (𝑓‘𝑥) ∈ (Base‘𝐶)) |
| 57 | 55, 42 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (𝑓‘𝑦) ∈ (Base‘𝐶)) |
| 58 | 55, 43 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (𝑓‘𝑧) ∈ (Base‘𝐶)) |
| 59 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝑔𝑦) = (𝑔‘〈𝑥, 𝑦〉) |
| 60 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) → 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤))) |
| 61 | 60 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤))) |
| 62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤))) |
| 63 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑥 ∈ (Base‘𝐴)) |
| 64 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑦 ∈ (Base‘𝐴)) |
| 65 | | opelxpi 5148 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐴) × (Base‘𝐴))) |
| 66 | 63, 64, 65 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐴) × (Base‘𝐴))) |
| 67 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑥 ∈ V |
| 68 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑦 ∈ V |
| 69 | 67, 68 | op1std 7178 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (1st ‘𝑤) = 𝑥) |
| 70 | 69 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑓‘(1st ‘𝑤)) = (𝑓‘𝑥)) |
| 71 | 67, 68 | op2ndd 7179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
| 72 | 71 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑓‘(2nd ‘𝑤)) = (𝑓‘𝑦)) |
| 73 | 70, 72 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) = ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) |
| 74 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((Hom ‘𝐴)‘𝑤) = ((Hom ‘𝐴)‘〈𝑥, 𝑦〉)) |
| 75 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥(Hom ‘𝐴)𝑦) = ((Hom ‘𝐴)‘〈𝑥, 𝑦〉) |
| 76 | 74, 75 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((Hom ‘𝐴)‘𝑤) = (𝑥(Hom ‘𝐴)𝑦)) |
| 77 | 73, 76 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)) = (((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↑𝑚 (𝑥(Hom ‘𝐴)𝑦))) |
| 78 | 77 | fvixp 7913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ X𝑤 ∈
((Base‘𝐴) ×
(Base‘𝐴))(((𝑓‘(1st
‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)) ∧ 〈𝑥, 𝑦〉 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (𝑔‘〈𝑥, 𝑦〉) ∈ (((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↑𝑚 (𝑥(Hom ‘𝐴)𝑦))) |
| 79 | 62, 66, 78 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑔‘〈𝑥, 𝑦〉) ∈ (((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↑𝑚 (𝑥(Hom ‘𝐴)𝑦))) |
| 80 | 59, 79 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑥𝑔𝑦) ∈ (((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↑𝑚 (𝑥(Hom ‘𝐴)𝑦))) |
| 81 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥𝑔𝑦) ∈ (((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦)) ↑𝑚 (𝑥(Hom ‘𝐴)𝑦)) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) |
| 83 | 82 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) |
| 84 | 83, 44 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → ((𝑥𝑔𝑦)‘𝑚) ∈ ((𝑓‘𝑥)(Hom ‘𝐶)(𝑓‘𝑦))) |
| 85 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦𝑔𝑧) = (𝑔‘〈𝑦, 𝑧〉) |
| 86 | | opelxpi 5148 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → 〈𝑦, 𝑧〉 ∈ ((Base‘𝐴) × (Base‘𝐴))) |
| 87 | 86 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → 〈𝑦, 𝑧〉 ∈ ((Base‘𝐴) × (Base‘𝐴))) |
| 88 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑧 ∈ V |
| 89 | 68, 88 | op1std 7178 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (1st ‘𝑤) = 𝑦) |
| 90 | 89 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑓‘(1st ‘𝑤)) = (𝑓‘𝑦)) |
| 91 | 68, 88 | op2ndd 7179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (2nd ‘𝑤) = 𝑧) |
| 92 | 91 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (𝑓‘(2nd ‘𝑤)) = (𝑓‘𝑧)) |
| 93 | 90, 92 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 〈𝑦, 𝑧〉 → ((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) = ((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧))) |
| 94 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐴)‘𝑤) = ((Hom ‘𝐴)‘〈𝑦, 𝑧〉)) |
| 95 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦(Hom ‘𝐴)𝑧) = ((Hom ‘𝐴)‘〈𝑦, 𝑧〉) |
| 96 | 94, 95 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐴)‘𝑤) = (𝑦(Hom ‘𝐴)𝑧)) |
| 97 | 93, 96 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 〈𝑦, 𝑧〉 → (((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)) = (((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧)) ↑𝑚 (𝑦(Hom ‘𝐴)𝑧))) |
| 98 | 97 | fvixp 7913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ X𝑤 ∈
((Base‘𝐴) ×
(Base‘𝐴))(((𝑓‘(1st
‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)) ∧ 〈𝑦, 𝑧〉 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (𝑔‘〈𝑦, 𝑧〉) ∈ (((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧)) ↑𝑚 (𝑦(Hom ‘𝐴)𝑧))) |
| 99 | 61, 87, 98 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑔‘〈𝑦, 𝑧〉) ∈ (((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧)) ↑𝑚 (𝑦(Hom ‘𝐴)𝑧))) |
| 100 | 85, 99 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦𝑔𝑧) ∈ (((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧)) ↑𝑚 (𝑦(Hom ‘𝐴)𝑧))) |
| 101 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦𝑔𝑧) ∈ (((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧)) ↑𝑚 (𝑦(Hom ‘𝐴)𝑧)) → (𝑦𝑔𝑧):(𝑦(Hom ‘𝐴)𝑧)⟶((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧))) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦𝑔𝑧):(𝑦(Hom ‘𝐴)𝑧)⟶((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧))) |
| 103 | 102 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑦𝑔𝑧):(𝑦(Hom ‘𝐴)𝑧)⟶((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧))) |
| 104 | 103 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → ((𝑦𝑔𝑧)‘𝑛) ∈ ((𝑓‘𝑦)(Hom ‘𝐶)(𝑓‘𝑧))) |
| 105 | 48, 49, 50, 51, 52, 53, 56, 57, 58, 84, 104 | comfeqval 16368 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) |
| 106 | 47, 105 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)) → (((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 107 | 106 | ralbidva 2985 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 108 | 107 | ralbidva 2985 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 109 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
| 110 | 24 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 111 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
| 112 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴)) |
| 113 | 35, 36, 109, 110, 111, 112 | homfeqval 16357 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 114 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ (Base‘𝐴)) |
| 115 | 35, 36, 109, 110, 112, 114 | homfeqval 16357 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(Hom ‘𝐴)𝑧) = (𝑦(Hom ‘𝐵)𝑧)) |
| 116 | 115 | raleqdv 3144 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 117 | 113, 116 | raleqbidv 3152 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 118 | 108, 117 | bitrd 268 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑧 ∈ (Base‘𝐴)) → (∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 119 | 118 | ralbidva 2985 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 120 | 119 | ralbidva 2985 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 121 | 34, 120 | anbi12d 747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ (((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 122 | 121 | ralbidva 2985 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑤 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑤))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑤))) ↑𝑚
((Hom ‘𝐴)‘𝑤)))) → (∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 123 | 23, 122 | sylan2b 492 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)))) → (∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 124 | 123 | pm5.32da 673 |
. . . . . 6
⊢ (𝜑 → (((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 125 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 126 | 8 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 127 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) |
| 128 | | xp1st 7198 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴)) → (1st
‘𝑧) ∈
(Base‘𝐴)) |
| 129 | 128 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (1st ‘𝑧) ∈ (Base‘𝐴)) |
| 130 | 127, 129 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (𝑓‘(1st ‘𝑧)) ∈ (Base‘𝐶)) |
| 131 | | xp2nd 7199 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴)) → (2nd
‘𝑧) ∈
(Base‘𝐴)) |
| 132 | 131 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (2nd ‘𝑧) ∈ (Base‘𝐴)) |
| 133 | 127, 132 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (𝑓‘(2nd ‘𝑧)) ∈ (Base‘𝐶)) |
| 134 | 48, 49, 125, 126, 130, 133 | homfeqval 16357 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → ((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) = ((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧)))) |
| 135 | 3 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 136 | 35, 36, 109, 135, 129, 132 | homfeqval 16357 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → ((1st ‘𝑧)(Hom ‘𝐴)(2nd ‘𝑧)) = ((1st ‘𝑧)(Hom ‘𝐵)(2nd ‘𝑧))) |
| 137 | | df-ov 6653 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑧)(Hom ‘𝐴)(2nd ‘𝑧)) = ((Hom ‘𝐴)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 138 | | df-ov 6653 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑧)(Hom ‘𝐵)(2nd ‘𝑧)) = ((Hom ‘𝐵)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 139 | 136, 137,
138 | 3eqtr3g 2679 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → ((Hom ‘𝐴)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) = ((Hom ‘𝐵)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) |
| 140 | | 1st2nd2 7205 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴)) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 141 | 140 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 142 | 141 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → ((Hom ‘𝐴)‘𝑧) = ((Hom ‘𝐴)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉)) |
| 143 | 141 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → ((Hom ‘𝐵)‘𝑧) = ((Hom ‘𝐵)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉)) |
| 144 | 139, 142,
143 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → ((Hom ‘𝐴)‘𝑧) = ((Hom ‘𝐵)‘𝑧)) |
| 145 | 134, 144 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))) → (((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) = (((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) |
| 146 | 145 | ixpeq2dva 7923 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) → X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) = X𝑧 ∈
((Base‘𝐴) ×
(Base‘𝐴))(((𝑓‘(1st
‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) |
| 147 | 3 | homfeqbas 16356 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 148 | 147 | sqxpeqd 5141 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((Base‘𝐴) × (Base‘𝐴)) = ((Base‘𝐵) × (Base‘𝐵))) |
| 149 | 148 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) → ((Base‘𝐴) × (Base‘𝐴)) = ((Base‘𝐵) × (Base‘𝐵))) |
| 150 | 149 | ixpeq1d 7920 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) → X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)) = X𝑧 ∈
((Base‘𝐵) ×
(Base‘𝐵))(((𝑓‘(1st
‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) |
| 151 | 146, 150 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) → X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) = X𝑧 ∈
((Base‘𝐵) ×
(Base‘𝐵))(((𝑓‘(1st
‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) |
| 152 | 151 | eleq2d 2687 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(Base‘𝐴)⟶(Base‘𝐶)) → (𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ↔ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)))) |
| 153 | 152 | pm5.32da 673 |
. . . . . . . 8
⊢ (𝜑 → ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ↔ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))))) |
| 154 | 8 | homfeqbas 16356 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 155 | 147, 154 | feq23d 6040 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ↔ 𝑓:(Base‘𝐵)⟶(Base‘𝐷))) |
| 156 | 155 | anbi1d 741 |
. . . . . . . 8
⊢ (𝜑 → ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) ↔ (𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))))) |
| 157 | 153, 156 | bitrd 268 |
. . . . . . 7
⊢ (𝜑 → ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ↔ (𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))))) |
| 158 | 147 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
| 159 | 158 | raleqdv 3144 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 160 | 158, 159 | raleqbidv 3152 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
| 161 | 160 | anbi2d 740 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐴)) → ((((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ (((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 162 | 147, 161 | raleqbidva 3154 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) ↔ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 163 | 157, 162 | anbi12d 747 |
. . . . . 6
⊢ (𝜑 → (((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 164 | 124, 163 | bitrd 268 |
. . . . 5
⊢ (𝜑 → (((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 165 | | df-3an 1039 |
. . . . 5
⊢ ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 166 | | df-3an 1039 |
. . . . 5
⊢ ((𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ ((𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧))) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) |
| 167 | 164, 165,
166 | 3bitr4g 303 |
. . . 4
⊢ (𝜑 → ((𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) ↔ (𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 168 | 13, 167 | anbi12d 747 |
. . 3
⊢ (𝜑 → (((𝐴 ∈ Cat ∧ 𝐶 ∈ Cat) ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))) ↔ ((𝐵 ∈ Cat ∧ 𝐷 ∈ Cat) ∧ (𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))))) |
| 169 | | df-br 4654 |
. . . . 5
⊢ (𝑓(𝐴 Func 𝐶)𝑔 ↔ 〈𝑓, 𝑔〉 ∈ (𝐴 Func 𝐶)) |
| 170 | | funcrcl 16523 |
. . . . 5
⊢
(〈𝑓, 𝑔〉 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 171 | 169, 170 | sylbi 207 |
. . . 4
⊢ (𝑓(𝐴 Func 𝐶)𝑔 → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 172 | | eqid 2622 |
. . . . 5
⊢
(Id‘𝐴) =
(Id‘𝐴) |
| 173 | | eqid 2622 |
. . . . 5
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 174 | | simpl 473 |
. . . . 5
⊢ ((𝐴 ∈ Cat ∧ 𝐶 ∈ Cat) → 𝐴 ∈ Cat) |
| 175 | | simpr 477 |
. . . . 5
⊢ ((𝐴 ∈ Cat ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat) |
| 176 | 35, 48, 36, 49, 172, 173, 37, 50, 174, 175 | isfunc 16524 |
. . . 4
⊢ ((𝐴 ∈ Cat ∧ 𝐶 ∈ Cat) → (𝑓(𝐴 Func 𝐶)𝑔 ↔ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 177 | 171, 176 | biadan2 674 |
. . 3
⊢ (𝑓(𝐴 Func 𝐶)𝑔 ↔ ((𝐴 ∈ Cat ∧ 𝐶 ∈ Cat) ∧ (𝑓:(Base‘𝐴)⟶(Base‘𝐶) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐴) × (Base‘𝐴))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐶)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐴)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑥𝑔𝑥)‘((Id‘𝐴)‘𝑥)) = ((Id‘𝐶)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑧 ∈ (Base‘𝐴)∀𝑚 ∈ (𝑥(Hom ‘𝐴)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐴)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐴)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐶)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 178 | | df-br 4654 |
. . . . 5
⊢ (𝑓(𝐵 Func 𝐷)𝑔 ↔ 〈𝑓, 𝑔〉 ∈ (𝐵 Func 𝐷)) |
| 179 | | funcrcl 16523 |
. . . . 5
⊢
(〈𝑓, 𝑔〉 ∈ (𝐵 Func 𝐷) → (𝐵 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 180 | 178, 179 | sylbi 207 |
. . . 4
⊢ (𝑓(𝐵 Func 𝐷)𝑔 → (𝐵 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 181 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐵) =
(Base‘𝐵) |
| 182 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 183 | | eqid 2622 |
. . . . 5
⊢
(Id‘𝐵) =
(Id‘𝐵) |
| 184 | | eqid 2622 |
. . . . 5
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 185 | | simpl 473 |
. . . . 5
⊢ ((𝐵 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐵 ∈ Cat) |
| 186 | | simpr 477 |
. . . . 5
⊢ ((𝐵 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) |
| 187 | 181, 182,
109, 125, 183, 184, 38, 51, 185, 186 | isfunc 16524 |
. . . 4
⊢ ((𝐵 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑓(𝐵 Func 𝐷)𝑔 ↔ (𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 188 | 180, 187 | biadan2 674 |
. . 3
⊢ (𝑓(𝐵 Func 𝐷)𝑔 ↔ ((𝐵 ∈ Cat ∧ 𝐷 ∈ Cat) ∧ (𝑓:(Base‘𝐵)⟶(Base‘𝐷) ∧ 𝑔 ∈ X𝑧 ∈ ((Base‘𝐵) × (Base‘𝐵))(((𝑓‘(1st ‘𝑧))(Hom ‘𝐷)(𝑓‘(2nd ‘𝑧))) ↑𝑚
((Hom ‘𝐵)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐵)(((𝑥𝑔𝑥)‘((Id‘𝐵)‘𝑥)) = ((Id‘𝐷)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑧 ∈ (Base‘𝐵)∀𝑚 ∈ (𝑥(Hom ‘𝐵)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐵)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐵)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝐷)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))))) |
| 189 | 168, 177,
188 | 3bitr4g 303 |
. 2
⊢ (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔 ↔ 𝑓(𝐵 Func 𝐷)𝑔)) |
| 190 | 1, 2, 189 | eqbrrdiv 5218 |
1
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |