![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfrn | Structured version Visualization version GIF version |
Description: A short expression for the indexed cartesian product on two indexes. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) |
Ref | Expression |
---|---|
xpsfrn | ⊢ ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) | |
2 | 1 | xpsff1o 16228 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
3 | f1ofo 6144 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)) | |
4 | forn 6118 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∅c0 3915 ifcif 4086 {csn 4177 × cxp 5112 ◡ccnv 5113 ran crn 5115 –onto→wfo 5886 –1-1-onto→wf1o 5887 (class class class)co 6650 ↦ cmpt2 6652 2𝑜c2o 7554 Xcixp 7908 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-cda 8990 |
This theorem is referenced by: xpsfrn2 16230 xpslem 16233 |
Copyright terms: Public domain | W3C validator |