![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0neqmnf | Structured version Visualization version GIF version |
Description: An extended nonnegative real cannot be minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) |
Ref | Expression |
---|---|
xrge0neqmnf | ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt0 11959 | . . . . 5 ⊢ -∞ < 0 | |
2 | mnfxr 10096 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
3 | 0xr 10086 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
4 | xrltnle 10105 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞)) | |
5 | 2, 3, 4 | mp2an 708 | . . . . 5 ⊢ (-∞ < 0 ↔ ¬ 0 ≤ -∞) |
6 | 1, 5 | mpbi 220 | . . . 4 ⊢ ¬ 0 ≤ -∞ |
7 | simp2 1062 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 0 ≤ -∞ ∧ -∞ ≤ +∞) → 0 ≤ -∞) | |
8 | 7 | con3i 150 | . . . 4 ⊢ (¬ 0 ≤ -∞ → ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞ ∧ -∞ ≤ +∞)) |
9 | pnfxr 10092 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
10 | elicc1 12219 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞ ∧ -∞ ≤ +∞))) | |
11 | 3, 9, 10 | mp2an 708 | . . . . . 6 ⊢ (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞ ∧ -∞ ≤ +∞)) |
12 | 11 | biimpi 206 | . . . . 5 ⊢ (-∞ ∈ (0[,]+∞) → (-∞ ∈ ℝ* ∧ 0 ≤ -∞ ∧ -∞ ≤ +∞)) |
13 | 12 | con3i 150 | . . . 4 ⊢ (¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞ ∧ -∞ ≤ +∞) → ¬ -∞ ∈ (0[,]+∞)) |
14 | 6, 8, 13 | mp2b 10 | . . 3 ⊢ ¬ -∞ ∈ (0[,]+∞) |
15 | nelneq 2725 | . . 3 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ -∞ ∈ (0[,]+∞)) → ¬ 𝐴 = -∞) | |
16 | 14, 15 | mpan2 707 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → ¬ 𝐴 = -∞) |
17 | 16 | neqned 2801 | 1 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 (class class class)co 6650 0cc0 9936 +∞cpnf 10071 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 [,]cicc 12178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 |
This theorem is referenced by: xrge0nre 12277 xrge0adddir 29692 xrge0npcan 29694 hasheuni 30147 esumcvgre 30153 carsgclctunlem2 30381 sge0nemnf 40637 |
Copyright terms: Public domain | W3C validator |