Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0adddir Structured version   Visualization version   GIF version

Theorem xrge0adddir 29692
Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Assertion
Ref Expression
xrge0adddir ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))

Proof of Theorem xrge0adddir
StepHypRef Expression
1 iccssxr 12256 . . . 4 (0[,]+∞) ⊆ ℝ*
2 simpl1 1064 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3601 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐴 ∈ ℝ*)
4 simpl2 1065 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,]+∞))
51, 4sseldi 3601 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ*)
6 rge0ssre 12280 . . . 4 (0[,)+∞) ⊆ ℝ
7 simpr 477 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ (0[,)+∞))
86, 7sseldi 3601 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → 𝐶 ∈ ℝ)
9 xadddir 12126 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
103, 5, 8, 9syl3anc 1326 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 ∈ (0[,)+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
11 simpll1 1100 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ (0[,]+∞))
121, 11sseldi 3601 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*)
13 simpll2 1101 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
141, 13sseldi 3601 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
1512, 14xaddcld 12131 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
16 simpr 477 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < 𝐴)
17 xrge0addgt0 29691 . . . . . . 7 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
1811, 13, 16, 17syl21anc 1325 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
19 xmulpnf1 12104 . . . . . 6 (((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 < (𝐴 +𝑒 𝐵)) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
2015, 18, 19syl2anc 693 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e +∞) = +∞)
21 oveq2 6658 . . . . . 6 (𝐶 = +∞ → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
2221ad2antlr 763 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e +∞))
23 simpll3 1102 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → 𝐶 ∈ (0[,]+∞))
24 ge0xmulcl 12287 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
2513, 23, 24syl2anc 693 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ (0[,]+∞))
261, 25sseldi 3601 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
27 xrge0neqmnf 12276 . . . . . . 7 ((𝐵 ·e 𝐶) ∈ (0[,]+∞) → (𝐵 ·e 𝐶) ≠ -∞)
2825, 27syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐵 ·e 𝐶) ≠ -∞)
29 xaddpnf2 12058 . . . . . 6 (((𝐵 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3026, 28, 29syl2anc 693 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (+∞ +𝑒 (𝐵 ·e 𝐶)) = +∞)
3120, 22, 303eqtr4d 2666 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
32 oveq2 6658 . . . . . . 7 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
3332ad2antlr 763 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
34 xmulpnf1 12104 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3512, 16, 34syl2anc 693 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3633, 35eqtrd 2656 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → (𝐴 ·e 𝐶) = +∞)
3736oveq1d 6665 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (+∞ +𝑒 (𝐵 ·e 𝐶)))
3831, 37eqtr4d 2659 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 < 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
39 simpll3 1102 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ (0[,]+∞))
401, 39sseldi 3601 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
41 xmul02 12098 . . . . . . 7 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
4240, 41syl 17 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
4342oveq1d 6665 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (0 +𝑒 (𝐵 ·e 𝐶)))
44 oveq1 6657 . . . . . . 7 (0 = 𝐴 → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4544adantl 482 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
4645oveq1d 6665 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
47 simpll2 1101 . . . . . . . 8 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ (0[,]+∞))
481, 47sseldi 3601 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
4948, 40xmulcld 12132 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (𝐵 ·e 𝐶) ∈ ℝ*)
50 xaddid2 12073 . . . . . 6 ((𝐵 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5149, 50syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
5243, 46, 513eqtr3d 2664 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = (𝐵 ·e 𝐶))
53 xaddid2 12073 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
5448, 53syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → (0 +𝑒 𝐵) = 𝐵)
5554oveq1d 6665 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = (𝐵 ·e 𝐶))
56 oveq1 6657 . . . . . 6 (0 = 𝐴 → (0 +𝑒 𝐵) = (𝐴 +𝑒 𝐵))
5756oveq1d 6665 . . . . 5 (0 = 𝐴 → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5857adantl 482 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((0 +𝑒 𝐵) ·e 𝐶) = ((𝐴 +𝑒 𝐵) ·e 𝐶))
5952, 55, 583eqtr2rd 2663 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) ∧ 0 = 𝐴) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
60 0xr 10086 . . . . 5 0 ∈ ℝ*
6160a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ∈ ℝ*)
62 simpl1 1064 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ (0[,]+∞))
631, 62sseldi 3601 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
64 pnfxr 10092 . . . . . 6 +∞ ∈ ℝ*
6564a1i 11 . . . . 5 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → +∞ ∈ ℝ*)
66 iccgelb 12230 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
6761, 65, 62, 66syl3anc 1326 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → 0 ≤ 𝐴)
68 xrleloe 11977 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
6968biimpa 501 . . . 4 (((0 ∈ ℝ*𝐴 ∈ ℝ*) ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
7061, 63, 67, 69syl21anc 1325 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → (0 < 𝐴 ∨ 0 = 𝐴))
7138, 59, 70mpjaodan 827 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
72 0lepnf 11966 . . . . 5 0 ≤ +∞
73 eliccelico 29539 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7460, 64, 72, 73mp3an 1424 . . . 4 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
75743anbi3i 1255 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) ↔ (𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞)))
7675simp3bi 1078 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,)+∞) ∨ 𝐶 = +∞))
7710, 71, 76mpjaodan 827 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075   +𝑒 cxad 11944   ·e cxmu 11945  [,)cico 12177  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182
This theorem is referenced by:  xrge0adddi  29693  xrge0slmod  29844  esummulc1  30143
  Copyright terms: Public domain W3C validator