MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrege0 Structured version   Visualization version   GIF version

Theorem xrrege0 12005
Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrrege0 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrrege0
StepHypRef Expression
1 ge0gtmnf 12003 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
21ad2ant2r 783 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → -∞ < 𝐴)
3 simprr 796 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴𝐵)
42, 3jca 554 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (-∞ < 𝐴𝐴𝐵))
5 xrre 12000 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
64, 5syldan 487 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990   class class class wbr 4653  cr 9935  0cc0 9936  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  psmetlecl  22120  xmetlecl  22151  prdsxmetlem  22173  stdbdmet  22321  stdbdmopn  22323  bddnghm  22530  nmoid  22546  xrsmopn  22615  metdsre  22656  metnrmlem1a  22661  ovollecl  23251  itg2lecl  23505  probmeasb  30492  heicant  33444  mblfinlem3  33448  mblfinlem4  33449
  Copyright terms: Public domain W3C validator