Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aic79xx_core.c
Go to the documentation of this file.
1 /*
2  * Core routines and tables shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2002 Justin T. Gibbs.
5  * Copyright (c) 2000-2003 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  * notice, this list of conditions, and the following disclaimer,
13  * without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  * substantially similar to the "NO WARRANTY" disclaimer below
16  * ("Disclaimer") and any redistribution must be conditioned upon
17  * including a substantially similar Disclaimer requirement for further
18  * binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  * of any contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41  */
42 
43 #ifdef __linux__
44 #include "aic79xx_osm.h"
45 #include "aic79xx_inline.h"
47 #else
48 #include <dev/aic7xxx/aic79xx_osm.h>
49 #include <dev/aic7xxx/aic79xx_inline.h>
50 #include <dev/aic7xxx/aicasm/aicasm_insformat.h>
51 #endif
52 
53 
54 /***************************** Lookup Tables **********************************/
55 static const char *const ahd_chip_names[] =
56 {
57  "NONE",
58  "aic7901",
59  "aic7902",
60  "aic7901A"
61 };
62 static const u_int num_chip_names = ARRAY_SIZE(ahd_chip_names);
63 
64 /*
65  * Hardware error codes.
66  */
69  const char *errmesg;
70 };
71 
72 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
73  { DSCTMOUT, "Discard Timer has timed out" },
74  { ILLOPCODE, "Illegal Opcode in sequencer program" },
75  { SQPARERR, "Sequencer Parity Error" },
76  { DPARERR, "Data-path Parity Error" },
77  { MPARERR, "Scratch or SCB Memory Parity Error" },
78  { CIOPARERR, "CIOBUS Parity Error" },
79 };
80 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
81 
82 static const struct ahd_phase_table_entry ahd_phase_table[] =
83 {
84  { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
85  { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
86  { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
87  { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
88  { P_COMMAND, MSG_NOOP, "in Command phase" },
89  { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
90  { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
91  { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
92  { P_BUSFREE, MSG_NOOP, "while idle" },
93  { 0, MSG_NOOP, "in unknown phase" }
94 };
95 
96 /*
97  * In most cases we only wish to itterate over real phases, so
98  * exclude the last element from the count.
99  */
100 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
101 
102 /* Our Sequencer Program */
103 #include "aic79xx_seq.h"
104 
105 /**************************** Function Declarations ***************************/
106 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
107 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
108  u_int lqistat1);
109 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
110  u_int busfreetime);
111 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
112 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
113 static void ahd_force_renegotiation(struct ahd_softc *ahd,
114  struct ahd_devinfo *devinfo);
115 
116 static struct ahd_tmode_tstate*
117  ahd_alloc_tstate(struct ahd_softc *ahd,
118  u_int scsi_id, char channel);
119 #ifdef AHD_TARGET_MODE
120 static void ahd_free_tstate(struct ahd_softc *ahd,
121  u_int scsi_id, char channel, int force);
122 #endif
123 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
124  struct ahd_initiator_tinfo *,
125  u_int *period,
126  u_int *ppr_options,
127  role_t role);
128 static void ahd_update_neg_table(struct ahd_softc *ahd,
129  struct ahd_devinfo *devinfo,
130  struct ahd_transinfo *tinfo);
131 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
132 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
133  struct ahd_devinfo *devinfo);
134 static void ahd_scb_devinfo(struct ahd_softc *ahd,
135  struct ahd_devinfo *devinfo,
136  struct scb *scb);
137 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
138  struct ahd_devinfo *devinfo,
139  struct scb *scb);
140 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
141  struct ahd_devinfo *devinfo);
142 static void ahd_construct_sdtr(struct ahd_softc *ahd,
143  struct ahd_devinfo *devinfo,
145 static void ahd_construct_wdtr(struct ahd_softc *ahd,
146  struct ahd_devinfo *devinfo,
147  u_int bus_width);
148 static void ahd_construct_ppr(struct ahd_softc *ahd,
149  struct ahd_devinfo *devinfo,
151  u_int bus_width, u_int ppr_options);
152 static void ahd_clear_msg_state(struct ahd_softc *ahd);
153 static void ahd_handle_message_phase(struct ahd_softc *ahd);
154 typedef enum {
158 } ahd_msgtype;
159 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
160  u_int msgval, int full);
161 static int ahd_parse_msg(struct ahd_softc *ahd,
162  struct ahd_devinfo *devinfo);
163 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
164  struct ahd_devinfo *devinfo);
165 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
166  struct ahd_devinfo *devinfo);
167 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
168 static void ahd_handle_devreset(struct ahd_softc *ahd,
169  struct ahd_devinfo *devinfo,
171  char *message, int verbose_level);
172 #ifdef AHD_TARGET_MODE
173 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
174  struct ahd_devinfo *devinfo,
175  struct scb *scb);
176 #endif
177 
178 static u_int ahd_sglist_size(struct ahd_softc *ahd);
179 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
181  ahd_dmamap_cb;
182 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
183 static int ahd_init_scbdata(struct ahd_softc *ahd);
184 static void ahd_fini_scbdata(struct ahd_softc *ahd);
185 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
186 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
187 static void ahd_add_col_list(struct ahd_softc *ahd,
188  struct scb *scb, u_int col_idx);
189 static void ahd_rem_col_list(struct ahd_softc *ahd,
190  struct scb *scb);
191 static void ahd_chip_init(struct ahd_softc *ahd);
192 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
193  struct scb *prev_scb,
194  struct scb *scb);
195 static int ahd_qinfifo_count(struct ahd_softc *ahd);
196 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
197  char channel, int lun, u_int tag,
201  u_int tid);
202 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
203  u_int tid_prev, u_int tid_cur,
204  u_int tid_next);
205 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
206  u_int scbid);
207 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
208  u_int prev, u_int next, u_int tid);
209 static void ahd_reset_current_bus(struct ahd_softc *ahd);
210 static ahd_callback_t ahd_stat_timer;
211 #ifdef AHD_DUMP_SEQ
212 static void ahd_dumpseq(struct ahd_softc *ahd);
213 #endif
214 static void ahd_loadseq(struct ahd_softc *ahd);
215 static int ahd_check_patch(struct ahd_softc *ahd,
216  const struct patch **start_patch,
217  u_int start_instr, u_int *skip_addr);
218 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
219  u_int address);
220 static void ahd_download_instr(struct ahd_softc *ahd,
221  u_int instrptr, uint8_t *dconsts);
222 static int ahd_probe_stack_size(struct ahd_softc *ahd);
223 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
224  struct scb *scb);
225 static void ahd_run_data_fifo(struct ahd_softc *ahd,
226  struct scb *scb);
227 
228 #ifdef AHD_TARGET_MODE
229 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
230  struct ahd_tmode_lstate *lstate,
233  u_int event_arg);
234 static void ahd_update_scsiid(struct ahd_softc *ahd,
235  u_int targid_mask);
236 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
237  struct target_cmd *cmd);
238 #endif
239 
240 static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
241  char channel, int lun, u_int tag,
243 static void ahd_alloc_scbs(struct ahd_softc *ahd);
244 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
245  u_int scbid);
246 static void ahd_calc_residual(struct ahd_softc *ahd,
247  struct scb *scb);
248 static void ahd_clear_critical_section(struct ahd_softc *ahd);
249 static void ahd_clear_intstat(struct ahd_softc *ahd);
250 static void ahd_enable_coalescing(struct ahd_softc *ahd,
251  int enable);
252 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
253 static void ahd_freeze_devq(struct ahd_softc *ahd,
254  struct scb *scb);
255 static void ahd_handle_scb_status(struct ahd_softc *ahd,
256  struct scb *scb);
257 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
258 static void ahd_shutdown(void *arg);
259 static void ahd_update_coalescing_values(struct ahd_softc *ahd,
260  u_int timer,
261  u_int maxcmds,
262  u_int mincmds);
263 static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
264 static int ahd_wait_seeprom(struct ahd_softc *ahd);
265 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
266  int target, char channel, int lun,
267  u_int tag, role_t role);
268 
269 static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
270 
271 /*************************** Interrupt Services *******************************/
272 static void ahd_run_qoutfifo(struct ahd_softc *ahd);
273 #ifdef AHD_TARGET_MODE
274 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
275 #endif
276 static void ahd_handle_hwerrint(struct ahd_softc *ahd);
277 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
278 static void ahd_handle_scsiint(struct ahd_softc *ahd,
279  u_int intstat);
280 
281 /************************ Sequencer Execution Control *************************/
282 void
284 {
285  if (ahd->src_mode == src && ahd->dst_mode == dst)
286  return;
287 #ifdef AHD_DEBUG
288  if (ahd->src_mode == AHD_MODE_UNKNOWN
289  || ahd->dst_mode == AHD_MODE_UNKNOWN)
290  panic("Setting mode prior to saving it.\n");
291  if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
292  printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
293  ahd_build_mode_state(ahd, src, dst));
294 #endif
295  ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
296  ahd->src_mode = src;
297  ahd->dst_mode = dst;
298 }
299 
300 static void
301 ahd_update_modes(struct ahd_softc *ahd)
302 {
303  ahd_mode_state mode_ptr;
304  ahd_mode src;
305  ahd_mode dst;
306 
307  mode_ptr = ahd_inb(ahd, MODE_PTR);
308 #ifdef AHD_DEBUG
309  if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
310  printk("Reading mode 0x%x\n", mode_ptr);
311 #endif
312  ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
313  ahd_known_modes(ahd, src, dst);
314 }
315 
316 static void
317 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
318  ahd_mode dstmode, const char *file, int line)
319 {
320 #ifdef AHD_DEBUG
321  if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
322  || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
323  panic("%s:%s:%d: Mode assertion failed.\n",
324  ahd_name(ahd), file, line);
325  }
326 #endif
327 }
328 
329 #define AHD_ASSERT_MODES(ahd, source, dest) \
330  ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
331 
334 {
335  if (ahd->src_mode == AHD_MODE_UNKNOWN
336  || ahd->dst_mode == AHD_MODE_UNKNOWN)
337  ahd_update_modes(ahd);
338 
339  return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
340 }
341 
342 void
344 {
345  ahd_mode src;
346  ahd_mode dst;
347 
348  ahd_extract_mode_state(ahd, state, &src, &dst);
349  ahd_set_modes(ahd, src, dst);
350 }
351 
352 /*
353  * Determine whether the sequencer has halted code execution.
354  * Returns non-zero status if the sequencer is stopped.
355  */
356 int
358 {
359  return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
360 }
361 
362 /*
363  * Request that the sequencer stop and wait, indefinitely, for it
364  * to stop. The sequencer will only acknowledge that it is paused
365  * once it has reached an instruction boundary and PAUSEDIS is
366  * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
367  * for critical sections.
368  */
369 void
370 ahd_pause(struct ahd_softc *ahd)
371 {
372  ahd_outb(ahd, HCNTRL, ahd->pause);
373 
374  /*
375  * Since the sequencer can disable pausing in a critical section, we
376  * must loop until it actually stops.
377  */
378  while (ahd_is_paused(ahd) == 0)
379  ;
380 }
381 
382 /*
383  * Allow the sequencer to continue program execution.
384  * We check here to ensure that no additional interrupt
385  * sources that would cause the sequencer to halt have been
386  * asserted. If, for example, a SCSI bus reset is detected
387  * while we are fielding a different, pausing, interrupt type,
388  * we don't want to release the sequencer before going back
389  * into our interrupt handler and dealing with this new
390  * condition.
391  */
392 void
393 ahd_unpause(struct ahd_softc *ahd)
394 {
395  /*
396  * Automatically restore our modes to those saved
397  * prior to the first change of the mode.
398  */
399  if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
400  && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
401  if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
402  ahd_reset_cmds_pending(ahd);
404  }
405 
406  if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
407  ahd_outb(ahd, HCNTRL, ahd->unpause);
408 
409  ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
410 }
411 
412 /*********************** Scatter Gather List Handling *************************/
413 void *
414 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
415  void *sgptr, dma_addr_t addr, bus_size_t len, int last)
416 {
417  scb->sg_count++;
418  if (sizeof(dma_addr_t) > 4
419  && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
420  struct ahd_dma64_seg *sg;
421 
422  sg = (struct ahd_dma64_seg *)sgptr;
423  sg->addr = ahd_htole64(addr);
424  sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
425  return (sg + 1);
426  } else {
427  struct ahd_dma_seg *sg;
428 
429  sg = (struct ahd_dma_seg *)sgptr;
430  sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
431  sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
432  | (last ? AHD_DMA_LAST_SEG : 0));
433  return (sg + 1);
434  }
435 }
436 
437 static void
438 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
439 {
440  /* XXX Handle target mode SCBs. */
441  scb->crc_retry_count = 0;
442  if ((scb->flags & SCB_PACKETIZED) != 0) {
443  /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
444  scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
445  } else {
446  if (ahd_get_transfer_length(scb) & 0x01)
447  scb->hscb->task_attribute = SCB_XFERLEN_ODD;
448  else
449  scb->hscb->task_attribute = 0;
450  }
451 
452  if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
453  || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
454  scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
456 }
457 
458 static void
459 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
460 {
461  /*
462  * Copy the first SG into the "current" data ponter area.
463  */
464  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
465  struct ahd_dma64_seg *sg;
466 
467  sg = (struct ahd_dma64_seg *)scb->sg_list;
468  scb->hscb->dataptr = sg->addr;
469  scb->hscb->datacnt = sg->len;
470  } else {
471  struct ahd_dma_seg *sg;
472  uint32_t *dataptr_words;
473 
474  sg = (struct ahd_dma_seg *)scb->sg_list;
475  dataptr_words = (uint32_t*)&scb->hscb->dataptr;
476  dataptr_words[0] = sg->addr;
477  dataptr_words[1] = 0;
478  if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
479  uint64_t high_addr;
480 
481  high_addr = ahd_le32toh(sg->len) & 0x7F000000;
482  scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
483  }
484  scb->hscb->datacnt = sg->len;
485  }
486  /*
487  * Note where to find the SG entries in bus space.
488  * We also set the full residual flag which the
489  * sequencer will clear as soon as a data transfer
490  * occurs.
491  */
492  scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
493 }
494 
495 static void
496 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
497 {
498  scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
499  scb->hscb->dataptr = 0;
500  scb->hscb->datacnt = 0;
501 }
502 
503 /************************** Memory mapping routines ***************************/
504 static void *
505 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
506 {
507  dma_addr_t sg_offset;
508 
509  /* sg_list_phys points to entry 1, not 0 */
510  sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
511  return ((uint8_t *)scb->sg_list + sg_offset);
512 }
513 
514 static uint32_t
515 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
516 {
517  dma_addr_t sg_offset;
518 
519  /* sg_list_phys points to entry 1, not 0 */
520  sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
521  - ahd_sg_size(ahd);
522 
523  return (scb->sg_list_busaddr + sg_offset);
524 }
525 
526 static void
527 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
528 {
529  ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
530  scb->hscb_map->dmamap,
531  /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
532  /*len*/sizeof(*scb->hscb), op);
533 }
534 
535 void
536 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
537 {
538  if (scb->sg_count == 0)
539  return;
540 
541  ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
542  scb->sg_map->dmamap,
543  /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
544  /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
545 }
546 
547 static void
548 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
549 {
550  ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
551  scb->sense_map->dmamap,
552  /*offset*/scb->sense_busaddr,
553  /*len*/AHD_SENSE_BUFSIZE, op);
554 }
555 
556 #ifdef AHD_TARGET_MODE
557 static uint32_t
558 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
559 {
560  return (((uint8_t *)&ahd->targetcmds[index])
561  - (uint8_t *)ahd->qoutfifo);
562 }
563 #endif
564 
565 /*********************** Miscellaneous Support Functions ***********************/
566 /*
567  * Return pointers to the transfer negotiation information
568  * for the specified our_id/remote_id pair.
569  */
570 struct ahd_initiator_tinfo *
571 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
572  u_int remote_id, struct ahd_tmode_tstate **tstate)
573 {
574  /*
575  * Transfer data structures are stored from the perspective
576  * of the target role. Since the parameters for a connection
577  * in the initiator role to a given target are the same as
578  * when the roles are reversed, we pretend we are the target.
579  */
580  if (channel == 'B')
581  our_id += 8;
582  *tstate = ahd->enabled_targets[our_id];
583  return (&(*tstate)->transinfo[remote_id]);
584 }
585 
586 uint16_t
588 {
589  /*
590  * Read high byte first as some registers increment
591  * or have other side effects when the low byte is
592  * read.
593  */
594  uint16_t r = ahd_inb(ahd, port+1) << 8;
595  return r | ahd_inb(ahd, port);
596 }
597 
598 void
600 {
601  /*
602  * Write low byte first to accommodate registers
603  * such as PRGMCNT where the order maters.
604  */
605  ahd_outb(ahd, port, value & 0xFF);
606  ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
607 }
608 
609 uint32_t
611 {
612  return ((ahd_inb(ahd, port))
613  | (ahd_inb(ahd, port+1) << 8)
614  | (ahd_inb(ahd, port+2) << 16)
615  | (ahd_inb(ahd, port+3) << 24));
616 }
617 
618 void
620 {
621  ahd_outb(ahd, port, (value) & 0xFF);
622  ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
623  ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
624  ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
625 }
626 
627 uint64_t
629 {
630  return ((ahd_inb(ahd, port))
631  | (ahd_inb(ahd, port+1) << 8)
632  | (ahd_inb(ahd, port+2) << 16)
633  | (ahd_inb(ahd, port+3) << 24)
634  | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
635  | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
636  | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
637  | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
638 }
639 
640 void
642 {
643  ahd_outb(ahd, port, value & 0xFF);
644  ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
645  ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
646  ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
647  ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
648  ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
649  ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
650  ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
651 }
652 
653 u_int
655 {
658  return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
659 }
660 
661 void
662 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
663 {
666  ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
667  ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
668 }
669 
670 #if 0 /* unused */
671 static u_int
672 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
673 {
674  return (ahd_inw_atomic(ahd, HNSCB_QOFF));
675 }
676 #endif
677 
678 static void
679 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
680 {
681  ahd_outw_atomic(ahd, HNSCB_QOFF, value);
682 }
683 
684 #if 0 /* unused */
685 static u_int
686 ahd_get_hescb_qoff(struct ahd_softc *ahd)
687 {
688  return (ahd_inb(ahd, HESCB_QOFF));
689 }
690 #endif
691 
692 static void
693 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
694 {
695  ahd_outb(ahd, HESCB_QOFF, value);
696 }
697 
698 static u_int
699 ahd_get_snscb_qoff(struct ahd_softc *ahd)
700 {
701  u_int oldvalue;
702 
704  oldvalue = ahd_inw(ahd, SNSCB_QOFF);
705  ahd_outw(ahd, SNSCB_QOFF, oldvalue);
706  return (oldvalue);
707 }
708 
709 static void
710 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
711 {
713  ahd_outw(ahd, SNSCB_QOFF, value);
714 }
715 
716 #if 0 /* unused */
717 static u_int
718 ahd_get_sescb_qoff(struct ahd_softc *ahd)
719 {
721  return (ahd_inb(ahd, SESCB_QOFF));
722 }
723 #endif
724 
725 static void
726 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
727 {
729  ahd_outb(ahd, SESCB_QOFF, value);
730 }
731 
732 #if 0 /* unused */
733 static u_int
734 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
735 {
737  return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
738 }
739 #endif
740 
741 static void
742 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
743 {
745  ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
746  ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
747 }
748 
749 u_int
751 {
752  u_int value;
753 
754  /*
755  * Workaround PCI-X Rev A. hardware bug.
756  * After a host read of SCB memory, the chip
757  * may become confused into thinking prefetch
758  * was required. This starts the discard timer
759  * running and can cause an unexpected discard
760  * timer interrupt. The work around is to read
761  * a normal register prior to the exhaustion of
762  * the discard timer. The mode pointer register
763  * has no side effects and so serves well for
764  * this purpose.
765  *
766  * Razor #528
767  */
768  value = ahd_inb(ahd, offset);
769  if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
770  ahd_inb(ahd, MODE_PTR);
771  return (value);
772 }
773 
774 u_int
776 {
777  return (ahd_inb_scbram(ahd, offset)
778  | (ahd_inb_scbram(ahd, offset+1) << 8));
779 }
780 
781 static uint32_t
782 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
783 {
784  return (ahd_inw_scbram(ahd, offset)
785  | (ahd_inw_scbram(ahd, offset+2) << 16));
786 }
787 
788 static uint64_t
789 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
790 {
791  return (ahd_inl_scbram(ahd, offset)
792  | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
793 }
794 
795 struct scb *
797 {
798  struct scb* scb;
799 
800  if (tag >= AHD_SCB_MAX)
801  return (NULL);
802  scb = ahd->scb_data.scbindex[tag];
803  if (scb != NULL)
804  ahd_sync_scb(ahd, scb,
806  return (scb);
807 }
808 
809 static void
810 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
811 {
812  struct hardware_scb *q_hscb;
813  struct map_node *q_hscb_map;
814  uint32_t saved_hscb_busaddr;
815 
816  /*
817  * Our queuing method is a bit tricky. The card
818  * knows in advance which HSCB (by address) to download,
819  * and we can't disappoint it. To achieve this, the next
820  * HSCB to download is saved off in ahd->next_queued_hscb.
821  * When we are called to queue "an arbitrary scb",
822  * we copy the contents of the incoming HSCB to the one
823  * the sequencer knows about, swap HSCB pointers and
824  * finally assign the SCB to the tag indexed location
825  * in the scb_array. This makes sure that we can still
826  * locate the correct SCB by SCB_TAG.
827  */
828  q_hscb = ahd->next_queued_hscb;
829  q_hscb_map = ahd->next_queued_hscb_map;
830  saved_hscb_busaddr = q_hscb->hscb_busaddr;
831  memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
832  q_hscb->hscb_busaddr = saved_hscb_busaddr;
833  q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
834 
835  /* Now swap HSCB pointers. */
836  ahd->next_queued_hscb = scb->hscb;
837  ahd->next_queued_hscb_map = scb->hscb_map;
838  scb->hscb = q_hscb;
839  scb->hscb_map = q_hscb_map;
840 
841  /* Now define the mapping from tag to SCB in the scbindex */
842  ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
843 }
844 
845 /*
846  * Tell the sequencer about a new transaction to execute.
847  */
848 void
849 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
850 {
851  ahd_swap_with_next_hscb(ahd, scb);
852 
853  if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
854  panic("Attempt to queue invalid SCB tag %x\n",
855  SCB_GET_TAG(scb));
856 
857  /*
858  * Keep a history of SCBs we've downloaded in the qinfifo.
859  */
860  ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
861  ahd->qinfifonext++;
862 
863  if (scb->sg_count != 0)
864  ahd_setup_data_scb(ahd, scb);
865  else
866  ahd_setup_noxfer_scb(ahd, scb);
867  ahd_setup_scb_common(ahd, scb);
868 
869  /*
870  * Make sure our data is consistent from the
871  * perspective of the adapter.
872  */
873  ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874 
875 #ifdef AHD_DEBUG
876  if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
877  uint64_t host_dataptr;
878 
879  host_dataptr = ahd_le64toh(scb->hscb->dataptr);
880  printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
881  ahd_name(ahd),
882  SCB_GET_TAG(scb), scb->hscb->scsiid,
883  ahd_le32toh(scb->hscb->hscb_busaddr),
884  (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
885  (u_int)(host_dataptr & 0xFFFFFFFF),
886  ahd_le32toh(scb->hscb->datacnt));
887  }
888 #endif
889  /* Tell the adapter about the newly queued SCB */
890  ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
891 }
892 
893 /************************** Interrupt Processing ******************************/
894 static void
895 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
896 {
897  ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
898  /*offset*/0,
899  /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
900 }
901 
902 static void
903 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
904 {
905 #ifdef AHD_TARGET_MODE
906  if ((ahd->flags & AHD_TARGETROLE) != 0) {
908  ahd->shared_data_map.dmamap,
909  ahd_targetcmd_offset(ahd, 0),
910  sizeof(struct target_cmd) * AHD_TMODE_CMDS,
911  op);
912  }
913 #endif
914 }
915 
916 /*
917  * See if the firmware has posted any completed commands
918  * into our in-core command complete fifos.
919  */
920 #define AHD_RUN_QOUTFIFO 0x1
921 #define AHD_RUN_TQINFIFO 0x2
922 static u_int
923 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
924 {
925  u_int retval;
926 
927  retval = 0;
928  ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
929  /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
930  /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
931  if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
932  == ahd->qoutfifonext_valid_tag)
933  retval |= AHD_RUN_QOUTFIFO;
934 #ifdef AHD_TARGET_MODE
935  if ((ahd->flags & AHD_TARGETROLE) != 0
936  && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
938  ahd->shared_data_map.dmamap,
939  ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
940  /*len*/sizeof(struct target_cmd),
942  if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
943  retval |= AHD_RUN_TQINFIFO;
944  }
945 #endif
946  return (retval);
947 }
948 
949 /*
950  * Catch an interrupt from the adapter
951  */
952 int
953 ahd_intr(struct ahd_softc *ahd)
954 {
955  u_int intstat;
956 
957  if ((ahd->pause & INTEN) == 0) {
958  /*
959  * Our interrupt is not enabled on the chip
960  * and may be disabled for re-entrancy reasons,
961  * so just return. This is likely just a shared
962  * interrupt.
963  */
964  return (0);
965  }
966 
967  /*
968  * Instead of directly reading the interrupt status register,
969  * infer the cause of the interrupt by checking our in-core
970  * completion queues. This avoids a costly PCI bus read in
971  * most cases.
972  */
973  if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
974  && (ahd_check_cmdcmpltqueues(ahd) != 0))
975  intstat = CMDCMPLT;
976  else
977  intstat = ahd_inb(ahd, INTSTAT);
978 
979  if ((intstat & INT_PEND) == 0)
980  return (0);
981 
982  if (intstat & CMDCMPLT) {
983  ahd_outb(ahd, CLRINT, CLRCMDINT);
984 
985  /*
986  * Ensure that the chip sees that we've cleared
987  * this interrupt before we walk the output fifo.
988  * Otherwise, we may, due to posted bus writes,
989  * clear the interrupt after we finish the scan,
990  * and after the sequencer has added new entries
991  * and asserted the interrupt again.
992  */
993  if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
994  if (ahd_is_paused(ahd)) {
995  /*
996  * Potentially lost SEQINT.
997  * If SEQINTCODE is non-zero,
998  * simulate the SEQINT.
999  */
1000  if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
1001  intstat |= SEQINT;
1002  }
1003  } else {
1004  ahd_flush_device_writes(ahd);
1005  }
1006  ahd_run_qoutfifo(ahd);
1007  ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1008  ahd->cmdcmplt_total++;
1009 #ifdef AHD_TARGET_MODE
1010  if ((ahd->flags & AHD_TARGETROLE) != 0)
1011  ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1012 #endif
1013  }
1014 
1015  /*
1016  * Handle statuses that may invalidate our cached
1017  * copy of INTSTAT separately.
1018  */
1019  if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1020  /* Hot eject. Do nothing */
1021  } else if (intstat & HWERRINT) {
1022  ahd_handle_hwerrint(ahd);
1023  } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1024  ahd->bus_intr(ahd);
1025  } else {
1026 
1027  if ((intstat & SEQINT) != 0)
1028  ahd_handle_seqint(ahd, intstat);
1029 
1030  if ((intstat & SCSIINT) != 0)
1031  ahd_handle_scsiint(ahd, intstat);
1032  }
1033  return (1);
1034 }
1035 
1036 /******************************** Private Inlines *****************************/
1037 static inline void
1038 ahd_assert_atn(struct ahd_softc *ahd)
1039 {
1040  ahd_outb(ahd, SCSISIGO, ATNO);
1041 }
1042 
1043 /*
1044  * Determine if the current connection has a packetized
1045  * agreement. This does not necessarily mean that we
1046  * are currently in a packetized transfer. We could
1047  * just as easily be sending or receiving a message.
1048  */
1049 static int
1050 ahd_currently_packetized(struct ahd_softc *ahd)
1051 {
1052  ahd_mode_state saved_modes;
1053  int packetized;
1054 
1055  saved_modes = ahd_save_modes(ahd);
1056  if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1057  /*
1058  * The packetized bit refers to the last
1059  * connection, not the current one. Check
1060  * for non-zero LQISTATE instead.
1061  */
1063  packetized = ahd_inb(ahd, LQISTATE) != 0;
1064  } else {
1066  packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1067  }
1068  ahd_restore_modes(ahd, saved_modes);
1069  return (packetized);
1070 }
1071 
1072 static inline int
1073 ahd_set_active_fifo(struct ahd_softc *ahd)
1074 {
1075  u_int active_fifo;
1076 
1078  active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1079  switch (active_fifo) {
1080  case 0:
1081  case 1:
1082  ahd_set_modes(ahd, active_fifo, active_fifo);
1083  return (1);
1084  default:
1085  return (0);
1086  }
1087 }
1088 
1089 static inline void
1090 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1091 {
1092  ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1093 }
1094 
1095 /*
1096  * Determine whether the sequencer reported a residual
1097  * for this SCB/transaction.
1098  */
1099 static inline void
1100 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1101 {
1102  uint32_t sgptr;
1103 
1104  sgptr = ahd_le32toh(scb->hscb->sgptr);
1105  if ((sgptr & SG_STATUS_VALID) != 0)
1106  ahd_calc_residual(ahd, scb);
1107 }
1108 
1109 static inline void
1110 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1111 {
1112  uint32_t sgptr;
1113 
1114  sgptr = ahd_le32toh(scb->hscb->sgptr);
1115  if ((sgptr & SG_STATUS_VALID) != 0)
1116  ahd_handle_scb_status(ahd, scb);
1117  else
1118  ahd_done(ahd, scb);
1119 }
1120 
1121 
1122 /************************* Sequencer Execution Control ************************/
1123 /*
1124  * Restart the sequencer program from address zero
1125  */
1126 static void
1127 ahd_restart(struct ahd_softc *ahd)
1128 {
1129 
1130  ahd_pause(ahd);
1131 
1133 
1134  /* No more pending messages */
1135  ahd_clear_msg_state(ahd);
1136  ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
1137  ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
1138  ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1139  ahd_outb(ahd, SEQINTCTL, 0);
1140  ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1141  ahd_outb(ahd, SEQ_FLAGS, 0);
1142  ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1143  ahd_outb(ahd, SAVED_LUN, 0xFF);
1144 
1145  /*
1146  * Ensure that the sequencer's idea of TQINPOS
1147  * matches our own. The sequencer increments TQINPOS
1148  * only after it sees a DMA complete and a reset could
1149  * occur before the increment leaving the kernel to believe
1150  * the command arrived but the sequencer to not.
1151  */
1152  ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1153 
1154  /* Always allow reselection */
1155  ahd_outb(ahd, SCSISEQ1,
1156  ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1158 
1159  /*
1160  * Clear any pending sequencer interrupt. It is no
1161  * longer relevant since we're resetting the Program
1162  * Counter.
1163  */
1164  ahd_outb(ahd, CLRINT, CLRSEQINT);
1165 
1166  ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1167  ahd_unpause(ahd);
1168 }
1169 
1170 static void
1171 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1172 {
1173  ahd_mode_state saved_modes;
1174 
1175 #ifdef AHD_DEBUG
1176  if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1177  printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1178 #endif
1179  saved_modes = ahd_save_modes(ahd);
1180  ahd_set_modes(ahd, fifo, fifo);
1181  ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1182  if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1183  ahd_outb(ahd, CCSGCTL, CCSGRESET);
1184  ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1185  ahd_outb(ahd, SG_STATE, 0);
1186  ahd_restore_modes(ahd, saved_modes);
1187 }
1188 
1189 /************************* Input/Output Queues ********************************/
1190 /*
1191  * Flush and completed commands that are sitting in the command
1192  * complete queues down on the chip but have yet to be dma'ed back up.
1193  */
1194 static void
1195 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1196 {
1197  struct scb *scb;
1198  ahd_mode_state saved_modes;
1199  u_int saved_scbptr;
1200  u_int ccscbctl;
1201  u_int scbid;
1202  u_int next_scbid;
1203 
1204  saved_modes = ahd_save_modes(ahd);
1205 
1206  /*
1207  * Flush the good status FIFO for completed packetized commands.
1208  */
1210  saved_scbptr = ahd_get_scbptr(ahd);
1211  while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1212  u_int fifo_mode;
1213  u_int i;
1214 
1215  scbid = ahd_inw(ahd, GSFIFO);
1216  scb = ahd_lookup_scb(ahd, scbid);
1217  if (scb == NULL) {
1218  printk("%s: Warning - GSFIFO SCB %d invalid\n",
1219  ahd_name(ahd), scbid);
1220  continue;
1221  }
1222  /*
1223  * Determine if this transaction is still active in
1224  * any FIFO. If it is, we must flush that FIFO to
1225  * the host before completing the command.
1226  */
1227  fifo_mode = 0;
1228 rescan_fifos:
1229  for (i = 0; i < 2; i++) {
1230  /* Toggle to the other mode. */
1231  fifo_mode ^= 1;
1232  ahd_set_modes(ahd, fifo_mode, fifo_mode);
1233 
1234  if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1235  continue;
1236 
1237  ahd_run_data_fifo(ahd, scb);
1238 
1239  /*
1240  * Running this FIFO may cause a CFG4DATA for
1241  * this same transaction to assert in the other
1242  * FIFO or a new snapshot SAVEPTRS interrupt
1243  * in this FIFO. Even running a FIFO may not
1244  * clear the transaction if we are still waiting
1245  * for data to drain to the host. We must loop
1246  * until the transaction is not active in either
1247  * FIFO just to be sure. Reset our loop counter
1248  * so we will visit both FIFOs again before
1249  * declaring this transaction finished. We
1250  * also delay a bit so that status has a chance
1251  * to change before we look at this FIFO again.
1252  */
1253  ahd_delay(200);
1254  goto rescan_fifos;
1255  }
1257  ahd_set_scbptr(ahd, scbid);
1258  if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1259  && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1260  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1261  & SG_LIST_NULL) != 0)) {
1262  u_int comp_head;
1263 
1264  /*
1265  * The transfer completed with a residual.
1266  * Place this SCB on the complete DMA list
1267  * so that we update our in-core copy of the
1268  * SCB before completing the command.
1269  */
1270  ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1271  ahd_outb(ahd, SCB_SGPTR,
1273  | SG_STATUS_VALID);
1274  ahd_outw(ahd, SCB_TAG, scbid);
1275  ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1276  comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1277  if (SCBID_IS_NULL(comp_head)) {
1278  ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1279  ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1280  } else {
1281  u_int tail;
1282 
1283  tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1284  ahd_set_scbptr(ahd, tail);
1285  ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1286  ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1287  ahd_set_scbptr(ahd, scbid);
1288  }
1289  } else
1290  ahd_complete_scb(ahd, scb);
1291  }
1292  ahd_set_scbptr(ahd, saved_scbptr);
1293 
1294  /*
1295  * Setup for command channel portion of flush.
1296  */
1298 
1299  /*
1300  * Wait for any inprogress DMA to complete and clear DMA state
1301  * if this if for an SCB in the qinfifo.
1302  */
1303  while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1304 
1305  if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1306  if ((ccscbctl & ARRDONE) != 0)
1307  break;
1308  } else if ((ccscbctl & CCSCBDONE) != 0)
1309  break;
1310  ahd_delay(200);
1311  }
1312  /*
1313  * We leave the sequencer to cleanup in the case of DMA's to
1314  * update the qoutfifo. In all other cases (DMA's to the
1315  * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1316  * we disable the DMA engine so that the sequencer will not
1317  * attempt to handle the DMA completion.
1318  */
1319  if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1320  ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1321 
1322  /*
1323  * Complete any SCBs that just finished
1324  * being DMA'ed into the qoutfifo.
1325  */
1326  ahd_run_qoutfifo(ahd);
1327 
1328  saved_scbptr = ahd_get_scbptr(ahd);
1329  /*
1330  * Manually update/complete any completed SCBs that are waiting to be
1331  * DMA'ed back up to the host.
1332  */
1333  scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1334  while (!SCBID_IS_NULL(scbid)) {
1335  uint8_t *hscb_ptr;
1336  u_int i;
1337 
1338  ahd_set_scbptr(ahd, scbid);
1339  next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1340  scb = ahd_lookup_scb(ahd, scbid);
1341  if (scb == NULL) {
1342  printk("%s: Warning - DMA-up and complete "
1343  "SCB %d invalid\n", ahd_name(ahd), scbid);
1344  continue;
1345  }
1346  hscb_ptr = (uint8_t *)scb->hscb;
1347  for (i = 0; i < sizeof(struct hardware_scb); i++)
1348  *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1349 
1350  ahd_complete_scb(ahd, scb);
1351  scbid = next_scbid;
1352  }
1353  ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1354  ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1355 
1356  scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1357  while (!SCBID_IS_NULL(scbid)) {
1358 
1359  ahd_set_scbptr(ahd, scbid);
1360  next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1361  scb = ahd_lookup_scb(ahd, scbid);
1362  if (scb == NULL) {
1363  printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1364  ahd_name(ahd), scbid);
1365  continue;
1366  }
1367 
1368  ahd_complete_scb(ahd, scb);
1369  scbid = next_scbid;
1370  }
1371  ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1372 
1373  scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1374  while (!SCBID_IS_NULL(scbid)) {
1375 
1376  ahd_set_scbptr(ahd, scbid);
1377  next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1378  scb = ahd_lookup_scb(ahd, scbid);
1379  if (scb == NULL) {
1380  printk("%s: Warning - Complete SCB %d invalid\n",
1381  ahd_name(ahd), scbid);
1382  continue;
1383  }
1384 
1385  ahd_complete_scb(ahd, scb);
1386  scbid = next_scbid;
1387  }
1388  ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1389 
1390  /*
1391  * Restore state.
1392  */
1393  ahd_set_scbptr(ahd, saved_scbptr);
1394  ahd_restore_modes(ahd, saved_modes);
1395  ahd->flags |= AHD_UPDATE_PEND_CMDS;
1396 }
1397 
1398 /*
1399  * Determine if an SCB for a packetized transaction
1400  * is active in a FIFO.
1401  */
1402 static int
1403 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1404 {
1405 
1406  /*
1407  * The FIFO is only active for our transaction if
1408  * the SCBPTR matches the SCB's ID and the firmware
1409  * has installed a handler for the FIFO or we have
1410  * a pending SAVEPTRS or CFG4DATA interrupt.
1411  */
1412  if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1413  || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1414  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1415  return (0);
1416 
1417  return (1);
1418 }
1419 
1420 /*
1421  * Run a data fifo to completion for a transaction we know
1422  * has completed across the SCSI bus (good status has been
1423  * received). We are already set to the correct FIFO mode
1424  * on entry to this routine.
1425  *
1426  * This function attempts to operate exactly as the firmware
1427  * would when running this FIFO. Care must be taken to update
1428  * this routine any time the firmware's FIFO algorithm is
1429  * changed.
1430  */
1431 static void
1432 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1433 {
1434  u_int seqintsrc;
1435 
1436  seqintsrc = ahd_inb(ahd, SEQINTSRC);
1437  if ((seqintsrc & CFG4DATA) != 0) {
1438  uint32_t datacnt;
1439  uint32_t sgptr;
1440 
1441  /*
1442  * Clear full residual flag.
1443  */
1444  sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1445  ahd_outb(ahd, SCB_SGPTR, sgptr);
1446 
1447  /*
1448  * Load datacnt and address.
1449  */
1450  datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1451  if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1452  sgptr |= LAST_SEG;
1453  ahd_outb(ahd, SG_STATE, 0);
1454  } else
1455  ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1456  ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1457  ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1458  ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1460 
1461  /*
1462  * Initialize Residual Fields.
1463  */
1464  ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1465  ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1466 
1467  /*
1468  * Mark the SCB as having a FIFO in use.
1469  */
1470  ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1471  ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1472 
1473  /*
1474  * Install a "fake" handler for this FIFO.
1475  */
1476  ahd_outw(ahd, LONGJMP_ADDR, 0);
1477 
1478  /*
1479  * Notify the hardware that we have satisfied
1480  * this sequencer interrupt.
1481  */
1482  ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1483  } else if ((seqintsrc & SAVEPTRS) != 0) {
1484  uint32_t sgptr;
1485  uint32_t resid;
1486 
1487  if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1488  /*
1489  * Snapshot Save Pointers. All that
1490  * is necessary to clear the snapshot
1491  * is a CLRCHN.
1492  */
1493  goto clrchn;
1494  }
1495 
1496  /*
1497  * Disable S/G fetch so the DMA engine
1498  * is available to future users.
1499  */
1500  if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1501  ahd_outb(ahd, CCSGCTL, 0);
1502  ahd_outb(ahd, SG_STATE, 0);
1503 
1504  /*
1505  * Flush the data FIFO. Strickly only
1506  * necessary for Rev A parts.
1507  */
1508  ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1509 
1510  /*
1511  * Calculate residual.
1512  */
1513  sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1514  resid = ahd_inl(ahd, SHCNT);
1515  resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1516  ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1517  if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1518  /*
1519  * Must back up to the correct S/G element.
1520  * Typically this just means resetting our
1521  * low byte to the offset in the SG_CACHE,
1522  * but if we wrapped, we have to correct
1523  * the other bytes of the sgptr too.
1524  */
1525  if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1526  && (sgptr & 0x80) == 0)
1527  sgptr -= 0x100;
1528  sgptr &= ~0xFF;
1529  sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1530  & SG_ADDR_MASK;
1531  ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1532  ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1533  } else if ((resid & AHD_SG_LEN_MASK) == 0) {
1534  ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1535  sgptr | SG_LIST_NULL);
1536  }
1537  /*
1538  * Save Pointers.
1539  */
1540  ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1541  ahd_outl(ahd, SCB_DATACNT, resid);
1542  ahd_outl(ahd, SCB_SGPTR, sgptr);
1543  ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1544  ahd_outb(ahd, SEQIMODE,
1545  ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1546  /*
1547  * If the data is to the SCSI bus, we are
1548  * done, otherwise wait for FIFOEMP.
1549  */
1550  if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1551  goto clrchn;
1552  } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1553  uint32_t sgptr;
1556  u_int dfcntrl;
1557 
1558  /*
1559  * Disable S/G fetch so the DMA engine
1560  * is available to future users. We won't
1561  * be using the DMA engine to load segments.
1562  */
1563  if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1564  ahd_outb(ahd, CCSGCTL, 0);
1565  ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1566  }
1567 
1568  /*
1569  * Wait for the DMA engine to notice that the
1570  * host transfer is enabled and that there is
1571  * space in the S/G FIFO for new segments before
1572  * loading more segments.
1573  */
1574  if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1575  && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1576 
1577  /*
1578  * Determine the offset of the next S/G
1579  * element to load.
1580  */
1581  sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1582  sgptr &= SG_PTR_MASK;
1583  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1584  struct ahd_dma64_seg *sg;
1585 
1586  sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1587  data_addr = sg->addr;
1588  data_len = sg->len;
1589  sgptr += sizeof(*sg);
1590  } else {
1591  struct ahd_dma_seg *sg;
1592 
1593  sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1594  data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1595  data_addr <<= 8;
1596  data_addr |= sg->addr;
1597  data_len = sg->len;
1598  sgptr += sizeof(*sg);
1599  }
1600 
1601  /*
1602  * Update residual information.
1603  */
1604  ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1605  ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1606 
1607  /*
1608  * Load the S/G.
1609  */
1610  if (data_len & AHD_DMA_LAST_SEG) {
1611  sgptr |= LAST_SEG;
1612  ahd_outb(ahd, SG_STATE, 0);
1613  }
1614  ahd_outq(ahd, HADDR, data_addr);
1615  ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1616  ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1617 
1618  /*
1619  * Advertise the segment to the hardware.
1620  */
1621  dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1622  if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1623  /*
1624  * Use SCSIENWRDIS so that SCSIEN
1625  * is never modified by this
1626  * operation.
1627  */
1628  dfcntrl |= SCSIENWRDIS;
1629  }
1630  ahd_outb(ahd, DFCNTRL, dfcntrl);
1631  }
1632  } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1633 
1634  /*
1635  * Transfer completed to the end of SG list
1636  * and has flushed to the host.
1637  */
1638  ahd_outb(ahd, SCB_SGPTR,
1639  ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1640  goto clrchn;
1641  } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1642 clrchn:
1643  /*
1644  * Clear any handler for this FIFO, decrement
1645  * the FIFO use count for the SCB, and release
1646  * the FIFO.
1647  */
1648  ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1649  ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1650  ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1651  ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1652  }
1653 }
1654 
1655 /*
1656  * Look for entries in the QoutFIFO that have completed.
1657  * The valid_tag completion field indicates the validity
1658  * of the entry - the valid value toggles each time through
1659  * the queue. We use the sg_status field in the completion
1660  * entry to avoid referencing the hscb if the completion
1661  * occurred with no errors and no residual. sg_status is
1662  * a copy of the first byte (little endian) of the sgptr
1663  * hscb field.
1664  */
1665 static void
1666 ahd_run_qoutfifo(struct ahd_softc *ahd)
1667 {
1668  struct ahd_completion *completion;
1669  struct scb *scb;
1670  u_int scb_index;
1671 
1672  if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1673  panic("ahd_run_qoutfifo recursion");
1674  ahd->flags |= AHD_RUNNING_QOUTFIFO;
1675  ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1676  for (;;) {
1677  completion = &ahd->qoutfifo[ahd->qoutfifonext];
1678 
1679  if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1680  break;
1681 
1682  scb_index = ahd_le16toh(completion->tag);
1683  scb = ahd_lookup_scb(ahd, scb_index);
1684  if (scb == NULL) {
1685  printk("%s: WARNING no command for scb %d "
1686  "(cmdcmplt)\nQOUTPOS = %d\n",
1687  ahd_name(ahd), scb_index,
1688  ahd->qoutfifonext);
1689  ahd_dump_card_state(ahd);
1690  } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1691  ahd_handle_scb_status(ahd, scb);
1692  } else {
1693  ahd_done(ahd, scb);
1694  }
1695 
1696  ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1697  if (ahd->qoutfifonext == 0)
1699  }
1700  ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1701 }
1702 
1703 /************************* Interrupt Handling *********************************/
1704 static void
1705 ahd_handle_hwerrint(struct ahd_softc *ahd)
1706 {
1707  /*
1708  * Some catastrophic hardware error has occurred.
1709  * Print it for the user and disable the controller.
1710  */
1711  int i;
1712  int error;
1713 
1714  error = ahd_inb(ahd, ERROR);
1715  for (i = 0; i < num_errors; i++) {
1716  if ((error & ahd_hard_errors[i].errno) != 0)
1717  printk("%s: hwerrint, %s\n",
1718  ahd_name(ahd), ahd_hard_errors[i].errmesg);
1719  }
1720 
1721  ahd_dump_card_state(ahd);
1722  panic("BRKADRINT");
1723 
1724  /* Tell everyone that this HBA is no longer available */
1725  ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1727  CAM_NO_HBA);
1728 
1729  /* Tell the system that this controller has gone away. */
1730  ahd_free(ahd);
1731 }
1732 
1733 #ifdef AHD_DEBUG
1734 static void
1735 ahd_dump_sglist(struct scb *scb)
1736 {
1737  int i;
1738 
1739  if (scb->sg_count > 0) {
1740  if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1741  struct ahd_dma64_seg *sg_list;
1742 
1743  sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1744  for (i = 0; i < scb->sg_count; i++) {
1745  uint64_t addr;
1746  uint32_t len;
1747 
1748  addr = ahd_le64toh(sg_list[i].addr);
1749  len = ahd_le32toh(sg_list[i].len);
1750  printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1751  i,
1752  (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1753  (uint32_t)(addr & 0xFFFFFFFF),
1754  sg_list[i].len & AHD_SG_LEN_MASK,
1755  (sg_list[i].len & AHD_DMA_LAST_SEG)
1756  ? " Last" : "");
1757  }
1758  } else {
1759  struct ahd_dma_seg *sg_list;
1760 
1761  sg_list = (struct ahd_dma_seg*)scb->sg_list;
1762  for (i = 0; i < scb->sg_count; i++) {
1763  uint32_t len;
1764 
1765  len = ahd_le32toh(sg_list[i].len);
1766  printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1767  i,
1768  (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1769  ahd_le32toh(sg_list[i].addr),
1770  len & AHD_SG_LEN_MASK,
1771  len & AHD_DMA_LAST_SEG ? " Last" : "");
1772  }
1773  }
1774  }
1775 }
1776 #endif /* AHD_DEBUG */
1777 
1778 static void
1779 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1780 {
1781  u_int seqintcode;
1782 
1783  /*
1784  * Save the sequencer interrupt code and clear the SEQINT
1785  * bit. We will unpause the sequencer, if appropriate,
1786  * after servicing the request.
1787  */
1788  seqintcode = ahd_inb(ahd, SEQINTCODE);
1789  ahd_outb(ahd, CLRINT, CLRSEQINT);
1790  if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1791  /*
1792  * Unpause the sequencer and let it clear
1793  * SEQINT by writing NO_SEQINT to it. This
1794  * will cause the sequencer to be paused again,
1795  * which is the expected state of this routine.
1796  */
1797  ahd_unpause(ahd);
1798  while (!ahd_is_paused(ahd))
1799  ;
1800  ahd_outb(ahd, CLRINT, CLRSEQINT);
1801  }
1802  ahd_update_modes(ahd);
1803 #ifdef AHD_DEBUG
1804  if ((ahd_debug & AHD_SHOW_MISC) != 0)
1805  printk("%s: Handle Seqint Called for code %d\n",
1806  ahd_name(ahd), seqintcode);
1807 #endif
1808  switch (seqintcode) {
1809  case ENTERING_NONPACK:
1810  {
1811  struct scb *scb;
1812  u_int scbid;
1813 
1816  scbid = ahd_get_scbptr(ahd);
1817  scb = ahd_lookup_scb(ahd, scbid);
1818  if (scb == NULL) {
1819  /*
1820  * Somehow need to know if this
1821  * is from a selection or reselection.
1822  * From that, we can determine target
1823  * ID so we at least have an I_T nexus.
1824  */
1825  } else {
1826  ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1827  ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1828  ahd_outb(ahd, SEQ_FLAGS, 0x0);
1829  }
1830  if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1831  && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1832  /*
1833  * Phase change after read stream with
1834  * CRC error with P0 asserted on last
1835  * packet.
1836  */
1837 #ifdef AHD_DEBUG
1838  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1839  printk("%s: Assuming LQIPHASE_NLQ with "
1840  "P0 assertion\n", ahd_name(ahd));
1841 #endif
1842  }
1843 #ifdef AHD_DEBUG
1844  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845  printk("%s: Entering NONPACK\n", ahd_name(ahd));
1846 #endif
1847  break;
1848  }
1849  case INVALID_SEQINT:
1850  printk("%s: Invalid Sequencer interrupt occurred, "
1851  "resetting channel.\n",
1852  ahd_name(ahd));
1853 #ifdef AHD_DEBUG
1854  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1855  ahd_dump_card_state(ahd);
1856 #endif
1857  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1858  break;
1859  case STATUS_OVERRUN:
1860  {
1861  struct scb *scb;
1862  u_int scbid;
1863 
1864  scbid = ahd_get_scbptr(ahd);
1865  scb = ahd_lookup_scb(ahd, scbid);
1866  if (scb != NULL)
1867  ahd_print_path(ahd, scb);
1868  else
1869  printk("%s: ", ahd_name(ahd));
1870  printk("SCB %d Packetized Status Overrun", scbid);
1871  ahd_dump_card_state(ahd);
1872  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1873  break;
1874  }
1875  case CFG4ISTAT_INTR:
1876  {
1877  struct scb *scb;
1878  u_int scbid;
1879 
1880  scbid = ahd_get_scbptr(ahd);
1881  scb = ahd_lookup_scb(ahd, scbid);
1882  if (scb == NULL) {
1883  ahd_dump_card_state(ahd);
1884  printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1885  panic("For safety");
1886  }
1887  ahd_outq(ahd, HADDR, scb->sense_busaddr);
1888  ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1889  ahd_outb(ahd, HCNT + 2, 0);
1890  ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1892  break;
1893  }
1894  case ILLEGAL_PHASE:
1895  {
1896  u_int bus_phase;
1897 
1898  bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1899  printk("%s: ILLEGAL_PHASE 0x%x\n",
1900  ahd_name(ahd), bus_phase);
1901 
1902  switch (bus_phase) {
1903  case P_DATAOUT:
1904  case P_DATAIN:
1905  case P_DATAOUT_DT:
1906  case P_DATAIN_DT:
1907  case P_MESGOUT:
1908  case P_STATUS:
1909  case P_MESGIN:
1910  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1911  printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1912  break;
1913  case P_COMMAND:
1914  {
1915  struct ahd_devinfo devinfo;
1916  struct scb *scb;
1917  struct ahd_initiator_tinfo *targ_info;
1918  struct ahd_tmode_tstate *tstate;
1919  struct ahd_transinfo *tinfo;
1920  u_int scbid;
1921 
1922  /*
1923  * If a target takes us into the command phase
1924  * assume that it has been externally reset and
1925  * has thus lost our previous packetized negotiation
1926  * agreement. Since we have not sent an identify
1927  * message and may not have fully qualified the
1928  * connection, we change our command to TUR, assert
1929  * ATN and ABORT the task when we go to message in
1930  * phase. The OSM will see the REQUEUE_REQUEST
1931  * status and retry the command.
1932  */
1933  scbid = ahd_get_scbptr(ahd);
1934  scb = ahd_lookup_scb(ahd, scbid);
1935  if (scb == NULL) {
1936  printk("Invalid phase with no valid SCB. "
1937  "Resetting bus.\n");
1938  ahd_reset_channel(ahd, 'A',
1939  /*Initiate Reset*/TRUE);
1940  break;
1941  }
1942  ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1943  SCB_GET_TARGET(ahd, scb),
1944  SCB_GET_LUN(scb),
1945  SCB_GET_CHANNEL(ahd, scb),
1946  ROLE_INITIATOR);
1947  targ_info = ahd_fetch_transinfo(ahd,
1948  devinfo.channel,
1949  devinfo.our_scsiid,
1950  devinfo.target,
1951  &tstate);
1952  tinfo = &targ_info->curr;
1953  ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1954  AHD_TRANS_ACTIVE, /*paused*/TRUE);
1955  ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1956  /*offset*/0, /*ppr_options*/0,
1957  AHD_TRANS_ACTIVE, /*paused*/TRUE);
1958  /* Hand-craft TUR command */
1959  ahd_outb(ahd, SCB_CDB_STORE, 0);
1960  ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1961  ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1962  ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1963  ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1964  ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1965  ahd_outb(ahd, SCB_CDB_LEN, 6);
1966  scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1967  scb->hscb->control |= MK_MESSAGE;
1968  ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1969  ahd_outb(ahd, MSG_OUT, HOST_MSG);
1970  ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1971  /*
1972  * The lun is 0, regardless of the SCB's lun
1973  * as we have not sent an identify message.
1974  */
1975  ahd_outb(ahd, SAVED_LUN, 0);
1976  ahd_outb(ahd, SEQ_FLAGS, 0);
1977  ahd_assert_atn(ahd);
1978  scb->flags &= ~SCB_PACKETIZED;
1980  ahd_freeze_devq(ahd, scb);
1981  ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1982  ahd_freeze_scb(scb);
1983 
1984  /* Notify XPT */
1985  ahd_send_async(ahd, devinfo.channel, devinfo.target,
1987 
1988  /*
1989  * Allow the sequencer to continue with
1990  * non-pack processing.
1991  */
1993  ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1994  if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1995  ahd_outb(ahd, CLRLQOINT1, 0);
1996  }
1997 #ifdef AHD_DEBUG
1998  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1999  ahd_print_path(ahd, scb);
2000  printk("Unexpected command phase from "
2001  "packetized target\n");
2002  }
2003 #endif
2004  break;
2005  }
2006  }
2007  break;
2008  }
2009  case CFG4OVERRUN:
2010  {
2011  struct scb *scb;
2012  u_int scb_index;
2013 
2014 #ifdef AHD_DEBUG
2015  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2016  printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2017  ahd_inb(ahd, MODE_PTR));
2018  }
2019 #endif
2020  scb_index = ahd_get_scbptr(ahd);
2021  scb = ahd_lookup_scb(ahd, scb_index);
2022  if (scb == NULL) {
2023  /*
2024  * Attempt to transfer to an SCB that is
2025  * not outstanding.
2026  */
2027  ahd_assert_atn(ahd);
2028  ahd_outb(ahd, MSG_OUT, HOST_MSG);
2029  ahd->msgout_buf[0] = MSG_ABORT_TASK;
2030  ahd->msgout_len = 1;
2031  ahd->msgout_index = 0;
2033  /*
2034  * Clear status received flag to prevent any
2035  * attempt to complete this bogus SCB.
2036  */
2037  ahd_outb(ahd, SCB_CONTROL,
2039  & ~STATUS_RCVD);
2040  }
2041  break;
2042  }
2043  case DUMP_CARD_STATE:
2044  {
2045  ahd_dump_card_state(ahd);
2046  break;
2047  }
2048  case PDATA_REINIT:
2049  {
2050 #ifdef AHD_DEBUG
2051  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2052  printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2053  "SG_CACHE_SHADOW = 0x%x\n",
2054  ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2055  ahd_inb(ahd, SG_CACHE_SHADOW));
2056  }
2057 #endif
2058  ahd_reinitialize_dataptrs(ahd);
2059  break;
2060  }
2061  case HOST_MSG_LOOP:
2062  {
2063  struct ahd_devinfo devinfo;
2064 
2065  /*
2066  * The sequencer has encountered a message phase
2067  * that requires host assistance for completion.
2068  * While handling the message phase(s), we will be
2069  * notified by the sequencer after each byte is
2070  * transferred so we can track bus phase changes.
2071  *
2072  * If this is the first time we've seen a HOST_MSG_LOOP
2073  * interrupt, initialize the state of the host message
2074  * loop.
2075  */
2076  ahd_fetch_devinfo(ahd, &devinfo);
2077  if (ahd->msg_type == MSG_TYPE_NONE) {
2078  struct scb *scb;
2079  u_int scb_index;
2080  u_int bus_phase;
2081 
2082  bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2083  if (bus_phase != P_MESGIN
2084  && bus_phase != P_MESGOUT) {
2085  printk("ahd_intr: HOST_MSG_LOOP bad "
2086  "phase 0x%x\n", bus_phase);
2087  /*
2088  * Probably transitioned to bus free before
2089  * we got here. Just punt the message.
2090  */
2091  ahd_dump_card_state(ahd);
2092  ahd_clear_intstat(ahd);
2093  ahd_restart(ahd);
2094  return;
2095  }
2096 
2097  scb_index = ahd_get_scbptr(ahd);
2098  scb = ahd_lookup_scb(ahd, scb_index);
2099  if (devinfo.role == ROLE_INITIATOR) {
2100  if (bus_phase == P_MESGOUT)
2101  ahd_setup_initiator_msgout(ahd,
2102  &devinfo,
2103  scb);
2104  else {
2105  ahd->msg_type =
2107  ahd->msgin_index = 0;
2108  }
2109  }
2110 #ifdef AHD_TARGET_MODE
2111  else {
2112  if (bus_phase == P_MESGOUT) {
2113  ahd->msg_type =
2115  ahd->msgin_index = 0;
2116  }
2117  else
2118  ahd_setup_target_msgin(ahd,
2119  &devinfo,
2120  scb);
2121  }
2122 #endif
2123  }
2124 
2125  ahd_handle_message_phase(ahd);
2126  break;
2127  }
2128  case NO_MATCH:
2129  {
2130  /* Ensure we don't leave the selection hardware on */
2132  ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2133 
2134  printk("%s:%c:%d: no active SCB for reconnecting "
2135  "target - issuing BUS DEVICE RESET\n",
2136  ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2137  printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2138  "REG0 == 0x%x ACCUM = 0x%x\n",
2139  ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2140  ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2141  printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2142  "SINDEX == 0x%x\n",
2143  ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2144  ahd_find_busy_tcl(ahd,
2145  BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2146  ahd_inb(ahd, SAVED_LUN))),
2147  ahd_inw(ahd, SINDEX));
2148  printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2149  "SCB_CONTROL == 0x%x\n",
2150  ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2151  ahd_inb_scbram(ahd, SCB_LUN),
2152  ahd_inb_scbram(ahd, SCB_CONTROL));
2153  printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2154  ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2155  printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2156  printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2157  ahd_dump_card_state(ahd);
2158  ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2159  ahd->msgout_len = 1;
2160  ahd->msgout_index = 0;
2162  ahd_outb(ahd, MSG_OUT, HOST_MSG);
2163  ahd_assert_atn(ahd);
2164  break;
2165  }
2166  case PROTO_VIOLATION:
2167  {
2168  ahd_handle_proto_violation(ahd);
2169  break;
2170  }
2171  case IGN_WIDE_RES:
2172  {
2173  struct ahd_devinfo devinfo;
2174 
2175  ahd_fetch_devinfo(ahd, &devinfo);
2176  ahd_handle_ign_wide_residue(ahd, &devinfo);
2177  break;
2178  }
2179  case BAD_PHASE:
2180  {
2181  u_int lastphase;
2182 
2183  lastphase = ahd_inb(ahd, LASTPHASE);
2184  printk("%s:%c:%d: unknown scsi bus phase %x, "
2185  "lastphase = 0x%x. Attempting to continue\n",
2186  ahd_name(ahd), 'A',
2187  SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2188  lastphase, ahd_inb(ahd, SCSISIGI));
2189  break;
2190  }
2191  case MISSED_BUSFREE:
2192  {
2193  u_int lastphase;
2194 
2195  lastphase = ahd_inb(ahd, LASTPHASE);
2196  printk("%s:%c:%d: Missed busfree. "
2197  "Lastphase = 0x%x, Curphase = 0x%x\n",
2198  ahd_name(ahd), 'A',
2199  SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2200  lastphase, ahd_inb(ahd, SCSISIGI));
2201  ahd_restart(ahd);
2202  return;
2203  }
2204  case DATA_OVERRUN:
2205  {
2206  /*
2207  * When the sequencer detects an overrun, it
2208  * places the controller in "BITBUCKET" mode
2209  * and allows the target to complete its transfer.
2210  * Unfortunately, none of the counters get updated
2211  * when the controller is in this mode, so we have
2212  * no way of knowing how large the overrun was.
2213  */
2214  struct scb *scb;
2215  u_int scbindex;
2216 #ifdef AHD_DEBUG
2217  u_int lastphase;
2218 #endif
2219 
2220  scbindex = ahd_get_scbptr(ahd);
2221  scb = ahd_lookup_scb(ahd, scbindex);
2222 #ifdef AHD_DEBUG
2223  lastphase = ahd_inb(ahd, LASTPHASE);
2224  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2225  ahd_print_path(ahd, scb);
2226  printk("data overrun detected %s. Tag == 0x%x.\n",
2227  ahd_lookup_phase_entry(lastphase)->phasemsg,
2228  SCB_GET_TAG(scb));
2229  ahd_print_path(ahd, scb);
2230  printk("%s seen Data Phase. Length = %ld. "
2231  "NumSGs = %d.\n",
2232  ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2233  ? "Have" : "Haven't",
2234  ahd_get_transfer_length(scb), scb->sg_count);
2235  ahd_dump_sglist(scb);
2236  }
2237 #endif
2238 
2239  /*
2240  * Set this and it will take effect when the
2241  * target does a command complete.
2242  */
2243  ahd_freeze_devq(ahd, scb);
2244  ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2245  ahd_freeze_scb(scb);
2246  break;
2247  }
2248  case MKMSG_FAILED:
2249  {
2250  struct ahd_devinfo devinfo;
2251  struct scb *scb;
2252  u_int scbid;
2253 
2254  ahd_fetch_devinfo(ahd, &devinfo);
2255  printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2256  ahd_name(ahd), devinfo.channel, devinfo.target,
2257  devinfo.lun);
2258  scbid = ahd_get_scbptr(ahd);
2259  scb = ahd_lookup_scb(ahd, scbid);
2260  if (scb != NULL
2261  && (scb->flags & SCB_RECOVERY_SCB) != 0)
2262  /*
2263  * Ensure that we didn't put a second instance of this
2264  * SCB into the QINFIFO.
2265  */
2266  ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2267  SCB_GET_CHANNEL(ahd, scb),
2268  SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2269  ROLE_INITIATOR, /*status*/0,
2270  SEARCH_REMOVE);
2271  ahd_outb(ahd, SCB_CONTROL,
2273  break;
2274  }
2275  case TASKMGMT_FUNC_COMPLETE:
2276  {
2277  u_int scbid;
2278  struct scb *scb;
2279 
2280  scbid = ahd_get_scbptr(ahd);
2281  scb = ahd_lookup_scb(ahd, scbid);
2282  if (scb != NULL) {
2283  u_int lun;
2284  u_int tag;
2285  cam_status error;
2286 
2287  ahd_print_path(ahd, scb);
2288  printk("Task Management Func 0x%x Complete\n",
2289  scb->hscb->task_management);
2290  lun = CAM_LUN_WILDCARD;
2291  tag = SCB_LIST_NULL;
2292 
2293  switch (scb->hscb->task_management) {
2295  tag = SCB_GET_TAG(scb);
2298  lun = scb->hscb->lun;
2299  error = CAM_REQ_ABORTED;
2300  ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2301  'A', lun, tag, ROLE_INITIATOR,
2302  error);
2303  break;
2305  lun = scb->hscb->lun;
2307  {
2308  struct ahd_devinfo devinfo;
2309 
2310  ahd_scb_devinfo(ahd, &devinfo, scb);
2311  error = CAM_BDR_SENT;
2312  ahd_handle_devreset(ahd, &devinfo, lun,
2313  CAM_BDR_SENT,
2314  lun != CAM_LUN_WILDCARD
2315  ? "Lun Reset"
2316  : "Target Reset",
2317  /*verbose_level*/0);
2318  break;
2319  }
2320  default:
2321  panic("Unexpected TaskMgmt Func\n");
2322  break;
2323  }
2324  }
2325  break;
2326  }
2327  case TASKMGMT_CMD_CMPLT_OKAY:
2328  {
2329  u_int scbid;
2330  struct scb *scb;
2331 
2332  /*
2333  * An ABORT TASK TMF failed to be delivered before
2334  * the targeted command completed normally.
2335  */
2336  scbid = ahd_get_scbptr(ahd);
2337  scb = ahd_lookup_scb(ahd, scbid);
2338  if (scb != NULL) {
2339  /*
2340  * Remove the second instance of this SCB from
2341  * the QINFIFO if it is still there.
2342  */
2343  ahd_print_path(ahd, scb);
2344  printk("SCB completes before TMF\n");
2345  /*
2346  * Handle losing the race. Wait until any
2347  * current selection completes. We will then
2348  * set the TMF back to zero in this SCB so that
2349  * the sequencer doesn't bother to issue another
2350  * sequencer interrupt for its completion.
2351  */
2352  while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2353  && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2354  && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2355  ;
2356  ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2357  ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2358  SCB_GET_CHANNEL(ahd, scb),
2359  SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2360  ROLE_INITIATOR, /*status*/0,
2361  SEARCH_REMOVE);
2362  }
2363  break;
2364  }
2365  case TRACEPOINT0:
2366  case TRACEPOINT1:
2367  case TRACEPOINT2:
2368  case TRACEPOINT3:
2369  printk("%s: Tracepoint %d\n", ahd_name(ahd),
2370  seqintcode - TRACEPOINT0);
2371  break;
2372  case NO_SEQINT:
2373  break;
2374  case SAW_HWERR:
2375  ahd_handle_hwerrint(ahd);
2376  break;
2377  default:
2378  printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2379  seqintcode);
2380  break;
2381  }
2382  /*
2383  * The sequencer is paused immediately on
2384  * a SEQINT, so we should restart it when
2385  * we're done.
2386  */
2387  ahd_unpause(ahd);
2388 }
2389 
2390 static void
2391 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2392 {
2393  struct scb *scb;
2394  u_int status0;
2395  u_int status3;
2396  u_int status;
2397  u_int lqistat1;
2398  u_int lqostat0;
2399  u_int scbid;
2400  u_int busfreetime;
2401 
2402  ahd_update_modes(ahd);
2404 
2405  status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2406  status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2407  status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2408  lqistat1 = ahd_inb(ahd, LQISTAT1);
2409  lqostat0 = ahd_inb(ahd, LQOSTAT0);
2410  busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2411 
2412  /*
2413  * Ignore external resets after a bus reset.
2414  */
2415  if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2416  ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2417  return;
2418  }
2419 
2420  /*
2421  * Clear bus reset flag
2422  */
2423  ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2424 
2425  if ((status0 & (SELDI|SELDO)) != 0) {
2426  u_int simode0;
2427 
2429  simode0 = ahd_inb(ahd, SIMODE0);
2430  status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2432  }
2433  scbid = ahd_get_scbptr(ahd);
2434  scb = ahd_lookup_scb(ahd, scbid);
2435  if (scb != NULL
2436  && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2437  scb = NULL;
2438 
2439  if ((status0 & IOERR) != 0) {
2440  u_int now_lvd;
2441 
2442  now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2443  printk("%s: Transceiver State Has Changed to %s mode\n",
2444  ahd_name(ahd), now_lvd ? "LVD" : "SE");
2445  ahd_outb(ahd, CLRSINT0, CLRIOERR);
2446  /*
2447  * A change in I/O mode is equivalent to a bus reset.
2448  */
2449  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2450  ahd_pause(ahd);
2451  ahd_setup_iocell_workaround(ahd);
2452  ahd_unpause(ahd);
2453  } else if ((status0 & OVERRUN) != 0) {
2454 
2455  printk("%s: SCSI offset overrun detected. Resetting bus.\n",
2456  ahd_name(ahd));
2457  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2458  } else if ((status & SCSIRSTI) != 0) {
2459 
2460  printk("%s: Someone reset channel A\n", ahd_name(ahd));
2461  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2462  } else if ((status & SCSIPERR) != 0) {
2463 
2464  /* Make sure the sequencer is in a safe location. */
2465  ahd_clear_critical_section(ahd);
2466 
2467  ahd_handle_transmission_error(ahd);
2468  } else if (lqostat0 != 0) {
2469 
2470  printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2471  ahd_outb(ahd, CLRLQOINT0, lqostat0);
2472  if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2473  ahd_outb(ahd, CLRLQOINT1, 0);
2474  } else if ((status & SELTO) != 0) {
2475  /* Stop the selection */
2476  ahd_outb(ahd, SCSISEQ0, 0);
2477 
2478  /* Make sure the sequencer is in a safe location. */
2479  ahd_clear_critical_section(ahd);
2480 
2481  /* No more pending messages */
2482  ahd_clear_msg_state(ahd);
2483 
2484  /* Clear interrupt state */
2486 
2487  /*
2488  * Although the driver does not care about the
2489  * 'Selection in Progress' status bit, the busy
2490  * LED does. SELINGO is only cleared by a successful
2491  * selection, so we must manually clear it to insure
2492  * the LED turns off just incase no future successful
2493  * selections occur (e.g. no devices on the bus).
2494  */
2495  ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2496 
2497  scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2498  scb = ahd_lookup_scb(ahd, scbid);
2499  if (scb == NULL) {
2500  printk("%s: ahd_intr - referenced scb not "
2501  "valid during SELTO scb(0x%x)\n",
2502  ahd_name(ahd), scbid);
2503  ahd_dump_card_state(ahd);
2504  } else {
2505  struct ahd_devinfo devinfo;
2506 #ifdef AHD_DEBUG
2507  if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2508  ahd_print_path(ahd, scb);
2509  printk("Saw Selection Timeout for SCB 0x%x\n",
2510  scbid);
2511  }
2512 #endif
2513  ahd_scb_devinfo(ahd, &devinfo, scb);
2514  ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2515  ahd_freeze_devq(ahd, scb);
2516 
2517  /*
2518  * Cancel any pending transactions on the device
2519  * now that it seems to be missing. This will
2520  * also revert us to async/narrow transfers until
2521  * we can renegotiate with the device.
2522  */
2523  ahd_handle_devreset(ahd, &devinfo,
2526  "Selection Timeout",
2527  /*verbose_level*/1);
2528  }
2529  ahd_outb(ahd, CLRINT, CLRSCSIINT);
2530  ahd_iocell_first_selection(ahd);
2531  ahd_unpause(ahd);
2532  } else if ((status0 & (SELDI|SELDO)) != 0) {
2533 
2534  ahd_iocell_first_selection(ahd);
2535  ahd_unpause(ahd);
2536  } else if (status3 != 0) {
2537  printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2538  ahd_name(ahd), status3);
2539  ahd_outb(ahd, CLRSINT3, status3);
2540  } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2541 
2542  /* Make sure the sequencer is in a safe location. */
2543  ahd_clear_critical_section(ahd);
2544 
2545  ahd_handle_lqiphase_error(ahd, lqistat1);
2546  } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2547  /*
2548  * This status can be delayed during some
2549  * streaming operations. The SCSIPHASE
2550  * handler has already dealt with this case
2551  * so just clear the error.
2552  */
2553  ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2554  } else if ((status & BUSFREE) != 0
2555  || (lqistat1 & LQOBUSFREE) != 0) {
2556  u_int lqostat1;
2557  int restart;
2558  int clear_fifo;
2559  int packetized;
2560  u_int mode;
2561 
2562  /*
2563  * Clear our selection hardware as soon as possible.
2564  * We may have an entry in the waiting Q for this target,
2565  * that is affected by this busfree and we don't want to
2566  * go about selecting the target while we handle the event.
2567  */
2568  ahd_outb(ahd, SCSISEQ0, 0);
2569 
2570  /* Make sure the sequencer is in a safe location. */
2571  ahd_clear_critical_section(ahd);
2572 
2573  /*
2574  * Determine what we were up to at the time of
2575  * the busfree.
2576  */
2577  mode = AHD_MODE_SCSI;
2578  busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2579  lqostat1 = ahd_inb(ahd, LQOSTAT1);
2580  switch (busfreetime) {
2581  case BUSFREE_DFF0:
2582  case BUSFREE_DFF1:
2583  {
2584  mode = busfreetime == BUSFREE_DFF0
2586  ahd_set_modes(ahd, mode, mode);
2587  scbid = ahd_get_scbptr(ahd);
2588  scb = ahd_lookup_scb(ahd, scbid);
2589  if (scb == NULL) {
2590  printk("%s: Invalid SCB %d in DFF%d "
2591  "during unexpected busfree\n",
2592  ahd_name(ahd), scbid, mode);
2593  packetized = 0;
2594  } else
2595  packetized = (scb->flags & SCB_PACKETIZED) != 0;
2596  clear_fifo = 1;
2597  break;
2598  }
2599  case BUSFREE_LQO:
2600  clear_fifo = 0;
2601  packetized = 1;
2602  break;
2603  default:
2604  clear_fifo = 0;
2605  packetized = (lqostat1 & LQOBUSFREE) != 0;
2606  if (!packetized
2607  && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2608  && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2609  && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2610  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2611  /*
2612  * Assume packetized if we are not
2613  * on the bus in a non-packetized
2614  * capacity and any pending selection
2615  * was a packetized selection.
2616  */
2617  packetized = 1;
2618  break;
2619  }
2620 
2621 #ifdef AHD_DEBUG
2622  if ((ahd_debug & AHD_SHOW_MISC) != 0)
2623  printk("Saw Busfree. Busfreetime = 0x%x.\n",
2624  busfreetime);
2625 #endif
2626  /*
2627  * Busfrees that occur in non-packetized phases are
2628  * handled by the nonpkt_busfree handler.
2629  */
2630  if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2631  restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2632  } else {
2633  packetized = 0;
2634  restart = ahd_handle_nonpkt_busfree(ahd);
2635  }
2636  /*
2637  * Clear the busfree interrupt status. The setting of
2638  * the interrupt is a pulse, so in a perfect world, we
2639  * would not need to muck with the ENBUSFREE logic. This
2640  * would ensure that if the bus moves on to another
2641  * connection, busfree protection is still in force. If
2642  * BUSFREEREV is broken, however, we must manually clear
2643  * the ENBUSFREE if the busfree occurred during a non-pack
2644  * connection so that we don't get false positives during
2645  * future, packetized, connections.
2646  */
2647  ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2648  if (packetized == 0
2649  && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2650  ahd_outb(ahd, SIMODE1,
2651  ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2652 
2653  if (clear_fifo)
2654  ahd_clear_fifo(ahd, mode);
2655 
2656  ahd_clear_msg_state(ahd);
2657  ahd_outb(ahd, CLRINT, CLRSCSIINT);
2658  if (restart) {
2659  ahd_restart(ahd);
2660  } else {
2661  ahd_unpause(ahd);
2662  }
2663  } else {
2664  printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2665  ahd_name(ahd), status);
2666  ahd_dump_card_state(ahd);
2667  ahd_clear_intstat(ahd);
2668  ahd_unpause(ahd);
2669  }
2670 }
2671 
2672 static void
2673 ahd_handle_transmission_error(struct ahd_softc *ahd)
2674 {
2675  struct scb *scb;
2676  u_int scbid;
2677  u_int lqistat1;
2678  u_int lqistat2;
2679  u_int msg_out;
2680  u_int curphase;
2681  u_int lastphase;
2682  u_int perrdiag;
2683  u_int cur_col;
2684  int silent;
2685 
2686  scb = NULL;
2688  lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2689  lqistat2 = ahd_inb(ahd, LQISTAT2);
2690  if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2691  && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2692  u_int lqistate;
2693 
2695  lqistate = ahd_inb(ahd, LQISTATE);
2696  if ((lqistate >= 0x1E && lqistate <= 0x24)
2697  || (lqistate == 0x29)) {
2698 #ifdef AHD_DEBUG
2699  if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2700  printk("%s: NLQCRC found via LQISTATE\n",
2701  ahd_name(ahd));
2702  }
2703 #endif
2704  lqistat1 |= LQICRCI_NLQ;
2705  }
2707  }
2708 
2709  ahd_outb(ahd, CLRLQIINT1, lqistat1);
2710  lastphase = ahd_inb(ahd, LASTPHASE);
2711  curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2712  perrdiag = ahd_inb(ahd, PERRDIAG);
2713  msg_out = MSG_INITIATOR_DET_ERR;
2714  ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2715 
2716  /*
2717  * Try to find the SCB associated with this error.
2718  */
2719  silent = FALSE;
2720  if (lqistat1 == 0
2721  || (lqistat1 & LQICRCI_NLQ) != 0) {
2722  if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2723  ahd_set_active_fifo(ahd);
2724  scbid = ahd_get_scbptr(ahd);
2725  scb = ahd_lookup_scb(ahd, scbid);
2726  if (scb != NULL && SCB_IS_SILENT(scb))
2727  silent = TRUE;
2728  }
2729 
2730  cur_col = 0;
2731  if (silent == FALSE) {
2732  printk("%s: Transmission error detected\n", ahd_name(ahd));
2733  ahd_lqistat1_print(lqistat1, &cur_col, 50);
2734  ahd_lastphase_print(lastphase, &cur_col, 50);
2735  ahd_scsisigi_print(curphase, &cur_col, 50);
2736  ahd_perrdiag_print(perrdiag, &cur_col, 50);
2737  printk("\n");
2738  ahd_dump_card_state(ahd);
2739  }
2740 
2741  if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2742  if (silent == FALSE) {
2743  printk("%s: Gross protocol error during incoming "
2744  "packet. lqistat1 == 0x%x. Resetting bus.\n",
2745  ahd_name(ahd), lqistat1);
2746  }
2747  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2748  return;
2749  } else if ((lqistat1 & LQICRCI_LQ) != 0) {
2750  /*
2751  * A CRC error has been detected on an incoming LQ.
2752  * The bus is currently hung on the last ACK.
2753  * Hit LQIRETRY to release the last ack, and
2754  * wait for the sequencer to determine that ATNO
2755  * is asserted while in message out to take us
2756  * to our host message loop. No NONPACKREQ or
2757  * LQIPHASE type errors will occur in this
2758  * scenario. After this first LQIRETRY, the LQI
2759  * manager will be in ISELO where it will
2760  * happily sit until another packet phase begins.
2761  * Unexpected bus free detection is enabled
2762  * through any phases that occur after we release
2763  * this last ack until the LQI manager sees a
2764  * packet phase. This implies we may have to
2765  * ignore a perfectly valid "unexected busfree"
2766  * after our "initiator detected error" message is
2767  * sent. A busfree is the expected response after
2768  * we tell the target that it's L_Q was corrupted.
2769  * (SPI4R09 10.7.3.3.3)
2770  */
2771  ahd_outb(ahd, LQCTL2, LQIRETRY);
2772  printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2773  } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2774  /*
2775  * We detected a CRC error in a NON-LQ packet.
2776  * The hardware has varying behavior in this situation
2777  * depending on whether this packet was part of a
2778  * stream or not.
2779  *
2780  * PKT by PKT mode:
2781  * The hardware has already acked the complete packet.
2782  * If the target honors our outstanding ATN condition,
2783  * we should be (or soon will be) in MSGOUT phase.
2784  * This will trigger the LQIPHASE_LQ status bit as the
2785  * hardware was expecting another LQ. Unexpected
2786  * busfree detection is enabled. Once LQIPHASE_LQ is
2787  * true (first entry into host message loop is much
2788  * the same), we must clear LQIPHASE_LQ and hit
2789  * LQIRETRY so the hardware is ready to handle
2790  * a future LQ. NONPACKREQ will not be asserted again
2791  * once we hit LQIRETRY until another packet is
2792  * processed. The target may either go busfree
2793  * or start another packet in response to our message.
2794  *
2795  * Read Streaming P0 asserted:
2796  * If we raise ATN and the target completes the entire
2797  * stream (P0 asserted during the last packet), the
2798  * hardware will ack all data and return to the ISTART
2799  * state. When the target reponds to our ATN condition,
2800  * LQIPHASE_LQ will be asserted. We should respond to
2801  * this with an LQIRETRY to prepare for any future
2802  * packets. NONPACKREQ will not be asserted again
2803  * once we hit LQIRETRY until another packet is
2804  * processed. The target may either go busfree or
2805  * start another packet in response to our message.
2806  * Busfree detection is enabled.
2807  *
2808  * Read Streaming P0 not asserted:
2809  * If we raise ATN and the target transitions to
2810  * MSGOUT in or after a packet where P0 is not
2811  * asserted, the hardware will assert LQIPHASE_NLQ.
2812  * We should respond to the LQIPHASE_NLQ with an
2813  * LQIRETRY. Should the target stay in a non-pkt
2814  * phase after we send our message, the hardware
2815  * will assert LQIPHASE_LQ. Recovery is then just as
2816  * listed above for the read streaming with P0 asserted.
2817  * Busfree detection is enabled.
2818  */
2819  if (silent == FALSE)
2820  printk("LQICRC_NLQ\n");
2821  if (scb == NULL) {
2822  printk("%s: No SCB valid for LQICRC_NLQ. "
2823  "Resetting bus\n", ahd_name(ahd));
2824  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2825  return;
2826  }
2827  } else if ((lqistat1 & LQIBADLQI) != 0) {
2828  printk("Need to handle BADLQI!\n");
2829  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2830  return;
2831  } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2832  if ((curphase & ~P_DATAIN_DT) != 0) {
2833  /* Ack the byte. So we can continue. */
2834  if (silent == FALSE)
2835  printk("Acking %s to clear perror\n",
2836  ahd_lookup_phase_entry(curphase)->phasemsg);
2837  ahd_inb(ahd, SCSIDAT);
2838  }
2839 
2840  if (curphase == P_MESGIN)
2841  msg_out = MSG_PARITY_ERROR;
2842  }
2843 
2844  /*
2845  * We've set the hardware to assert ATN if we
2846  * get a parity error on "in" phases, so all we
2847  * need to do is stuff the message buffer with
2848  * the appropriate message. "In" phases have set
2849  * mesg_out to something other than MSG_NOP.
2850  */
2851  ahd->send_msg_perror = msg_out;
2852  if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2853  scb->flags |= SCB_TRANSMISSION_ERROR;
2854  ahd_outb(ahd, MSG_OUT, HOST_MSG);
2855  ahd_outb(ahd, CLRINT, CLRSCSIINT);
2856  ahd_unpause(ahd);
2857 }
2858 
2859 static void
2860 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2861 {
2862  /*
2863  * Clear the sources of the interrupts.
2864  */
2866  ahd_outb(ahd, CLRLQIINT1, lqistat1);
2867 
2868  /*
2869  * If the "illegal" phase changes were in response
2870  * to our ATN to flag a CRC error, AND we ended up
2871  * on packet boundaries, clear the error, restart the
2872  * LQI manager as appropriate, and go on our merry
2873  * way toward sending the message. Otherwise, reset
2874  * the bus to clear the error.
2875  */
2876  ahd_set_active_fifo(ahd);
2877  if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2878  && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2879  if ((lqistat1 & LQIPHASE_LQ) != 0) {
2880  printk("LQIRETRY for LQIPHASE_LQ\n");
2881  ahd_outb(ahd, LQCTL2, LQIRETRY);
2882  } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2883  printk("LQIRETRY for LQIPHASE_NLQ\n");
2884  ahd_outb(ahd, LQCTL2, LQIRETRY);
2885  } else
2886  panic("ahd_handle_lqiphase_error: No phase errors\n");
2887  ahd_dump_card_state(ahd);
2888  ahd_outb(ahd, CLRINT, CLRSCSIINT);
2889  ahd_unpause(ahd);
2890  } else {
2891  printk("Resetting Channel for LQI Phase error\n");
2892  ahd_dump_card_state(ahd);
2893  ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2894  }
2895 }
2896 
2897 /*
2898  * Packetized unexpected or expected busfree.
2899  * Entered in mode based on busfreetime.
2900  */
2901 static int
2902 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2903 {
2904  u_int lqostat1;
2905 
2908  lqostat1 = ahd_inb(ahd, LQOSTAT1);
2909  if ((lqostat1 & LQOBUSFREE) != 0) {
2910  struct scb *scb;
2911  u_int scbid;
2912  u_int saved_scbptr;
2913  u_int waiting_h;
2914  u_int waiting_t;
2915  u_int next;
2916 
2917  /*
2918  * The LQO manager detected an unexpected busfree
2919  * either:
2920  *
2921  * 1) During an outgoing LQ.
2922  * 2) After an outgoing LQ but before the first
2923  * REQ of the command packet.
2924  * 3) During an outgoing command packet.
2925  *
2926  * In all cases, CURRSCB is pointing to the
2927  * SCB that encountered the failure. Clean
2928  * up the queue, clear SELDO and LQOBUSFREE,
2929  * and allow the sequencer to restart the select
2930  * out at its lesure.
2931  */
2933  scbid = ahd_inw(ahd, CURRSCB);
2934  scb = ahd_lookup_scb(ahd, scbid);
2935  if (scb == NULL)
2936  panic("SCB not valid during LQOBUSFREE");
2937  /*
2938  * Clear the status.
2939  */
2940  ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2941  if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2942  ahd_outb(ahd, CLRLQOINT1, 0);
2943  ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2944  ahd_flush_device_writes(ahd);
2945  ahd_outb(ahd, CLRSINT0, CLRSELDO);
2946 
2947  /*
2948  * Return the LQO manager to its idle loop. It will
2949  * not do this automatically if the busfree occurs
2950  * after the first REQ of either the LQ or command
2951  * packet or between the LQ and command packet.
2952  */
2953  ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2954 
2955  /*
2956  * Update the waiting for selection queue so
2957  * we restart on the correct SCB.
2958  */
2959  waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2960  saved_scbptr = ahd_get_scbptr(ahd);
2961  if (waiting_h != scbid) {
2962 
2963  ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2964  waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2965  if (waiting_t == waiting_h) {
2966  ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2967  next = SCB_LIST_NULL;
2968  } else {
2969  ahd_set_scbptr(ahd, waiting_h);
2970  next = ahd_inw_scbram(ahd, SCB_NEXT2);
2971  }
2972  ahd_set_scbptr(ahd, scbid);
2973  ahd_outw(ahd, SCB_NEXT2, next);
2974  }
2975  ahd_set_scbptr(ahd, saved_scbptr);
2977  if (SCB_IS_SILENT(scb) == FALSE) {
2978  ahd_print_path(ahd, scb);
2979  printk("Probable outgoing LQ CRC error. "
2980  "Retrying command\n");
2981  }
2982  scb->crc_retry_count++;
2983  } else {
2984  ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2985  ahd_freeze_scb(scb);
2986  ahd_freeze_devq(ahd, scb);
2987  }
2988  /* Return unpausing the sequencer. */
2989  return (0);
2990  } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2991  /*
2992  * Ignore what are really parity errors that
2993  * occur on the last REQ of a free running
2994  * clock prior to going busfree. Some drives
2995  * do not properly active negate just before
2996  * going busfree resulting in a parity glitch.
2997  */
2999 #ifdef AHD_DEBUG
3000  if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
3001  printk("%s: Parity on last REQ detected "
3002  "during busfree phase.\n",
3003  ahd_name(ahd));
3004 #endif
3005  /* Return unpausing the sequencer. */
3006  return (0);
3007  }
3008  if (ahd->src_mode != AHD_MODE_SCSI) {
3009  u_int scbid;
3010  struct scb *scb;
3011 
3012  scbid = ahd_get_scbptr(ahd);
3013  scb = ahd_lookup_scb(ahd, scbid);
3014  ahd_print_path(ahd, scb);
3015  printk("Unexpected PKT busfree condition\n");
3016  ahd_dump_card_state(ahd);
3017  ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3018  SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3020 
3021  /* Return restarting the sequencer. */
3022  return (1);
3023  }
3024  printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3025  ahd_dump_card_state(ahd);
3026  /* Restart the sequencer. */
3027  return (1);
3028 }
3029 
3030 /*
3031  * Non-packetized unexpected or expected busfree.
3032  */
3033 static int
3034 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3035 {
3036  struct ahd_devinfo devinfo;
3037  struct scb *scb;
3038  u_int lastphase;
3039  u_int saved_scsiid;
3040  u_int saved_lun;
3041  u_int target;
3042  u_int initiator_role_id;
3043  u_int scbid;
3044  u_int ppr_busfree;
3045  int printerror;
3046 
3047  /*
3048  * Look at what phase we were last in. If its message out,
3049  * chances are pretty good that the busfree was in response
3050  * to one of our abort requests.
3051  */
3052  lastphase = ahd_inb(ahd, LASTPHASE);
3053  saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3054  saved_lun = ahd_inb(ahd, SAVED_LUN);
3055  target = SCSIID_TARGET(ahd, saved_scsiid);
3056  initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3057  ahd_compile_devinfo(&devinfo, initiator_role_id,
3058  target, saved_lun, 'A', ROLE_INITIATOR);
3059  printerror = 1;
3060 
3061  scbid = ahd_get_scbptr(ahd);
3062  scb = ahd_lookup_scb(ahd, scbid);
3063  if (scb != NULL
3064  && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3065  scb = NULL;
3066 
3067  ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3068  if (lastphase == P_MESGOUT) {
3069  u_int tag;
3070 
3071  tag = SCB_LIST_NULL;
3072  if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3073  || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3074  int found;
3075  int sent_msg;
3076 
3077  if (scb == NULL) {
3078  ahd_print_devinfo(ahd, &devinfo);
3079  printk("Abort for unidentified "
3080  "connection completed.\n");
3081  /* restart the sequencer. */
3082  return (1);
3083  }
3084  sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3085  ahd_print_path(ahd, scb);
3086  printk("SCB %d - Abort%s Completed.\n",
3087  SCB_GET_TAG(scb),
3088  sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3089 
3090  if (sent_msg == MSG_ABORT_TAG)
3091  tag = SCB_GET_TAG(scb);
3092 
3093  if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3094  /*
3095  * This abort is in response to an
3096  * unexpected switch to command phase
3097  * for a packetized connection. Since
3098  * the identify message was never sent,
3099  * "saved lun" is 0. We really want to
3100  * abort only the SCB that encountered
3101  * this error, which could have a different
3102  * lun. The SCB will be retried so the OS
3103  * will see the UA after renegotiating to
3104  * packetized.
3105  */
3106  tag = SCB_GET_TAG(scb);
3107  saved_lun = scb->hscb->lun;
3108  }
3109  found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3110  tag, ROLE_INITIATOR,
3111  CAM_REQ_ABORTED);
3112  printk("found == 0x%x\n", found);
3113  printerror = 0;
3114  } else if (ahd_sent_msg(ahd, AHDMSG_1B,
3115  MSG_BUS_DEV_RESET, TRUE)) {
3116 #ifdef __FreeBSD__
3117  /*
3118  * Don't mark the user's request for this BDR
3119  * as completing with CAM_BDR_SENT. CAM3
3120  * specifies CAM_REQ_CMP.
3121  */
3122  if (scb != NULL
3123  && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
3124  && ahd_match_scb(ahd, scb, target, 'A',
3126  ROLE_INITIATOR))
3127  ahd_set_transaction_status(scb, CAM_REQ_CMP);
3128 #endif
3129  ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3130  CAM_BDR_SENT, "Bus Device Reset",
3131  /*verbose_level*/0);
3132  printerror = 0;
3133  } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3134  && ppr_busfree == 0) {
3135  struct ahd_initiator_tinfo *tinfo;
3136  struct ahd_tmode_tstate *tstate;
3137 
3138  /*
3139  * PPR Rejected.
3140  *
3141  * If the previous negotiation was packetized,
3142  * this could be because the device has been
3143  * reset without our knowledge. Force our
3144  * current negotiation to async and retry the
3145  * negotiation. Otherwise retry the command
3146  * with non-ppr negotiation.
3147  */
3148 #ifdef AHD_DEBUG
3149  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3150  printk("PPR negotiation rejected busfree.\n");
3151 #endif
3152  tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3153  devinfo.our_scsiid,
3154  devinfo.target, &tstate);
3155  if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3156  ahd_set_width(ahd, &devinfo,
3158  AHD_TRANS_CUR,
3159  /*paused*/TRUE);
3160  ahd_set_syncrate(ahd, &devinfo,
3161  /*period*/0, /*offset*/0,
3162  /*ppr_options*/0,
3163  AHD_TRANS_CUR,
3164  /*paused*/TRUE);
3165  /*
3166  * The expect PPR busfree handler below
3167  * will effect the retry and necessary
3168  * abort.
3169  */
3170  } else {
3171  tinfo->curr.transport_version = 2;
3172  tinfo->goal.transport_version = 2;
3173  tinfo->goal.ppr_options = 0;
3174  if (scb != NULL) {
3175  /*
3176  * Remove any SCBs in the waiting
3177  * for selection queue that may
3178  * also be for this target so that
3179  * command ordering is preserved.
3180  */
3181  ahd_freeze_devq(ahd, scb);
3182  ahd_qinfifo_requeue_tail(ahd, scb);
3183  }
3184  printerror = 0;
3185  }
3186  } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3187  && ppr_busfree == 0) {
3188  /*
3189  * Negotiation Rejected. Go-narrow and
3190  * retry command.
3191  */
3192 #ifdef AHD_DEBUG
3193  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3194  printk("WDTR negotiation rejected busfree.\n");
3195 #endif
3196  ahd_set_width(ahd, &devinfo,
3199  /*paused*/TRUE);
3200  if (scb != NULL) {
3201  /*
3202  * Remove any SCBs in the waiting for
3203  * selection queue that may also be for
3204  * this target so that command ordering
3205  * is preserved.
3206  */
3207  ahd_freeze_devq(ahd, scb);
3208  ahd_qinfifo_requeue_tail(ahd, scb);
3209  }
3210  printerror = 0;
3211  } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3212  && ppr_busfree == 0) {
3213  /*
3214  * Negotiation Rejected. Go-async and
3215  * retry command.
3216  */
3217 #ifdef AHD_DEBUG
3218  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3219  printk("SDTR negotiation rejected busfree.\n");
3220 #endif
3221  ahd_set_syncrate(ahd, &devinfo,
3222  /*period*/0, /*offset*/0,
3223  /*ppr_options*/0,
3225  /*paused*/TRUE);
3226  if (scb != NULL) {
3227  /*
3228  * Remove any SCBs in the waiting for
3229  * selection queue that may also be for
3230  * this target so that command ordering
3231  * is preserved.
3232  */
3233  ahd_freeze_devq(ahd, scb);
3234  ahd_qinfifo_requeue_tail(ahd, scb);
3235  }
3236  printerror = 0;
3237  } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3238  && ahd_sent_msg(ahd, AHDMSG_1B,
3240 
3241 #ifdef AHD_DEBUG
3242  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3243  printk("Expected IDE Busfree\n");
3244 #endif
3245  printerror = 0;
3246  } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3247  && ahd_sent_msg(ahd, AHDMSG_1B,
3249 
3250 #ifdef AHD_DEBUG
3251  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3252  printk("Expected QAS Reject Busfree\n");
3253 #endif
3254  printerror = 0;
3255  }
3256  }
3257 
3258  /*
3259  * The busfree required flag is honored at the end of
3260  * the message phases. We check it last in case we
3261  * had to send some other message that caused a busfree.
3262  */
3263  if (scb != NULL && printerror != 0
3264  && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3265  && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3266 
3267  ahd_freeze_devq(ahd, scb);
3268  ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3269  ahd_freeze_scb(scb);
3270  if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3271  ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3272  SCB_GET_CHANNEL(ahd, scb),
3273  SCB_GET_LUN(scb), SCB_LIST_NULL,
3275  } else {
3276 #ifdef AHD_DEBUG
3277  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3278  printk("PPR Negotiation Busfree.\n");
3279 #endif
3280  ahd_done(ahd, scb);
3281  }
3282  printerror = 0;
3283  }
3284  if (printerror != 0) {
3285  int aborted;
3286 
3287  aborted = 0;
3288  if (scb != NULL) {
3289  u_int tag;
3290 
3291  if ((scb->hscb->control & TAG_ENB) != 0)
3292  tag = SCB_GET_TAG(scb);
3293  else
3294  tag = SCB_LIST_NULL;
3295  ahd_print_path(ahd, scb);
3296  aborted = ahd_abort_scbs(ahd, target, 'A',
3297  SCB_GET_LUN(scb), tag,
3300  } else {
3301  /*
3302  * We had not fully identified this connection,
3303  * so we cannot abort anything.
3304  */
3305  printk("%s: ", ahd_name(ahd));
3306  }
3307  printk("Unexpected busfree %s, %d SCBs aborted, "
3308  "PRGMCNT == 0x%x\n",
3309  ahd_lookup_phase_entry(lastphase)->phasemsg,
3310  aborted,
3311  ahd_inw(ahd, PRGMCNT));
3312  ahd_dump_card_state(ahd);
3313  if (lastphase != P_BUSFREE)
3314  ahd_force_renegotiation(ahd, &devinfo);
3315  }
3316  /* Always restart the sequencer. */
3317  return (1);
3318 }
3319 
3320 static void
3321 ahd_handle_proto_violation(struct ahd_softc *ahd)
3322 {
3323  struct ahd_devinfo devinfo;
3324  struct scb *scb;
3325  u_int scbid;
3326  u_int seq_flags;
3327  u_int curphase;
3328  u_int lastphase;
3329  int found;
3330 
3331  ahd_fetch_devinfo(ahd, &devinfo);
3332  scbid = ahd_get_scbptr(ahd);
3333  scb = ahd_lookup_scb(ahd, scbid);
3334  seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3335  curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3336  lastphase = ahd_inb(ahd, LASTPHASE);
3337  if ((seq_flags & NOT_IDENTIFIED) != 0) {
3338 
3339  /*
3340  * The reconnecting target either did not send an
3341  * identify message, or did, but we didn't find an SCB
3342  * to match.
3343  */
3344  ahd_print_devinfo(ahd, &devinfo);
3345  printk("Target did not send an IDENTIFY message. "
3346  "LASTPHASE = 0x%x.\n", lastphase);
3347  scb = NULL;
3348  } else if (scb == NULL) {
3349  /*
3350  * We don't seem to have an SCB active for this
3351  * transaction. Print an error and reset the bus.
3352  */
3353  ahd_print_devinfo(ahd, &devinfo);
3354  printk("No SCB found during protocol violation\n");
3355  goto proto_violation_reset;
3356  } else {
3357  ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3358  if ((seq_flags & NO_CDB_SENT) != 0) {
3359  ahd_print_path(ahd, scb);
3360  printk("No or incomplete CDB sent to device.\n");
3361  } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3362  & STATUS_RCVD) == 0) {
3363  /*
3364  * The target never bothered to provide status to
3365  * us prior to completing the command. Since we don't
3366  * know the disposition of this command, we must attempt
3367  * to abort it. Assert ATN and prepare to send an abort
3368  * message.
3369  */
3370  ahd_print_path(ahd, scb);
3371  printk("Completed command without status.\n");
3372  } else {
3373  ahd_print_path(ahd, scb);
3374  printk("Unknown protocol violation.\n");
3375  ahd_dump_card_state(ahd);
3376  }
3377  }
3378  if ((lastphase & ~P_DATAIN_DT) == 0
3379  || lastphase == P_COMMAND) {
3380 proto_violation_reset:
3381  /*
3382  * Target either went directly to data
3383  * phase or didn't respond to our ATN.
3384  * The only safe thing to do is to blow
3385  * it away with a bus reset.
3386  */
3387  found = ahd_reset_channel(ahd, 'A', TRUE);
3388  printk("%s: Issued Channel %c Bus Reset. "
3389  "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3390  } else {
3391  /*
3392  * Leave the selection hardware off in case
3393  * this abort attempt will affect yet to
3394  * be sent commands.
3395  */
3396  ahd_outb(ahd, SCSISEQ0,
3397  ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3398  ahd_assert_atn(ahd);
3399  ahd_outb(ahd, MSG_OUT, HOST_MSG);
3400  if (scb == NULL) {
3401  ahd_print_devinfo(ahd, &devinfo);
3402  ahd->msgout_buf[0] = MSG_ABORT_TASK;
3403  ahd->msgout_len = 1;
3404  ahd->msgout_index = 0;
3406  } else {
3407  ahd_print_path(ahd, scb);
3408  scb->flags |= SCB_ABORT;
3409  }
3410  printk("Protocol violation %s. Attempting to abort.\n",
3411  ahd_lookup_phase_entry(curphase)->phasemsg);
3412  }
3413 }
3414 
3415 /*
3416  * Force renegotiation to occur the next time we initiate
3417  * a command to the current device.
3418  */
3419 static void
3420 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3421 {
3422  struct ahd_initiator_tinfo *targ_info;
3423  struct ahd_tmode_tstate *tstate;
3424 
3425 #ifdef AHD_DEBUG
3426  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3427  ahd_print_devinfo(ahd, devinfo);
3428  printk("Forcing renegotiation\n");
3429  }
3430 #endif
3431  targ_info = ahd_fetch_transinfo(ahd,
3432  devinfo->channel,
3433  devinfo->our_scsiid,
3434  devinfo->target,
3435  &tstate);
3436  ahd_update_neg_request(ahd, devinfo, tstate,
3437  targ_info, AHD_NEG_IF_NON_ASYNC);
3438 }
3439 
3440 #define AHD_MAX_STEPS 2000
3441 static void
3442 ahd_clear_critical_section(struct ahd_softc *ahd)
3443 {
3444  ahd_mode_state saved_modes;
3445  int stepping;
3446  int steps;
3447  int first_instr;
3448  u_int simode0;
3449  u_int simode1;
3450  u_int simode3;
3451  u_int lqimode0;
3452  u_int lqimode1;
3453  u_int lqomode0;
3454  u_int lqomode1;
3455 
3456  if (ahd->num_critical_sections == 0)
3457  return;
3458 
3459  stepping = FALSE;
3460  steps = 0;
3461  first_instr = 0;
3462  simode0 = 0;
3463  simode1 = 0;
3464  simode3 = 0;
3465  lqimode0 = 0;
3466  lqimode1 = 0;
3467  lqomode0 = 0;
3468  lqomode1 = 0;
3469  saved_modes = ahd_save_modes(ahd);
3470  for (;;) {
3471  struct cs *cs;
3472  u_int seqaddr;
3473  u_int i;
3474 
3476  seqaddr = ahd_inw(ahd, CURADDR);
3477 
3478  cs = ahd->critical_sections;
3479  for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3480 
3481  if (cs->begin < seqaddr && cs->end >= seqaddr)
3482  break;
3483  }
3484 
3485  if (i == ahd->num_critical_sections)
3486  break;
3487 
3488  if (steps > AHD_MAX_STEPS) {
3489  printk("%s: Infinite loop in critical section\n"
3490  "%s: First Instruction 0x%x now 0x%x\n",
3491  ahd_name(ahd), ahd_name(ahd), first_instr,
3492  seqaddr);
3493  ahd_dump_card_state(ahd);
3494  panic("critical section loop");
3495  }
3496 
3497  steps++;
3498 #ifdef AHD_DEBUG
3499  if ((ahd_debug & AHD_SHOW_MISC) != 0)
3500  printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3501  seqaddr);
3502 #endif
3503  if (stepping == FALSE) {
3504 
3505  first_instr = seqaddr;
3507  simode0 = ahd_inb(ahd, SIMODE0);
3508  simode3 = ahd_inb(ahd, SIMODE3);
3509  lqimode0 = ahd_inb(ahd, LQIMODE0);
3510  lqimode1 = ahd_inb(ahd, LQIMODE1);
3511  lqomode0 = ahd_inb(ahd, LQOMODE0);
3512  lqomode1 = ahd_inb(ahd, LQOMODE1);
3513  ahd_outb(ahd, SIMODE0, 0);
3514  ahd_outb(ahd, SIMODE3, 0);
3515  ahd_outb(ahd, LQIMODE0, 0);
3516  ahd_outb(ahd, LQIMODE1, 0);
3517  ahd_outb(ahd, LQOMODE0, 0);
3518  ahd_outb(ahd, LQOMODE1, 0);
3520  simode1 = ahd_inb(ahd, SIMODE1);
3521  /*
3522  * We don't clear ENBUSFREE. Unfortunately
3523  * we cannot re-enable busfree detection within
3524  * the current connection, so we must leave it
3525  * on while single stepping.
3526  */
3527  ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3528  ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3529  stepping = TRUE;
3530  }
3531  ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3532  ahd_outb(ahd, CLRINT, CLRSCSIINT);
3533  ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3534  ahd_outb(ahd, HCNTRL, ahd->unpause);
3535  while (!ahd_is_paused(ahd))
3536  ahd_delay(200);
3537  ahd_update_modes(ahd);
3538  }
3539  if (stepping) {
3541  ahd_outb(ahd, SIMODE0, simode0);
3542  ahd_outb(ahd, SIMODE3, simode3);
3543  ahd_outb(ahd, LQIMODE0, lqimode0);
3544  ahd_outb(ahd, LQIMODE1, lqimode1);
3545  ahd_outb(ahd, LQOMODE0, lqomode0);
3546  ahd_outb(ahd, LQOMODE1, lqomode1);
3548  ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3549  ahd_outb(ahd, SIMODE1, simode1);
3550  /*
3551  * SCSIINT seems to glitch occasionally when
3552  * the interrupt masks are restored. Clear SCSIINT
3553  * one more time so that only persistent errors
3554  * are seen as a real interrupt.
3555  */
3556  ahd_outb(ahd, CLRINT, CLRSCSIINT);
3557  }
3558  ahd_restore_modes(ahd, saved_modes);
3559 }
3560 
3561 /*
3562  * Clear any pending interrupt status.
3563  */
3564 static void
3565 ahd_clear_intstat(struct ahd_softc *ahd)
3566 {
3569  /* Clear any interrupt conditions this may have caused */
3570  ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3571  |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3572  ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3573  |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3574  |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3575  ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3576  |CLRLQOATNPKT|CLRLQOTCRC);
3577  ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3578  |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3579  if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3580  ahd_outb(ahd, CLRLQOINT0, 0);
3581  ahd_outb(ahd, CLRLQOINT1, 0);
3582  }
3583  ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3587  |CLRIOERR|CLROVERRUN);
3588  ahd_outb(ahd, CLRINT, CLRSCSIINT);
3589 }
3590 
3591 /**************************** Debugging Routines ******************************/
3592 #ifdef AHD_DEBUG
3593 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3594 #endif
3595 
3596 #if 0
3597 void
3598 ahd_print_scb(struct scb *scb)
3599 {
3600  struct hardware_scb *hscb;
3601  int i;
3602 
3603  hscb = scb->hscb;
3604  printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3605  (void *)scb,
3606  hscb->control,
3607  hscb->scsiid,
3608  hscb->lun,
3609  hscb->cdb_len);
3610  printk("Shared Data: ");
3611  for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3612  printk("%#02x", hscb->shared_data.idata.cdb[i]);
3613  printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3614  (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3615  (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3616  ahd_le32toh(hscb->datacnt),
3617  ahd_le32toh(hscb->sgptr),
3618  SCB_GET_TAG(scb));
3619  ahd_dump_sglist(scb);
3620 }
3621 #endif /* 0 */
3622 
3623 /************************* Transfer Negotiation *******************************/
3624 /*
3625  * Allocate per target mode instance (ID we respond to as a target)
3626  * transfer negotiation data structures.
3627  */
3628 static struct ahd_tmode_tstate *
3629 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3630 {
3631  struct ahd_tmode_tstate *master_tstate;
3632  struct ahd_tmode_tstate *tstate;
3633  int i;
3634 
3635  master_tstate = ahd->enabled_targets[ahd->our_id];
3636  if (ahd->enabled_targets[scsi_id] != NULL
3637  && ahd->enabled_targets[scsi_id] != master_tstate)
3638  panic("%s: ahd_alloc_tstate - Target already allocated",
3639  ahd_name(ahd));
3640  tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3641  if (tstate == NULL)
3642  return (NULL);
3643 
3644  /*
3645  * If we have allocated a master tstate, copy user settings from
3646  * the master tstate (taken from SRAM or the EEPROM) for this
3647  * channel, but reset our current and goal settings to async/narrow
3648  * until an initiator talks to us.
3649  */
3650  if (master_tstate != NULL) {
3651  memcpy(tstate, master_tstate, sizeof(*tstate));
3652  memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3653  for (i = 0; i < 16; i++) {
3654  memset(&tstate->transinfo[i].curr, 0,
3655  sizeof(tstate->transinfo[i].curr));
3656  memset(&tstate->transinfo[i].goal, 0,
3657  sizeof(tstate->transinfo[i].goal));
3658  }
3659  } else
3660  memset(tstate, 0, sizeof(*tstate));
3661  ahd->enabled_targets[scsi_id] = tstate;
3662  return (tstate);
3663 }
3664 
3665 #ifdef AHD_TARGET_MODE
3666 /*
3667  * Free per target mode instance (ID we respond to as a target)
3668  * transfer negotiation data structures.
3669  */
3670 static void
3671 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3672 {
3673  struct ahd_tmode_tstate *tstate;
3674 
3675  /*
3676  * Don't clean up our "master" tstate.
3677  * It has our default user settings.
3678  */
3679  if (scsi_id == ahd->our_id
3680  && force == FALSE)
3681  return;
3682 
3683  tstate = ahd->enabled_targets[scsi_id];
3684  if (tstate != NULL)
3685  kfree(tstate);
3686  ahd->enabled_targets[scsi_id] = NULL;
3687 }
3688 #endif
3689 
3690 /*
3691  * Called when we have an active connection to a target on the bus,
3692  * this function finds the nearest period to the input period limited
3693  * by the capabilities of the bus connectivity of and sync settings for
3694  * the target.
3695  */
3696 static void
3697 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3698  struct ahd_initiator_tinfo *tinfo,
3699  u_int *period, u_int *ppr_options, role_t role)
3700 {
3701  struct ahd_transinfo *transinfo;
3702  u_int maxsync;
3703 
3704  if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3705  && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3706  maxsync = AHD_SYNCRATE_PACED;
3707  } else {
3708  maxsync = AHD_SYNCRATE_ULTRA;
3709  /* Can't do DT related options on an SE bus */
3710  *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3711  }
3712  /*
3713  * Never allow a value higher than our current goal
3714  * period otherwise we may allow a target initiated
3715  * negotiation to go above the limit as set by the
3716  * user. In the case of an initiator initiated
3717  * sync negotiation, we limit based on the user
3718  * setting. This allows the system to still accept
3719  * incoming negotiations even if target initiated
3720  * negotiation is not performed.
3721  */
3722  if (role == ROLE_TARGET)
3723  transinfo = &tinfo->user;
3724  else
3725  transinfo = &tinfo->goal;
3726  *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3727  if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3728  maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3729  *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3730  }
3731  if (transinfo->period == 0) {
3732  *period = 0;
3733  *ppr_options = 0;
3734  } else {
3735  *period = max(*period, (u_int)transinfo->period);
3736  ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3737  }
3738 }
3739 
3740 /*
3741  * Look up the valid period to SCSIRATE conversion in our table.
3742  * Return the period and offset that should be sent to the target
3743  * if this was the beginning of an SDTR.
3744  */
3745 void
3746 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3747  u_int *ppr_options, u_int maxsync)
3748 {
3749  if (*period < maxsync)
3750  *period = maxsync;
3751 
3752  if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3753  && *period > AHD_SYNCRATE_MIN_DT)
3754  *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3755 
3756  if (*period > AHD_SYNCRATE_MIN)
3757  *period = 0;
3758 
3759  /* Honor PPR option conformance rules. */
3760  if (*period > AHD_SYNCRATE_PACED)
3761  *ppr_options &= ~MSG_EXT_PPR_RTI;
3762 
3763  if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3764  *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3765 
3766  if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3767  *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3768 
3769  /* Skip all PACED only entries if IU is not available */
3770  if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3771  && *period < AHD_SYNCRATE_DT)
3772  *period = AHD_SYNCRATE_DT;
3773 
3774  /* Skip all DT only entries if DT is not available */
3775  if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3776  && *period < AHD_SYNCRATE_ULTRA2)
3777  *period = AHD_SYNCRATE_ULTRA2;
3778 }
3779 
3780 /*
3781  * Truncate the given synchronous offset to a value the
3782  * current adapter type and syncrate are capable of.
3783  */
3784 static void
3785 ahd_validate_offset(struct ahd_softc *ahd,
3786  struct ahd_initiator_tinfo *tinfo,
3787  u_int period, u_int *offset, int wide,
3788  role_t role)
3789 {
3790  u_int maxoffset;
3791 
3792  /* Limit offset to what we can do */
3793  if (period == 0)
3794  maxoffset = 0;
3795  else if (period <= AHD_SYNCRATE_PACED) {
3796  if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3797  maxoffset = MAX_OFFSET_PACED_BUG;
3798  else
3799  maxoffset = MAX_OFFSET_PACED;
3800  } else
3801  maxoffset = MAX_OFFSET_NON_PACED;
3802  *offset = min(*offset, maxoffset);
3803  if (tinfo != NULL) {
3804  if (role == ROLE_TARGET)
3805  *offset = min(*offset, (u_int)tinfo->user.offset);
3806  else
3807  *offset = min(*offset, (u_int)tinfo->goal.offset);
3808  }
3809 }
3810 
3811 /*
3812  * Truncate the given transfer width parameter to a value the
3813  * current adapter type is capable of.
3814  */
3815 static void
3816 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3817  u_int *bus_width, role_t role)
3818 {
3819  switch (*bus_width) {
3820  default:
3821  if (ahd->features & AHD_WIDE) {
3822  /* Respond Wide */
3823  *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3824  break;
3825  }
3826  /* FALLTHROUGH */
3828  *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3829  break;
3830  }
3831  if (tinfo != NULL) {
3832  if (role == ROLE_TARGET)
3833  *bus_width = min((u_int)tinfo->user.width, *bus_width);
3834  else
3835  *bus_width = min((u_int)tinfo->goal.width, *bus_width);
3836  }
3837 }
3838 
3839 /*
3840  * Update the bitmask of targets for which the controller should
3841  * negotiate with at the next convenient opportunity. This currently
3842  * means the next time we send the initial identify messages for
3843  * a new transaction.
3844  */
3845 int
3846 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3847  struct ahd_tmode_tstate *tstate,
3848  struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3849 {
3850  u_int auto_negotiate_orig;
3851 
3852  auto_negotiate_orig = tstate->auto_negotiate;
3853  if (neg_type == AHD_NEG_ALWAYS) {
3854  /*
3855  * Force our "current" settings to be
3856  * unknown so that unless a bus reset
3857  * occurs the need to renegotiate is
3858  * recorded persistently.
3859  */
3860  if ((ahd->features & AHD_WIDE) != 0)
3861  tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3862  tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3863  tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3864  }
3865  if (tinfo->curr.period != tinfo->goal.period
3866  || tinfo->curr.width != tinfo->goal.width
3867  || tinfo->curr.offset != tinfo->goal.offset
3868  || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3869  || (neg_type == AHD_NEG_IF_NON_ASYNC
3870  && (tinfo->goal.offset != 0
3871  || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3872  || tinfo->goal.ppr_options != 0)))
3873  tstate->auto_negotiate |= devinfo->target_mask;
3874  else
3875  tstate->auto_negotiate &= ~devinfo->target_mask;
3876 
3877  return (auto_negotiate_orig != tstate->auto_negotiate);
3878 }
3879 
3880 /*
3881  * Update the user/goal/curr tables of synchronous negotiation
3882  * parameters as well as, in the case of a current or active update,
3883  * any data structures on the host controller. In the case of an
3884  * active update, the specified target is currently talking to us on
3885  * the bus, so the transfer parameter update must take effect
3886  * immediately.
3887  */
3888 void
3889 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3890  u_int period, u_int offset, u_int ppr_options,
3891  u_int type, int paused)
3892 {
3893  struct ahd_initiator_tinfo *tinfo;
3894  struct ahd_tmode_tstate *tstate;
3895  u_int old_period;
3896  u_int old_offset;
3897  u_int old_ppr;
3898  int active;
3899  int update_needed;
3900 
3901  active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3902  update_needed = 0;
3903 
3904  if (period == 0 || offset == 0) {
3905  period = 0;
3906  offset = 0;
3907  }
3908 
3909  tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3910  devinfo->target, &tstate);
3911 
3912  if ((type & AHD_TRANS_USER) != 0) {
3913  tinfo->user.period = period;
3914  tinfo->user.offset = offset;
3915  tinfo->user.ppr_options = ppr_options;
3916  }
3917 
3918  if ((type & AHD_TRANS_GOAL) != 0) {
3919  tinfo->goal.period = period;
3920  tinfo->goal.offset = offset;
3921  tinfo->goal.ppr_options = ppr_options;
3922  }
3923 
3924  old_period = tinfo->curr.period;
3925  old_offset = tinfo->curr.offset;
3926  old_ppr = tinfo->curr.ppr_options;
3927 
3928  if ((type & AHD_TRANS_CUR) != 0
3929  && (old_period != period
3930  || old_offset != offset
3931  || old_ppr != ppr_options)) {
3932 
3933  update_needed++;
3934 
3935  tinfo->curr.period = period;
3936  tinfo->curr.offset = offset;
3937  tinfo->curr.ppr_options = ppr_options;
3938 
3939  ahd_send_async(ahd, devinfo->channel, devinfo->target,
3941  if (bootverbose) {
3942  if (offset != 0) {
3943  int options;
3944 
3945  printk("%s: target %d synchronous with "
3946  "period = 0x%x, offset = 0x%x",
3947  ahd_name(ahd), devinfo->target,
3948  period, offset);
3949  options = 0;
3950  if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3951  printk("(RDSTRM");
3952  options++;
3953  }
3954  if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3955  printk("%s", options ? "|DT" : "(DT");
3956  options++;
3957  }
3958  if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3959  printk("%s", options ? "|IU" : "(IU");
3960  options++;
3961  }
3962  if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3963  printk("%s", options ? "|RTI" : "(RTI");
3964  options++;
3965  }
3966  if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3967  printk("%s", options ? "|QAS" : "(QAS");
3968  options++;
3969  }
3970  if (options != 0)
3971  printk(")\n");
3972  else
3973  printk("\n");
3974  } else {
3975  printk("%s: target %d using "
3976  "asynchronous transfers%s\n",
3977  ahd_name(ahd), devinfo->target,
3978  (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3979  ? "(QAS)" : "");
3980  }
3981  }
3982  }
3983  /*
3984  * Always refresh the neg-table to handle the case of the
3985  * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3986  * We will always renegotiate in that case if this is a
3987  * packetized request. Also manage the busfree expected flag
3988  * from this common routine so that we catch changes due to
3989  * WDTR or SDTR messages.
3990  */
3991  if ((type & AHD_TRANS_CUR) != 0) {
3992  if (!paused)
3993  ahd_pause(ahd);
3994  ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3995  if (!paused)
3996  ahd_unpause(ahd);
3997  if (ahd->msg_type != MSG_TYPE_NONE) {
3998  if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3999  != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
4000 #ifdef AHD_DEBUG
4001  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4002  ahd_print_devinfo(ahd, devinfo);
4003  printk("Expecting IU Change busfree\n");
4004  }
4005 #endif
4008  }
4009  if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
4010 #ifdef AHD_DEBUG
4011  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4012  printk("PPR with IU_REQ outstanding\n");
4013 #endif
4015  }
4016  }
4017  }
4018 
4019  update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4020  tinfo, AHD_NEG_TO_GOAL);
4021 
4022  if (update_needed && active)
4023  ahd_update_pending_scbs(ahd);
4024 }
4025 
4026 /*
4027  * Update the user/goal/curr tables of wide negotiation
4028  * parameters as well as, in the case of a current or active update,
4029  * any data structures on the host controller. In the case of an
4030  * active update, the specified target is currently talking to us on
4031  * the bus, so the transfer parameter update must take effect
4032  * immediately.
4033  */
4034 void
4035 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4036  u_int width, u_int type, int paused)
4037 {
4038  struct ahd_initiator_tinfo *tinfo;
4039  struct ahd_tmode_tstate *tstate;
4040  u_int oldwidth;
4041  int active;
4042  int update_needed;
4043 
4044  active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4045  update_needed = 0;
4046  tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4047  devinfo->target, &tstate);
4048 
4049  if ((type & AHD_TRANS_USER) != 0)
4050  tinfo->user.width = width;
4051 
4052  if ((type & AHD_TRANS_GOAL) != 0)
4053  tinfo->goal.width = width;
4054 
4055  oldwidth = tinfo->curr.width;
4056  if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4057 
4058  update_needed++;
4059 
4060  tinfo->curr.width = width;
4061  ahd_send_async(ahd, devinfo->channel, devinfo->target,
4063  if (bootverbose) {
4064  printk("%s: target %d using %dbit transfers\n",
4065  ahd_name(ahd), devinfo->target,
4066  8 * (0x01 << width));
4067  }
4068  }
4069 
4070  if ((type & AHD_TRANS_CUR) != 0) {
4071  if (!paused)
4072  ahd_pause(ahd);
4073  ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4074  if (!paused)
4075  ahd_unpause(ahd);
4076  }
4077 
4078  update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4079  tinfo, AHD_NEG_TO_GOAL);
4080  if (update_needed && active)
4081  ahd_update_pending_scbs(ahd);
4082 
4083 }
4084 
4085 /*
4086  * Update the current state of tagged queuing for a given target.
4087  */
4088 static void
4089 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4090  struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4091 {
4092  struct scsi_device *sdev = cmd->device;
4093 
4094  ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4095  ahd_send_async(ahd, devinfo->channel, devinfo->target,
4096  devinfo->lun, AC_TRANSFER_NEG);
4097 }
4098 
4099 static void
4100 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4101  struct ahd_transinfo *tinfo)
4102 {
4103  ahd_mode_state saved_modes;
4104  u_int period;
4105  u_int ppr_opts;
4106  u_int con_opts;
4107  u_int offset;
4108  u_int saved_negoaddr;
4109  uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
4110 
4111  saved_modes = ahd_save_modes(ahd);
4113 
4114  saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4115  ahd_outb(ahd, NEGOADDR, devinfo->target);
4116  period = tinfo->period;
4117  offset = tinfo->offset;
4118  memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4121  con_opts = 0;
4122  if (period == 0)
4123  period = AHD_SYNCRATE_ASYNC;
4124  if (period == AHD_SYNCRATE_160) {
4125 
4126  if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4127  /*
4128  * When the SPI4 spec was finalized, PACE transfers
4129  * was not made a configurable option in the PPR
4130  * message. Instead it is assumed to be enabled for
4131  * any syncrate faster than 80MHz. Nevertheless,
4132  * Harpoon2A4 allows this to be configurable.
4133  *
4134  * Harpoon2A4 also assumes at most 2 data bytes per
4135  * negotiated REQ/ACK offset. Paced transfers take
4136  * 4, so we must adjust our offset.
4137  */
4138  ppr_opts |= PPROPT_PACE;
4139  offset *= 2;
4140 
4141  /*
4142  * Harpoon2A assumed that there would be a
4143  * fallback rate between 160MHz and 80MHz,
4144  * so 7 is used as the period factor rather
4145  * than 8 for 160MHz.
4146  */
4147  period = AHD_SYNCRATE_REVA_160;
4148  }
4149  if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4150  iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4151  ~AHD_PRECOMP_MASK;
4152  } else {
4153  /*
4154  * Precomp should be disabled for non-paced transfers.
4155  */
4156  iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4157 
4158  if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4159  && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4160  && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4161  /*
4162  * Slow down our CRC interval to be
4163  * compatible with non-packetized
4164  * U160 devices that can't handle a
4165  * CRC at full speed.
4166  */
4167  con_opts |= ENSLOWCRC;
4168  }
4169 
4170  if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4171  /*
4172  * On H2A4, revert to a slower slewrate
4173  * on non-paced transfers.
4174  */
4175  iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4176  ~AHD_SLEWRATE_MASK;
4177  }
4178  }
4179 
4180  ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4181  ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4182  ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4183  ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4184 
4185  ahd_outb(ahd, NEGPERIOD, period);
4186  ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4187  ahd_outb(ahd, NEGOFFSET, offset);
4188 
4189  if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4190  con_opts |= WIDEXFER;
4191 
4192  /*
4193  * Slow down our CRC interval to be
4194  * compatible with packetized U320 devices
4195  * that can't handle a CRC at full speed
4196  */
4197  if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4198  con_opts |= ENSLOWCRC;
4199  }
4200 
4201  /*
4202  * During packetized transfers, the target will
4203  * give us the opportunity to send command packets
4204  * without us asserting attention.
4205  */
4206  if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4207  con_opts |= ENAUTOATNO;
4208  ahd_outb(ahd, NEGCONOPTS, con_opts);
4209  ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4210  ahd_restore_modes(ahd, saved_modes);
4211 }
4212 
4213 /*
4214  * When the transfer settings for a connection change, setup for
4215  * negotiation in pending SCBs to effect the change as quickly as
4216  * possible. We also cancel any negotiations that are scheduled
4217  * for inflight SCBs that have not been started yet.
4218  */
4219 static void
4220 ahd_update_pending_scbs(struct ahd_softc *ahd)
4221 {
4222  struct scb *pending_scb;
4223  int pending_scb_count;
4224  int paused;
4225  u_int saved_scbptr;
4226  ahd_mode_state saved_modes;
4227 
4228  /*
4229  * Traverse the pending SCB list and ensure that all of the
4230  * SCBs there have the proper settings. We can only safely
4231  * clear the negotiation required flag (setting requires the
4232  * execution queue to be modified) and this is only possible
4233  * if we are not already attempting to select out for this
4234  * SCB. For this reason, all callers only call this routine
4235  * if we are changing the negotiation settings for the currently
4236  * active transaction on the bus.
4237  */
4238  pending_scb_count = 0;
4239  LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4240  struct ahd_devinfo devinfo;
4241  struct ahd_initiator_tinfo *tinfo;
4242  struct ahd_tmode_tstate *tstate;
4243 
4244  ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4245  tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4246  devinfo.our_scsiid,
4247  devinfo.target, &tstate);
4248  if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4249  && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4250  pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4251  pending_scb->hscb->control &= ~MK_MESSAGE;
4252  }
4253  ahd_sync_scb(ahd, pending_scb,
4255  pending_scb_count++;
4256  }
4257 
4258  if (pending_scb_count == 0)
4259  return;
4260 
4261  if (ahd_is_paused(ahd)) {
4262  paused = 1;
4263  } else {
4264  paused = 0;
4265  ahd_pause(ahd);
4266  }
4267 
4268  /*
4269  * Force the sequencer to reinitialize the selection for
4270  * the command at the head of the execution queue if it
4271  * has already been setup. The negotiation changes may
4272  * effect whether we select-out with ATN. It is only
4273  * safe to clear ENSELO when the bus is not free and no
4274  * selection is in progres or completed.
4275  */
4276  saved_modes = ahd_save_modes(ahd);
4278  if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4279  && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4280  ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4281  saved_scbptr = ahd_get_scbptr(ahd);
4282  /* Ensure that the hscbs down on the card match the new information */
4283  LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4284  u_int scb_tag;
4285  u_int control;
4286 
4287  scb_tag = SCB_GET_TAG(pending_scb);
4288  ahd_set_scbptr(ahd, scb_tag);
4289  control = ahd_inb_scbram(ahd, SCB_CONTROL);
4290  control &= ~MK_MESSAGE;
4291  control |= pending_scb->hscb->control & MK_MESSAGE;
4292  ahd_outb(ahd, SCB_CONTROL, control);
4293  }
4294  ahd_set_scbptr(ahd, saved_scbptr);
4295  ahd_restore_modes(ahd, saved_modes);
4296 
4297  if (paused == 0)
4298  ahd_unpause(ahd);
4299 }
4300 
4301 /**************************** Pathing Information *****************************/
4302 static void
4303 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4304 {
4305  ahd_mode_state saved_modes;
4306  u_int saved_scsiid;
4307  role_t role;
4308  int our_id;
4309 
4310  saved_modes = ahd_save_modes(ahd);
4312 
4313  if (ahd_inb(ahd, SSTAT0) & TARGET)
4314  role = ROLE_TARGET;
4315  else
4316  role = ROLE_INITIATOR;
4317 
4318  if (role == ROLE_TARGET
4319  && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4320  /* We were selected, so pull our id from TARGIDIN */
4321  our_id = ahd_inb(ahd, TARGIDIN) & OID;
4322  } else if (role == ROLE_TARGET)
4323  our_id = ahd_inb(ahd, TOWNID);
4324  else
4325  our_id = ahd_inb(ahd, IOWNID);
4326 
4327  saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4328  ahd_compile_devinfo(devinfo,
4329  our_id,
4330  SCSIID_TARGET(ahd, saved_scsiid),
4331  ahd_inb(ahd, SAVED_LUN),
4332  SCSIID_CHANNEL(ahd, saved_scsiid),
4333  role);
4334  ahd_restore_modes(ahd, saved_modes);
4335 }
4336 
4337 void
4338 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4339 {
4340  printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4341  devinfo->target, devinfo->lun);
4342 }
4343 
4344 static const struct ahd_phase_table_entry*
4345 ahd_lookup_phase_entry(int phase)
4346 {
4347  const struct ahd_phase_table_entry *entry;
4348  const struct ahd_phase_table_entry *last_entry;
4349 
4350  /*
4351  * num_phases doesn't include the default entry which
4352  * will be returned if the phase doesn't match.
4353  */
4354  last_entry = &ahd_phase_table[num_phases];
4355  for (entry = ahd_phase_table; entry < last_entry; entry++) {
4356  if (phase == entry->phase)
4357  break;
4358  }
4359  return (entry);
4360 }
4361 
4362 void
4363 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4364  u_int lun, char channel, role_t role)
4365 {
4366  devinfo->our_scsiid = our_id;
4367  devinfo->target = target;
4368  devinfo->lun = lun;
4369  devinfo->target_offset = target;
4370  devinfo->channel = channel;
4371  devinfo->role = role;
4372  if (channel == 'B')
4373  devinfo->target_offset += 8;
4374  devinfo->target_mask = (0x01 << devinfo->target_offset);
4375 }
4376 
4377 static void
4378 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4379  struct scb *scb)
4380 {
4381  role_t role;
4382  int our_id;
4383 
4384  our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4385  role = ROLE_INITIATOR;
4386  if ((scb->hscb->control & TARGET_SCB) != 0)
4387  role = ROLE_TARGET;
4388  ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4389  SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4390 }
4391 
4392 
4393 /************************ Message Phase Processing ****************************/
4394 /*
4395  * When an initiator transaction with the MK_MESSAGE flag either reconnects
4396  * or enters the initial message out phase, we are interrupted. Fill our
4397  * outgoing message buffer with the appropriate message and beging handing
4398  * the message phase(s) manually.
4399  */
4400 static void
4401 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4402  struct scb *scb)
4403 {
4404  /*
4405  * To facilitate adding multiple messages together,
4406  * each routine should increment the index and len
4407  * variables instead of setting them explicitly.
4408  */
4409  ahd->msgout_index = 0;
4410  ahd->msgout_len = 0;
4411 
4412  if (ahd_currently_packetized(ahd))
4414 
4415  if (ahd->send_msg_perror
4416  && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4417  ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4418  ahd->msgout_len++;
4420 #ifdef AHD_DEBUG
4421  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4422  printk("Setting up for Parity Error delivery\n");
4423 #endif
4424  return;
4425  } else if (scb == NULL) {
4426  printk("%s: WARNING. No pending message for "
4427  "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
4428  ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4429  ahd->msgout_len++;
4431  return;
4432  }
4433 
4434  if ((scb->flags & SCB_DEVICE_RESET) == 0
4435  && (scb->flags & SCB_PACKETIZED) == 0
4436  && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4437  u_int identify_msg;
4438 
4439  identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4440  if ((scb->hscb->control & DISCENB) != 0)
4441  identify_msg |= MSG_IDENTIFY_DISCFLAG;
4442  ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4443  ahd->msgout_len++;
4444 
4445  if ((scb->hscb->control & TAG_ENB) != 0) {
4446  ahd->msgout_buf[ahd->msgout_index++] =
4447  scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4448  ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4449  ahd->msgout_len += 2;
4450  }
4451  }
4452 
4453  if (scb->flags & SCB_DEVICE_RESET) {
4454  ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4455  ahd->msgout_len++;
4456  ahd_print_path(ahd, scb);
4457  printk("Bus Device Reset Message Sent\n");
4458  /*
4459  * Clear our selection hardware in advance of
4460  * the busfree. We may have an entry in the waiting
4461  * Q for this target, and we don't want to go about
4462  * selecting while we handle the busfree and blow it
4463  * away.
4464  */
4465  ahd_outb(ahd, SCSISEQ0, 0);
4466  } else if ((scb->flags & SCB_ABORT) != 0) {
4467 
4468  if ((scb->hscb->control & TAG_ENB) != 0) {
4469  ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4470  } else {
4471  ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4472  }
4473  ahd->msgout_len++;
4474  ahd_print_path(ahd, scb);
4475  printk("Abort%s Message Sent\n",
4476  (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4477  /*
4478  * Clear our selection hardware in advance of
4479  * the busfree. We may have an entry in the waiting
4480  * Q for this target, and we don't want to go about
4481  * selecting while we handle the busfree and blow it
4482  * away.
4483  */
4484  ahd_outb(ahd, SCSISEQ0, 0);
4485  } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4486  ahd_build_transfer_msg(ahd, devinfo);
4487  /*
4488  * Clear our selection hardware in advance of potential
4489  * PPR IU status change busfree. We may have an entry in
4490  * the waiting Q for this target, and we don't want to go
4491  * about selecting while we handle the busfree and blow
4492  * it away.
4493  */
4494  ahd_outb(ahd, SCSISEQ0, 0);
4495  } else {
4496  printk("ahd_intr: AWAITING_MSG for an SCB that "
4497  "does not have a waiting message\n");
4498  printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4499  devinfo->target_mask);
4500  panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4501  "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4503  scb->flags);
4504  }
4505 
4506  /*
4507  * Clear the MK_MESSAGE flag from the SCB so we aren't
4508  * asked to send this message again.
4509  */
4510  ahd_outb(ahd, SCB_CONTROL,
4512  scb->hscb->control &= ~MK_MESSAGE;
4513  ahd->msgout_index = 0;
4515 }
4516 
4517 /*
4518  * Build an appropriate transfer negotiation message for the
4519  * currently active target.
4520  */
4521 static void
4522 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4523 {
4524  /*
4525  * We need to initiate transfer negotiations.
4526  * If our current and goal settings are identical,
4527  * we want to renegotiate due to a check condition.
4528  */
4529  struct ahd_initiator_tinfo *tinfo;
4530  struct ahd_tmode_tstate *tstate;
4531  int dowide;
4532  int dosync;
4533  int doppr;
4534  u_int period;
4535  u_int ppr_options;
4536  u_int offset;
4537 
4538  tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4539  devinfo->target, &tstate);
4540  /*
4541  * Filter our period based on the current connection.
4542  * If we can't perform DT transfers on this segment (not in LVD
4543  * mode for instance), then our decision to issue a PPR message
4544  * may change.
4545  */
4546  period = tinfo->goal.period;
4547  offset = tinfo->goal.offset;
4548  ppr_options = tinfo->goal.ppr_options;
4549  /* Target initiated PPR is not allowed in the SCSI spec */
4550  if (devinfo->role == ROLE_TARGET)
4551  ppr_options = 0;
4552  ahd_devlimited_syncrate(ahd, tinfo, &period,
4553  &ppr_options, devinfo->role);
4554  dowide = tinfo->curr.width != tinfo->goal.width;
4555  dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4556  /*
4557  * Only use PPR if we have options that need it, even if the device
4558  * claims to support it. There might be an expander in the way
4559  * that doesn't.
4560  */
4561  doppr = ppr_options != 0;
4562 
4563  if (!dowide && !dosync && !doppr) {
4564  dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4565  dosync = tinfo->goal.offset != 0;
4566  }
4567 
4568  if (!dowide && !dosync && !doppr) {
4569  /*
4570  * Force async with a WDTR message if we have a wide bus,
4571  * or just issue an SDTR with a 0 offset.
4572  */
4573  if ((ahd->features & AHD_WIDE) != 0)
4574  dowide = 1;
4575  else
4576  dosync = 1;
4577 
4578  if (bootverbose) {
4579  ahd_print_devinfo(ahd, devinfo);
4580  printk("Ensuring async\n");
4581  }
4582  }
4583  /* Target initiated PPR is not allowed in the SCSI spec */
4584  if (devinfo->role == ROLE_TARGET)
4585  doppr = 0;
4586 
4587  /*
4588  * Both the PPR message and SDTR message require the
4589  * goal syncrate to be limited to what the target device
4590  * is capable of handling (based on whether an LVD->SE
4591  * expander is on the bus), so combine these two cases.
4592  * Regardless, guarantee that if we are using WDTR and SDTR
4593  * messages that WDTR comes first.
4594  */
4595  if (doppr || (dosync && !dowide)) {
4596 
4597  offset = tinfo->goal.offset;
4598  ahd_validate_offset(ahd, tinfo, period, &offset,
4599  doppr ? tinfo->goal.width
4600  : tinfo->curr.width,
4601  devinfo->role);
4602  if (doppr) {
4603  ahd_construct_ppr(ahd, devinfo, period, offset,
4604  tinfo->goal.width, ppr_options);
4605  } else {
4606  ahd_construct_sdtr(ahd, devinfo, period, offset);
4607  }
4608  } else {
4609  ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4610  }
4611 }
4612 
4613 /*
4614  * Build a synchronous negotiation message in our message
4615  * buffer based on the input parameters.
4616  */
4617 static void
4618 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4619  u_int period, u_int offset)
4620 {
4621  if (offset == 0)
4622  period = AHD_ASYNC_XFER_PERIOD;
4624  ahd->msgout_buf + ahd->msgout_index, period, offset);
4625  ahd->msgout_len += 5;
4626  if (bootverbose) {
4627  printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4628  ahd_name(ahd), devinfo->channel, devinfo->target,
4629  devinfo->lun, period, offset);
4630  }
4631 }
4632 
4633 /*
4634  * Build a wide negotiateion message in our message
4635  * buffer based on the input parameters.
4636  */
4637 static void
4638 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4639  u_int bus_width)
4640 {
4642  ahd->msgout_buf + ahd->msgout_index, bus_width);
4643  ahd->msgout_len += 4;
4644  if (bootverbose) {
4645  printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4646  ahd_name(ahd), devinfo->channel, devinfo->target,
4647  devinfo->lun, bus_width);
4648  }
4649 }
4650 
4651 /*
4652  * Build a parallel protocol request message in our message
4653  * buffer based on the input parameters.
4654  */
4655 static void
4656 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4657  u_int period, u_int offset, u_int bus_width,
4658  u_int ppr_options)
4659 {
4660  /*
4661  * Always request precompensation from
4662  * the other target if we are running
4663  * at paced syncrates.
4664  */
4665  if (period <= AHD_SYNCRATE_PACED)
4666  ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4667  if (offset == 0)
4668  period = AHD_ASYNC_XFER_PERIOD;
4670  ahd->msgout_buf + ahd->msgout_index, period, offset,
4671  bus_width, ppr_options);
4672  ahd->msgout_len += 8;
4673  if (bootverbose) {
4674  printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4675  "offset %x, ppr_options %x\n", ahd_name(ahd),
4676  devinfo->channel, devinfo->target, devinfo->lun,
4677  bus_width, period, offset, ppr_options);
4678  }
4679 }
4680 
4681 /*
4682  * Clear any active message state.
4683  */
4684 static void
4685 ahd_clear_msg_state(struct ahd_softc *ahd)
4686 {
4687  ahd_mode_state saved_modes;
4688 
4689  saved_modes = ahd_save_modes(ahd);
4691  ahd->send_msg_perror = 0;
4692  ahd->msg_flags = MSG_FLAG_NONE;
4693  ahd->msgout_len = 0;
4694  ahd->msgin_index = 0;
4695  ahd->msg_type = MSG_TYPE_NONE;
4696  if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4697  /*
4698  * The target didn't care to respond to our
4699  * message request, so clear ATN.
4700  */
4701  ahd_outb(ahd, CLRSINT1, CLRATNO);
4702  }
4703  ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4704  ahd_outb(ahd, SEQ_FLAGS2,
4705  ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4706  ahd_restore_modes(ahd, saved_modes);
4707 }
4708 
4709 /*
4710  * Manual message loop handler.
4711  */
4712 static void
4713 ahd_handle_message_phase(struct ahd_softc *ahd)
4714 {
4715  struct ahd_devinfo devinfo;
4716  u_int bus_phase;
4717  int end_session;
4718 
4719  ahd_fetch_devinfo(ahd, &devinfo);
4720  end_session = FALSE;
4721  bus_phase = ahd_inb(ahd, LASTPHASE);
4722 
4723  if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4724  printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4725  ahd_outb(ahd, LQCTL2, LQIRETRY);
4726  }
4727 reswitch:
4728  switch (ahd->msg_type) {
4730  {
4731  int lastbyte;
4732  int phasemis;
4733  int msgdone;
4734 
4735  if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4736  panic("HOST_MSG_LOOP interrupt with no active message");
4737 
4738 #ifdef AHD_DEBUG
4739  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4740  ahd_print_devinfo(ahd, &devinfo);
4741  printk("INITIATOR_MSG_OUT");
4742  }
4743 #endif
4744  phasemis = bus_phase != P_MESGOUT;
4745  if (phasemis) {
4746 #ifdef AHD_DEBUG
4747  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4748  printk(" PHASEMIS %s\n",
4749  ahd_lookup_phase_entry(bus_phase)
4750  ->phasemsg);
4751  }
4752 #endif
4753  if (bus_phase == P_MESGIN) {
4754  /*
4755  * Change gears and see if
4756  * this messages is of interest to
4757  * us or should be passed back to
4758  * the sequencer.
4759  */
4760  ahd_outb(ahd, CLRSINT1, CLRATNO);
4761  ahd->send_msg_perror = 0;
4763  ahd->msgin_index = 0;
4764  goto reswitch;
4765  }
4766  end_session = TRUE;
4767  break;
4768  }
4769 
4770  if (ahd->send_msg_perror) {
4771  ahd_outb(ahd, CLRSINT1, CLRATNO);
4772  ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4773 #ifdef AHD_DEBUG
4774  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4775  printk(" byte 0x%x\n", ahd->send_msg_perror);
4776 #endif
4777  /*
4778  * If we are notifying the target of a CRC error
4779  * during packetized operations, the target is
4780  * within its rights to acknowledge our message
4781  * with a busfree.
4782  */
4783  if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4786 
4787  ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4788  ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4789  break;
4790  }
4791 
4792  msgdone = ahd->msgout_index == ahd->msgout_len;
4793  if (msgdone) {
4794  /*
4795  * The target has requested a retry.
4796  * Re-assert ATN, reset our message index to
4797  * 0, and try again.
4798  */
4799  ahd->msgout_index = 0;
4800  ahd_assert_atn(ahd);
4801  }
4802 
4803  lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4804  if (lastbyte) {
4805  /* Last byte is signified by dropping ATN */
4806  ahd_outb(ahd, CLRSINT1, CLRATNO);
4807  }
4808 
4809  /*
4810  * Clear our interrupt status and present
4811  * the next byte on the bus.
4812  */
4813  ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4814 #ifdef AHD_DEBUG
4815  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4816  printk(" byte 0x%x\n",
4817  ahd->msgout_buf[ahd->msgout_index]);
4818 #endif
4819  ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4820  ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4821  break;
4822  }
4824  {
4825  int phasemis;
4826  int message_done;
4827 
4828 #ifdef AHD_DEBUG
4829  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4830  ahd_print_devinfo(ahd, &devinfo);
4831  printk("INITIATOR_MSG_IN");
4832  }
4833 #endif
4834  phasemis = bus_phase != P_MESGIN;
4835  if (phasemis) {
4836 #ifdef AHD_DEBUG
4837  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4838  printk(" PHASEMIS %s\n",
4839  ahd_lookup_phase_entry(bus_phase)
4840  ->phasemsg);
4841  }
4842 #endif
4843  ahd->msgin_index = 0;
4844  if (bus_phase == P_MESGOUT
4845  && (ahd->send_msg_perror != 0
4846  || (ahd->msgout_len != 0
4847  && ahd->msgout_index == 0))) {
4849  goto reswitch;
4850  }
4851  end_session = TRUE;
4852  break;
4853  }
4854 
4855  /* Pull the byte in without acking it */
4856  ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4857 #ifdef AHD_DEBUG
4858  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4859  printk(" byte 0x%x\n",
4860  ahd->msgin_buf[ahd->msgin_index]);
4861 #endif
4862 
4863  message_done = ahd_parse_msg(ahd, &devinfo);
4864 
4865  if (message_done) {
4866  /*
4867  * Clear our incoming message buffer in case there
4868  * is another message following this one.
4869  */
4870  ahd->msgin_index = 0;
4871 
4872  /*
4873  * If this message illicited a response,
4874  * assert ATN so the target takes us to the
4875  * message out phase.
4876  */
4877  if (ahd->msgout_len != 0) {
4878 #ifdef AHD_DEBUG
4879  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4880  ahd_print_devinfo(ahd, &devinfo);
4881  printk("Asserting ATN for response\n");
4882  }
4883 #endif
4884  ahd_assert_atn(ahd);
4885  }
4886  } else
4887  ahd->msgin_index++;
4888 
4889  if (message_done == MSGLOOP_TERMINATED) {
4890  end_session = TRUE;
4891  } else {
4892  /* Ack the byte */
4893  ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4894  ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4895  }
4896  break;
4897  }
4898  case MSG_TYPE_TARGET_MSGIN:
4899  {
4900  int msgdone;
4901  int msgout_request;
4902 
4903  /*
4904  * By default, the message loop will continue.
4905  */
4906  ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4907 
4908  if (ahd->msgout_len == 0)
4909  panic("Target MSGIN with no active message");
4910 
4911  /*
4912  * If we interrupted a mesgout session, the initiator
4913  * will not know this until our first REQ. So, we
4914  * only honor mesgout requests after we've sent our
4915  * first byte.
4916  */
4917  if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4918  && ahd->msgout_index > 0)
4919  msgout_request = TRUE;
4920  else
4921  msgout_request = FALSE;
4922 
4923  if (msgout_request) {
4924 
4925  /*
4926  * Change gears and see if
4927  * this messages is of interest to
4928  * us or should be passed back to
4929  * the sequencer.
4930  */
4932  ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4933  ahd->msgin_index = 0;
4934  /* Dummy read to REQ for first byte */
4935  ahd_inb(ahd, SCSIDAT);
4936  ahd_outb(ahd, SXFRCTL0,
4937  ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4938  break;
4939  }
4940 
4941  msgdone = ahd->msgout_index == ahd->msgout_len;
4942  if (msgdone) {
4943  ahd_outb(ahd, SXFRCTL0,
4944  ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4945  end_session = TRUE;
4946  break;
4947  }
4948 
4949  /*
4950  * Present the next byte on the bus.
4951  */
4952  ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4953  ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4954  break;
4955  }
4957  {
4958  int lastbyte;
4959  int msgdone;
4960 
4961  /*
4962  * By default, the message loop will continue.
4963  */
4964  ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4965 
4966  /*
4967  * The initiator signals that this is
4968  * the last byte by dropping ATN.
4969  */
4970  lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4971 
4972  /*
4973  * Read the latched byte, but turn off SPIOEN first
4974  * so that we don't inadvertently cause a REQ for the
4975  * next byte.
4976  */
4977  ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4978  ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4979  msgdone = ahd_parse_msg(ahd, &devinfo);
4980  if (msgdone == MSGLOOP_TERMINATED) {
4981  /*
4982  * The message is *really* done in that it caused
4983  * us to go to bus free. The sequencer has already
4984  * been reset at this point, so pull the ejection
4985  * handle.
4986  */
4987  return;
4988  }
4989 
4990  ahd->msgin_index++;
4991 
4992  /*
4993  * XXX Read spec about initiator dropping ATN too soon
4994  * and use msgdone to detect it.
4995  */
4996  if (msgdone == MSGLOOP_MSGCOMPLETE) {
4997  ahd->msgin_index = 0;
4998 
4999  /*
5000  * If this message illicited a response, transition
5001  * to the Message in phase and send it.
5002  */
5003  if (ahd->msgout_len != 0) {
5004  ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
5005  ahd_outb(ahd, SXFRCTL0,
5006  ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5008  ahd->msgin_index = 0;
5009  break;
5010  }
5011  }
5012 
5013  if (lastbyte)
5014  end_session = TRUE;
5015  else {
5016  /* Ask for the next byte. */
5017  ahd_outb(ahd, SXFRCTL0,
5018  ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5019  }
5020 
5021  break;
5022  }
5023  default:
5024  panic("Unknown REQINIT message type");
5025  }
5026 
5027  if (end_session) {
5028  if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5029  printk("%s: Returning to Idle Loop\n",
5030  ahd_name(ahd));
5031  ahd_clear_msg_state(ahd);
5032 
5033  /*
5034  * Perform the equivalent of a clear_target_state.
5035  */
5036  ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5037  ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5038  ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5039  } else {
5040  ahd_clear_msg_state(ahd);
5041  ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5042  }
5043  }
5044 }
5045 
5046 /*
5047  * See if we sent a particular extended message to the target.
5048  * If "full" is true, return true only if the target saw the full
5049  * message. If "full" is false, return true if the target saw at
5050  * least the first byte of the message.
5051  */
5052 static int
5053 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5054 {
5055  int found;
5056  u_int index;
5057 
5058  found = FALSE;
5059  index = 0;
5060 
5061  while (index < ahd->msgout_len) {
5062  if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5063  u_int end_index;
5064 
5065  end_index = index + 1 + ahd->msgout_buf[index + 1];
5066  if (ahd->msgout_buf[index+2] == msgval
5067  && type == AHDMSG_EXT) {
5068 
5069  if (full) {
5070  if (ahd->msgout_index > end_index)
5071  found = TRUE;
5072  } else if (ahd->msgout_index > index)
5073  found = TRUE;
5074  }
5075  index = end_index;
5076  } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5077  && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5078 
5079  /* Skip tag type and tag id or residue param*/
5080  index += 2;
5081  } else {
5082  /* Single byte message */
5083  if (type == AHDMSG_1B
5084  && ahd->msgout_index > index
5085  && (ahd->msgout_buf[index] == msgval
5086  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5087  && msgval == MSG_IDENTIFYFLAG)))
5088  found = TRUE;
5089  index++;
5090  }
5091 
5092  if (found)
5093  break;
5094  }
5095  return (found);
5096 }
5097 
5098 /*
5099  * Wait for a complete incoming message, parse it, and respond accordingly.
5100  */
5101 static int
5102 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5103 {
5104  struct ahd_initiator_tinfo *tinfo;
5105  struct ahd_tmode_tstate *tstate;
5106  int reject;
5107  int done;
5108  int response;
5109 
5110  done = MSGLOOP_IN_PROG;
5111  response = FALSE;
5112  reject = FALSE;
5113  tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5114  devinfo->target, &tstate);
5115 
5116  /*
5117  * Parse as much of the message as is available,
5118  * rejecting it if we don't support it. When
5119  * the entire message is available and has been
5120  * handled, return MSGLOOP_MSGCOMPLETE, indicating
5121  * that we have parsed an entire message.
5122  *
5123  * In the case of extended messages, we accept the length
5124  * byte outright and perform more checking once we know the
5125  * extended message type.
5126  */
5127  switch (ahd->msgin_buf[0]) {
5128  case MSG_DISCONNECT:
5129  case MSG_SAVEDATAPOINTER:
5130  case MSG_CMDCOMPLETE:
5131  case MSG_RESTOREPOINTERS:
5132  case MSG_IGN_WIDE_RESIDUE:
5133  /*
5134  * End our message loop as these are messages
5135  * the sequencer handles on its own.
5136  */
5137  done = MSGLOOP_TERMINATED;
5138  break;
5139  case MSG_MESSAGE_REJECT:
5140  response = ahd_handle_msg_reject(ahd, devinfo);
5141  /* FALLTHROUGH */
5142  case MSG_NOOP:
5143  done = MSGLOOP_MSGCOMPLETE;
5144  break;
5145  case MSG_EXTENDED:
5146  {
5147  /* Wait for enough of the message to begin validation */
5148  if (ahd->msgin_index < 2)
5149  break;
5150  switch (ahd->msgin_buf[2]) {
5151  case MSG_EXT_SDTR:
5152  {
5153  u_int period;
5154  u_int ppr_options;
5155  u_int offset;
5156  u_int saved_offset;
5157 
5158  if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5159  reject = TRUE;
5160  break;
5161  }
5162 
5163  /*
5164  * Wait until we have both args before validating
5165  * and acting on this message.
5166  *
5167  * Add one to MSG_EXT_SDTR_LEN to account for
5168  * the extended message preamble.
5169  */
5170  if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5171  break;
5172 
5173  period = ahd->msgin_buf[3];
5174  ppr_options = 0;
5175  saved_offset = offset = ahd->msgin_buf[4];
5176  ahd_devlimited_syncrate(ahd, tinfo, &period,
5177  &ppr_options, devinfo->role);
5178  ahd_validate_offset(ahd, tinfo, period, &offset,
5179  tinfo->curr.width, devinfo->role);
5180  if (bootverbose) {
5181  printk("(%s:%c:%d:%d): Received "
5182  "SDTR period %x, offset %x\n\t"
5183  "Filtered to period %x, offset %x\n",
5184  ahd_name(ahd), devinfo->channel,
5185  devinfo->target, devinfo->lun,
5186  ahd->msgin_buf[3], saved_offset,
5187  period, offset);
5188  }
5189  ahd_set_syncrate(ahd, devinfo, period,
5190  offset, ppr_options,
5192  /*paused*/TRUE);
5193 
5194  /*
5195  * See if we initiated Sync Negotiation
5196  * and didn't have to fall down to async
5197  * transfers.
5198  */
5199  if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5200  /* We started it */
5201  if (saved_offset != offset) {
5202  /* Went too low - force async */
5203  reject = TRUE;
5204  }
5205  } else {
5206  /*
5207  * Send our own SDTR in reply
5208  */
5209  if (bootverbose
5210  && devinfo->role == ROLE_INITIATOR) {
5211  printk("(%s:%c:%d:%d): Target "
5212  "Initiated SDTR\n",
5213  ahd_name(ahd), devinfo->channel,
5214  devinfo->target, devinfo->lun);
5215  }
5216  ahd->msgout_index = 0;
5217  ahd->msgout_len = 0;
5218  ahd_construct_sdtr(ahd, devinfo,
5219  period, offset);
5220  ahd->msgout_index = 0;
5221  response = TRUE;
5222  }
5223  done = MSGLOOP_MSGCOMPLETE;
5224  break;
5225  }
5226  case MSG_EXT_WDTR:
5227  {
5228  u_int bus_width;
5229  u_int saved_width;
5230  u_int sending_reply;
5231 
5232  sending_reply = FALSE;
5233  if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5234  reject = TRUE;
5235  break;
5236  }
5237 
5238  /*
5239  * Wait until we have our arg before validating
5240  * and acting on this message.
5241  *
5242  * Add one to MSG_EXT_WDTR_LEN to account for
5243  * the extended message preamble.
5244  */
5245  if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5246  break;
5247 
5248  bus_width = ahd->msgin_buf[3];
5249  saved_width = bus_width;
5250  ahd_validate_width(ahd, tinfo, &bus_width,
5251  devinfo->role);
5252  if (bootverbose) {
5253  printk("(%s:%c:%d:%d): Received WDTR "
5254  "%x filtered to %x\n",
5255  ahd_name(ahd), devinfo->channel,
5256  devinfo->target, devinfo->lun,
5257  saved_width, bus_width);
5258  }
5259 
5260  if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5261  /*
5262  * Don't send a WDTR back to the
5263  * target, since we asked first.
5264  * If the width went higher than our
5265  * request, reject it.
5266  */
5267  if (saved_width > bus_width) {
5268  reject = TRUE;
5269  printk("(%s:%c:%d:%d): requested %dBit "
5270  "transfers. Rejecting...\n",
5271  ahd_name(ahd), devinfo->channel,
5272  devinfo->target, devinfo->lun,
5273  8 * (0x01 << bus_width));
5274  bus_width = 0;
5275  }
5276  } else {
5277  /*
5278  * Send our own WDTR in reply
5279  */
5280  if (bootverbose
5281  && devinfo->role == ROLE_INITIATOR) {
5282  printk("(%s:%c:%d:%d): Target "
5283  "Initiated WDTR\n",
5284  ahd_name(ahd), devinfo->channel,
5285  devinfo->target, devinfo->lun);
5286  }
5287  ahd->msgout_index = 0;
5288  ahd->msgout_len = 0;
5289  ahd_construct_wdtr(ahd, devinfo, bus_width);
5290  ahd->msgout_index = 0;
5291  response = TRUE;
5292  sending_reply = TRUE;
5293  }
5294  /*
5295  * After a wide message, we are async, but
5296  * some devices don't seem to honor this portion
5297  * of the spec. Force a renegotiation of the
5298  * sync component of our transfer agreement even
5299  * if our goal is async. By updating our width
5300  * after forcing the negotiation, we avoid
5301  * renegotiating for width.
5302  */
5303  ahd_update_neg_request(ahd, devinfo, tstate,
5304  tinfo, AHD_NEG_ALWAYS);
5305  ahd_set_width(ahd, devinfo, bus_width,
5307  /*paused*/TRUE);
5308  if (sending_reply == FALSE && reject == FALSE) {
5309 
5310  /*
5311  * We will always have an SDTR to send.
5312  */
5313  ahd->msgout_index = 0;
5314  ahd->msgout_len = 0;
5315  ahd_build_transfer_msg(ahd, devinfo);
5316  ahd->msgout_index = 0;
5317  response = TRUE;
5318  }
5319  done = MSGLOOP_MSGCOMPLETE;
5320  break;
5321  }
5322  case MSG_EXT_PPR:
5323  {
5324  u_int period;
5325  u_int offset;
5326  u_int bus_width;
5327  u_int ppr_options;
5328  u_int saved_width;
5329  u_int saved_offset;
5330  u_int saved_ppr_options;
5331 
5332  if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5333  reject = TRUE;
5334  break;
5335  }
5336 
5337  /*
5338  * Wait until we have all args before validating
5339  * and acting on this message.
5340  *
5341  * Add one to MSG_EXT_PPR_LEN to account for
5342  * the extended message preamble.
5343  */
5344  if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5345  break;
5346 
5347  period = ahd->msgin_buf[3];
5348  offset = ahd->msgin_buf[5];
5349  bus_width = ahd->msgin_buf[6];
5350  saved_width = bus_width;
5351  ppr_options = ahd->msgin_buf[7];
5352  /*
5353  * According to the spec, a DT only
5354  * period factor with no DT option
5355  * set implies async.
5356  */
5357  if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5358  && period <= 9)
5359  offset = 0;
5360  saved_ppr_options = ppr_options;
5361  saved_offset = offset;
5362 
5363  /*
5364  * Transfer options are only available if we
5365  * are negotiating wide.
5366  */
5367  if (bus_width == 0)
5368  ppr_options &= MSG_EXT_PPR_QAS_REQ;
5369 
5370  ahd_validate_width(ahd, tinfo, &bus_width,
5371  devinfo->role);
5372  ahd_devlimited_syncrate(ahd, tinfo, &period,
5373  &ppr_options, devinfo->role);
5374  ahd_validate_offset(ahd, tinfo, period, &offset,
5375  bus_width, devinfo->role);
5376 
5377  if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5378  /*
5379  * If we are unable to do any of the
5380  * requested options (we went too low),
5381  * then we'll have to reject the message.
5382  */
5383  if (saved_width > bus_width
5384  || saved_offset != offset
5385  || saved_ppr_options != ppr_options) {
5386  reject = TRUE;
5387  period = 0;
5388  offset = 0;
5389  bus_width = 0;
5390  ppr_options = 0;
5391  }
5392  } else {
5393  if (devinfo->role != ROLE_TARGET)
5394  printk("(%s:%c:%d:%d): Target "
5395  "Initiated PPR\n",
5396  ahd_name(ahd), devinfo->channel,
5397  devinfo->target, devinfo->lun);
5398  else
5399  printk("(%s:%c:%d:%d): Initiator "
5400  "Initiated PPR\n",
5401  ahd_name(ahd), devinfo->channel,
5402  devinfo->target, devinfo->lun);
5403  ahd->msgout_index = 0;
5404  ahd->msgout_len = 0;
5405  ahd_construct_ppr(ahd, devinfo, period, offset,
5406  bus_width, ppr_options);
5407  ahd->msgout_index = 0;
5408  response = TRUE;
5409  }
5410  if (bootverbose) {
5411  printk("(%s:%c:%d:%d): Received PPR width %x, "
5412  "period %x, offset %x,options %x\n"
5413  "\tFiltered to width %x, period %x, "
5414  "offset %x, options %x\n",
5415  ahd_name(ahd), devinfo->channel,
5416  devinfo->target, devinfo->lun,
5417  saved_width, ahd->msgin_buf[3],
5418  saved_offset, saved_ppr_options,
5419  bus_width, period, offset, ppr_options);
5420  }
5421  ahd_set_width(ahd, devinfo, bus_width,
5423  /*paused*/TRUE);
5424  ahd_set_syncrate(ahd, devinfo, period,
5425  offset, ppr_options,
5427  /*paused*/TRUE);
5428 
5429  done = MSGLOOP_MSGCOMPLETE;
5430  break;
5431  }
5432  default:
5433  /* Unknown extended message. Reject it. */
5434  reject = TRUE;
5435  break;
5436  }
5437  break;
5438  }
5439 #ifdef AHD_TARGET_MODE
5440  case MSG_BUS_DEV_RESET:
5441  ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5442  CAM_BDR_SENT,
5443  "Bus Device Reset Received",
5444  /*verbose_level*/0);
5445  ahd_restart(ahd);
5446  done = MSGLOOP_TERMINATED;
5447  break;
5448  case MSG_ABORT_TAG:
5449  case MSG_ABORT:
5450  case MSG_CLEAR_QUEUE:
5451  {
5452  int tag;
5453 
5454  /* Target mode messages */
5455  if (devinfo->role != ROLE_TARGET) {
5456  reject = TRUE;
5457  break;
5458  }
5459  tag = SCB_LIST_NULL;
5460  if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5461  tag = ahd_inb(ahd, INITIATOR_TAG);
5462  ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5463  devinfo->lun, tag, ROLE_TARGET,
5464  CAM_REQ_ABORTED);
5465 
5466  tstate = ahd->enabled_targets[devinfo->our_scsiid];
5467  if (tstate != NULL) {
5468  struct ahd_tmode_lstate* lstate;
5469 
5470  lstate = tstate->enabled_luns[devinfo->lun];
5471  if (lstate != NULL) {
5472  ahd_queue_lstate_event(ahd, lstate,
5473  devinfo->our_scsiid,
5474  ahd->msgin_buf[0],
5475  /*arg*/tag);
5476  ahd_send_lstate_events(ahd, lstate);
5477  }
5478  }
5479  ahd_restart(ahd);
5480  done = MSGLOOP_TERMINATED;
5481  break;
5482  }
5483 #endif
5484  case MSG_QAS_REQUEST:
5485 #ifdef AHD_DEBUG
5486  if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5487  printk("%s: QAS request. SCSISIGI == 0x%x\n",
5488  ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5489 #endif
5491  /* FALLTHROUGH */
5492  case MSG_TERM_IO_PROC:
5493  default:
5494  reject = TRUE;
5495  break;
5496  }
5497 
5498  if (reject) {
5499  /*
5500  * Setup to reject the message.
5501  */
5502  ahd->msgout_index = 0;
5503  ahd->msgout_len = 1;
5504  ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5505  done = MSGLOOP_MSGCOMPLETE;
5506  response = TRUE;
5507  }
5508 
5509  if (done != MSGLOOP_IN_PROG && !response)
5510  /* Clear the outgoing message buffer */
5511  ahd->msgout_len = 0;
5512 
5513  return (done);
5514 }
5515 
5516 /*
5517  * Process a message reject message.
5518  */
5519 static int
5520 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5521 {
5522  /*
5523  * What we care about here is if we had an
5524  * outstanding SDTR or WDTR message for this
5525  * target. If we did, this is a signal that
5526  * the target is refusing negotiation.
5527  */
5528  struct scb *scb;
5529  struct ahd_initiator_tinfo *tinfo;
5530  struct ahd_tmode_tstate *tstate;
5531  u_int scb_index;
5532  u_int last_msg;
5533  int response = 0;
5534 
5535  scb_index = ahd_get_scbptr(ahd);
5536  scb = ahd_lookup_scb(ahd, scb_index);
5537  tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5538  devinfo->our_scsiid,
5539  devinfo->target, &tstate);
5540  /* Might be necessary */
5541  last_msg = ahd_inb(ahd, LAST_MSG);
5542 
5543  if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5544  if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5545  && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5546  /*
5547  * Target may not like our SPI-4 PPR Options.
5548  * Attempt to negotiate 80MHz which will turn
5549  * off these options.
5550  */
5551  if (bootverbose) {
5552  printk("(%s:%c:%d:%d): PPR Rejected. "
5553  "Trying simple U160 PPR\n",
5554  ahd_name(ahd), devinfo->channel,
5555  devinfo->target, devinfo->lun);
5556  }
5557  tinfo->goal.period = AHD_SYNCRATE_DT;
5558  tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5561  } else {
5562  /*
5563  * Target does not support the PPR message.
5564  * Attempt to negotiate SPI-2 style.
5565  */
5566  if (bootverbose) {
5567  printk("(%s:%c:%d:%d): PPR Rejected. "
5568  "Trying WDTR/SDTR\n",
5569  ahd_name(ahd), devinfo->channel,
5570  devinfo->target, devinfo->lun);
5571  }
5572  tinfo->goal.ppr_options = 0;
5573  tinfo->curr.transport_version = 2;
5574  tinfo->goal.transport_version = 2;
5575  }
5576  ahd->msgout_index = 0;
5577  ahd->msgout_len = 0;
5578  ahd_build_transfer_msg(ahd, devinfo);
5579  ahd->msgout_index = 0;
5580  response = 1;
5581  } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5582 
5583  /* note 8bit xfers */
5584  printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
5585  "8bit transfers\n", ahd_name(ahd),
5586  devinfo->channel, devinfo->target, devinfo->lun);
5587  ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5589  /*paused*/TRUE);
5590  /*
5591  * No need to clear the sync rate. If the target
5592  * did not accept the command, our syncrate is
5593  * unaffected. If the target started the negotiation,
5594  * but rejected our response, we already cleared the
5595  * sync rate before sending our WDTR.
5596  */
5597  if (tinfo->goal.offset != tinfo->curr.offset) {
5598 
5599  /* Start the sync negotiation */
5600  ahd->msgout_index = 0;
5601  ahd->msgout_len = 0;
5602  ahd_build_transfer_msg(ahd, devinfo);
5603  ahd->msgout_index = 0;
5604  response = 1;
5605  }
5606  } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5607  /* note asynch xfers and clear flag */
5608  ahd_set_syncrate(ahd, devinfo, /*period*/0,
5609  /*offset*/0, /*ppr_options*/0,
5611  /*paused*/TRUE);
5612  printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5613  "Using asynchronous transfers\n",
5614  ahd_name(ahd), devinfo->channel,
5615  devinfo->target, devinfo->lun);
5616  } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5617  int tag_type;
5618  int mask;
5619 
5620  tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5621 
5622  if (tag_type == MSG_SIMPLE_TASK) {
5623  printk("(%s:%c:%d:%d): refuses tagged commands. "
5624  "Performing non-tagged I/O\n", ahd_name(ahd),
5625  devinfo->channel, devinfo->target, devinfo->lun);
5626  ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5627  mask = ~0x23;
5628  } else {
5629  printk("(%s:%c:%d:%d): refuses %s tagged commands. "
5630  "Performing simple queue tagged I/O only\n",
5631  ahd_name(ahd), devinfo->channel, devinfo->target,
5632  devinfo->lun, tag_type == MSG_ORDERED_TASK
5633  ? "ordered" : "head of queue");
5634  ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5635  mask = ~0x03;
5636  }
5637 
5638  /*
5639  * Resend the identify for this CCB as the target
5640  * may believe that the selection is invalid otherwise.
5641  */
5642  ahd_outb(ahd, SCB_CONTROL,
5643  ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5644  scb->hscb->control &= mask;
5645  ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5646  /*type*/MSG_SIMPLE_TASK);
5648  ahd_assert_atn(ahd);
5649  ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5650  SCB_GET_TAG(scb));
5651 
5652  /*
5653  * Requeue all tagged commands for this target
5654  * currently in our possession so they can be
5655  * converted to untagged commands.
5656  */
5657  ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5658  SCB_GET_CHANNEL(ahd, scb),
5659  SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5661  SEARCH_COMPLETE);
5662  } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5663  /*
5664  * Most likely the device believes that we had
5665  * previously negotiated packetized.
5666  */
5669 
5670  ahd_force_renegotiation(ahd, devinfo);
5671  ahd->msgout_index = 0;
5672  ahd->msgout_len = 0;
5673  ahd_build_transfer_msg(ahd, devinfo);
5674  ahd->msgout_index = 0;
5675  response = 1;
5676  } else {
5677  /*
5678  * Otherwise, we ignore it.
5679  */
5680  printk("%s:%c:%d: Message reject for %x -- ignored\n",
5681  ahd_name(ahd), devinfo->channel, devinfo->target,
5682  last_msg);
5683  }
5684  return (response);
5685 }
5686 
5687 /*
5688  * Process an ingnore wide residue message.
5689  */
5690 static void
5691 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5692 {
5693  u_int scb_index;
5694  struct scb *scb;
5695 
5696  scb_index = ahd_get_scbptr(ahd);
5697  scb = ahd_lookup_scb(ahd, scb_index);
5698  /*
5699  * XXX Actually check data direction in the sequencer?
5700  * Perhaps add datadir to some spare bits in the hscb?
5701  */
5702  if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5703  || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5704  /*
5705  * Ignore the message if we haven't
5706  * seen an appropriate data phase yet.
5707  */
5708  } else {
5709  /*
5710  * If the residual occurred on the last
5711  * transfer and the transfer request was
5712  * expected to end on an odd count, do
5713  * nothing. Otherwise, subtract a byte
5714  * and update the residual count accordingly.
5715  */
5716  uint32_t sgptr;
5717 
5718  sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5719  if ((sgptr & SG_LIST_NULL) != 0
5720  && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5721  & SCB_XFERLEN_ODD) != 0) {
5722  /*
5723  * If the residual occurred on the last
5724  * transfer and the transfer request was
5725  * expected to end on an odd count, do
5726  * nothing.
5727  */
5728  } else {
5729  uint32_t data_cnt;
5731  uint32_t sglen;
5732 
5733  /* Pull in the rest of the sgptr */
5734  sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5735  data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5736  if ((sgptr & SG_LIST_NULL) != 0) {
5737  /*
5738  * The residual data count is not updated
5739  * for the command run to completion case.
5740  * Explicitly zero the count.
5741  */
5742  data_cnt &= ~AHD_SG_LEN_MASK;
5743  }
5744  data_addr = ahd_inq(ahd, SHADDR);
5745  data_cnt += 1;
5746  data_addr -= 1;
5747  sgptr &= SG_PTR_MASK;
5748  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5749  struct ahd_dma64_seg *sg;
5750 
5751  sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5752 
5753  /*
5754  * The residual sg ptr points to the next S/G
5755  * to load so we must go back one.
5756  */
5757  sg--;
5758  sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5759  if (sg != scb->sg_list
5760  && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5761 
5762  sg--;
5763  sglen = ahd_le32toh(sg->len);
5764  /*
5765  * Preserve High Address and SG_LIST
5766  * bits while setting the count to 1.
5767  */
5768  data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5769  data_addr = ahd_le64toh(sg->addr)
5770  + (sglen & AHD_SG_LEN_MASK)
5771  - 1;
5772 
5773  /*
5774  * Increment sg so it points to the
5775  * "next" sg.
5776  */
5777  sg++;
5778  sgptr = ahd_sg_virt_to_bus(ahd, scb,
5779  sg);
5780  }
5781  } else {
5782  struct ahd_dma_seg *sg;
5783 
5784  sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5785 
5786  /*
5787  * The residual sg ptr points to the next S/G
5788  * to load so we must go back one.
5789  */
5790  sg--;
5791  sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5792  if (sg != scb->sg_list
5793  && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5794 
5795  sg--;
5796  sglen = ahd_le32toh(sg->len);
5797  /*
5798  * Preserve High Address and SG_LIST
5799  * bits while setting the count to 1.
5800  */
5801  data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5802  data_addr = ahd_le32toh(sg->addr)
5803  + (sglen & AHD_SG_LEN_MASK)
5804  - 1;
5805 
5806  /*
5807  * Increment sg so it points to the
5808  * "next" sg.
5809  */
5810  sg++;
5811  sgptr = ahd_sg_virt_to_bus(ahd, scb,
5812  sg);
5813  }
5814  }
5815  /*
5816  * Toggle the "oddness" of the transfer length
5817  * to handle this mid-transfer ignore wide
5818  * residue. This ensures that the oddness is
5819  * correct for subsequent data transfers.
5820  */
5821  ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5822  ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5823  ^ SCB_XFERLEN_ODD);
5824 
5825  ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5826  ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5827  /*
5828  * The FIFO's pointers will be updated if/when the
5829  * sequencer re-enters a data phase.
5830  */
5831  }
5832  }
5833 }
5834 
5835 
5836 /*
5837  * Reinitialize the data pointers for the active transfer
5838  * based on its current residual.
5839  */
5840 static void
5841 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5842 {
5843  struct scb *scb;
5844  ahd_mode_state saved_modes;
5845  u_int scb_index;
5846  u_int wait;
5847  uint32_t sgptr;
5848  uint32_t resid;
5849  uint64_t dataptr;
5850 
5853 
5854  scb_index = ahd_get_scbptr(ahd);
5855  scb = ahd_lookup_scb(ahd, scb_index);
5856 
5857  /*
5858  * Release and reacquire the FIFO so we
5859  * have a clean slate.
5860  */
5861  ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5862  wait = 1000;
5863  while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5864  ahd_delay(100);
5865  if (wait == 0) {
5866  ahd_print_path(ahd, scb);
5867  printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5868  ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5869  }
5870  saved_modes = ahd_save_modes(ahd);
5872  ahd_outb(ahd, DFFSTAT,
5873  ahd_inb(ahd, DFFSTAT)
5874  | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5875 
5876  /*
5877  * Determine initial values for data_addr and data_cnt
5878  * for resuming the data phase.
5879  */
5880  sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5881  sgptr &= SG_PTR_MASK;
5882 
5883  resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5884  | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5885  | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5886 
5887  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5888  struct ahd_dma64_seg *sg;
5889 
5890  sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5891 
5892  /* The residual sg_ptr always points to the next sg */
5893  sg--;
5894 
5895  dataptr = ahd_le64toh(sg->addr)
5896  + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5897  - resid;
5898  ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5899  } else {
5900  struct ahd_dma_seg *sg;
5901 
5902  sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5903 
5904  /* The residual sg_ptr always points to the next sg */
5905  sg--;
5906 
5907  dataptr = ahd_le32toh(sg->addr)
5908  + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5909  - resid;
5910  ahd_outb(ahd, HADDR + 4,
5911  (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5912  }
5913  ahd_outl(ahd, HADDR, dataptr);
5914  ahd_outb(ahd, HCNT + 2, resid >> 16);
5915  ahd_outb(ahd, HCNT + 1, resid >> 8);
5916  ahd_outb(ahd, HCNT, resid);
5917 }
5918 
5919 /*
5920  * Handle the effects of issuing a bus device reset message.
5921  */
5922 static void
5923 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5924  u_int lun, cam_status status, char *message,
5925  int verbose_level)
5926 {
5927 #ifdef AHD_TARGET_MODE
5928  struct ahd_tmode_tstate* tstate;
5929 #endif
5930  int found;
5931 
5932  found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5933  lun, SCB_LIST_NULL, devinfo->role,
5934  status);
5935 
5936 #ifdef AHD_TARGET_MODE
5937  /*
5938  * Send an immediate notify ccb to all target mord peripheral
5939  * drivers affected by this action.
5940  */
5941  tstate = ahd->enabled_targets[devinfo->our_scsiid];
5942  if (tstate != NULL) {
5943  u_int cur_lun;
5944  u_int max_lun;
5945 
5946  if (lun != CAM_LUN_WILDCARD) {
5947  cur_lun = 0;
5948  max_lun = AHD_NUM_LUNS - 1;
5949  } else {
5950  cur_lun = lun;
5951  max_lun = lun;
5952  }
5953  for (;cur_lun <= max_lun; cur_lun++) {
5954  struct ahd_tmode_lstate* lstate;
5955 
5956  lstate = tstate->enabled_luns[cur_lun];
5957  if (lstate == NULL)
5958  continue;
5959 
5960  ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5961  MSG_BUS_DEV_RESET, /*arg*/0);
5962  ahd_send_lstate_events(ahd, lstate);
5963  }
5964  }
5965 #endif
5966 
5967  /*
5968  * Go back to async/narrow transfers and renegotiate.
5969  */
5970  ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5971  AHD_TRANS_CUR, /*paused*/TRUE);
5972  ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5973  /*ppr_options*/0, AHD_TRANS_CUR,
5974  /*paused*/TRUE);
5975 
5976  if (status != CAM_SEL_TIMEOUT)
5977  ahd_send_async(ahd, devinfo->channel, devinfo->target,
5979 
5980  if (message != NULL && bootverbose)
5981  printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5982  message, devinfo->channel, devinfo->target, found);
5983 }
5984 
5985 #ifdef AHD_TARGET_MODE
5986 static void
5987 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5988  struct scb *scb)
5989 {
5990 
5991  /*
5992  * To facilitate adding multiple messages together,
5993  * each routine should increment the index and len
5994  * variables instead of setting them explicitly.
5995  */
5996  ahd->msgout_index = 0;
5997  ahd->msgout_len = 0;
5998 
5999  if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
6000  ahd_build_transfer_msg(ahd, devinfo);
6001  else
6002  panic("ahd_intr: AWAITING target message with no message");
6003 
6004  ahd->msgout_index = 0;
6006 }
6007 #endif
6008 /**************************** Initialization **********************************/
6009 static u_int
6010 ahd_sglist_size(struct ahd_softc *ahd)
6011 {
6012  bus_size_t list_size;
6013 
6014  list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
6015  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6016  list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
6017  return (list_size);
6018 }
6019 
6020 /*
6021  * Calculate the optimum S/G List allocation size. S/G elements used
6022  * for a given transaction must be physically contiguous. Assume the
6023  * OS will allocate full pages to us, so it doesn't make sense to request
6024  * less than a page.
6025  */
6026 static u_int
6027 ahd_sglist_allocsize(struct ahd_softc *ahd)
6028 {
6029  bus_size_t sg_list_increment;
6030  bus_size_t sg_list_size;
6031  bus_size_t max_list_size;
6032  bus_size_t best_list_size;
6033 
6034  /* Start out with the minimum required for AHD_NSEG. */
6035  sg_list_increment = ahd_sglist_size(ahd);
6036  sg_list_size = sg_list_increment;
6037 
6038  /* Get us as close as possible to a page in size. */
6039  while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6040  sg_list_size += sg_list_increment;
6041 
6042  /*
6043  * Try to reduce the amount of wastage by allocating
6044  * multiple pages.
6045  */
6046  best_list_size = sg_list_size;
6047  max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6048  if (max_list_size < 4 * PAGE_SIZE)
6049  max_list_size = 4 * PAGE_SIZE;
6050  if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6051  max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6052  while ((sg_list_size + sg_list_increment) <= max_list_size
6053  && (sg_list_size % PAGE_SIZE) != 0) {
6054  bus_size_t new_mod;
6055  bus_size_t best_mod;
6056 
6057  sg_list_size += sg_list_increment;
6058  new_mod = sg_list_size % PAGE_SIZE;
6059  best_mod = best_list_size % PAGE_SIZE;
6060  if (new_mod > best_mod || new_mod == 0) {
6061  best_list_size = sg_list_size;
6062  }
6063  }
6064  return (best_list_size);
6065 }
6066 
6067 /*
6068  * Allocate a controller structure for a new device
6069  * and perform initial initializion.
6070  */
6071 struct ahd_softc *
6072 ahd_alloc(void *platform_arg, char *name)
6073 {
6074  struct ahd_softc *ahd;
6075 
6076 #ifndef __FreeBSD__
6077  ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
6078  if (!ahd) {
6079  printk("aic7xxx: cannot malloc softc!\n");
6080  kfree(name);
6081  return NULL;
6082  }
6083 #else
6084  ahd = device_get_softc((device_t)platform_arg);
6085 #endif
6086  memset(ahd, 0, sizeof(*ahd));
6087  ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6088  if (ahd->seep_config == NULL) {
6089 #ifndef __FreeBSD__
6090  kfree(ahd);
6091 #endif
6092  kfree(name);
6093  return (NULL);
6094  }
6095  LIST_INIT(&ahd->pending_scbs);
6096  /* We don't know our unit number until the OSM sets it */
6097  ahd->name = name;
6098  ahd->unit = -1;
6099  ahd->description = NULL;
6100  ahd->bus_description = NULL;
6101  ahd->channel = 'A';
6102  ahd->chip = AHD_NONE;
6103  ahd->features = AHD_FENONE;
6104  ahd->bugs = AHD_BUGNONE;
6107  ahd_timer_init(&ahd->reset_timer);
6108  ahd_timer_init(&ahd->stat_timer);
6115 
6116  if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6117  ahd_free(ahd);
6118  ahd = NULL;
6119  }
6120 #ifdef AHD_DEBUG
6121  if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6122  printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6123  ahd_name(ahd), (u_int)sizeof(struct scb),
6124  (u_int)sizeof(struct hardware_scb));
6125  }
6126 #endif
6127  return (ahd);
6128 }
6129 
6130 int
6132 {
6133 
6134  ahd->unpause = 0;
6135  ahd->pause = PAUSE;
6136  return (0);
6137 }
6138 
6139 void
6140 ahd_set_unit(struct ahd_softc *ahd, int unit)
6141 {
6142  ahd->unit = unit;
6143 }
6144 
6145 void
6146 ahd_set_name(struct ahd_softc *ahd, char *name)
6147 {
6148  if (ahd->name != NULL)
6149  kfree(ahd->name);
6150  ahd->name = name;
6151 }
6152 
6153 void
6154 ahd_free(struct ahd_softc *ahd)
6155 {
6156  int i;
6157 
6158  switch (ahd->init_level) {
6159  default:
6160  case 5:
6161  ahd_shutdown(ahd);
6162  /* FALLTHROUGH */
6163  case 4:
6165  ahd->shared_data_map.dmamap);
6166  /* FALLTHROUGH */
6167  case 3:
6168  ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6169  ahd->shared_data_map.dmamap);
6171  ahd->shared_data_map.dmamap);
6172  /* FALLTHROUGH */
6173  case 2:
6175  case 1:
6176 #ifndef __linux__
6177  ahd_dma_tag_destroy(ahd, ahd->buffer_dmat);
6178 #endif
6179  break;
6180  case 0:
6181  break;
6182  }
6183 
6184 #ifndef __linux__
6185  ahd_dma_tag_destroy(ahd, ahd->parent_dmat);
6186 #endif
6187  ahd_platform_free(ahd);
6188  ahd_fini_scbdata(ahd);
6189  for (i = 0; i < AHD_NUM_TARGETS; i++) {
6190  struct ahd_tmode_tstate *tstate;
6191 
6192  tstate = ahd->enabled_targets[i];
6193  if (tstate != NULL) {
6194 #ifdef AHD_TARGET_MODE
6195  int j;
6196 
6197  for (j = 0; j < AHD_NUM_LUNS; j++) {
6198  struct ahd_tmode_lstate *lstate;
6199 
6200  lstate = tstate->enabled_luns[j];
6201  if (lstate != NULL) {
6202  xpt_free_path(lstate->path);
6203  kfree(lstate);
6204  }
6205  }
6206 #endif
6207  kfree(tstate);
6208  }
6209  }
6210 #ifdef AHD_TARGET_MODE
6211  if (ahd->black_hole != NULL) {
6212  xpt_free_path(ahd->black_hole->path);
6213  kfree(ahd->black_hole);
6214  }
6215 #endif
6216  if (ahd->name != NULL)
6217  kfree(ahd->name);
6218  if (ahd->seep_config != NULL)
6219  kfree(ahd->seep_config);
6220  if (ahd->saved_stack != NULL)
6221  kfree(ahd->saved_stack);
6222 #ifndef __FreeBSD__
6223  kfree(ahd);
6224 #endif
6225  return;
6226 }
6227 
6228 static void
6229 ahd_shutdown(void *arg)
6230 {
6231  struct ahd_softc *ahd;
6232 
6233  ahd = (struct ahd_softc *)arg;
6234 
6235  /*
6236  * Stop periodic timer callbacks.
6237  */
6238  ahd_timer_stop(&ahd->reset_timer);
6239  ahd_timer_stop(&ahd->stat_timer);
6240 
6241  /* This will reset most registers to 0, but not all */
6242  ahd_reset(ahd, /*reinit*/FALSE);
6243 }
6244 
6245 /*
6246  * Reset the controller and record some information about it
6247  * that is only available just after a reset. If "reinit" is
6248  * non-zero, this reset occurred after initial configuration
6249  * and the caller requests that the chip be fully reinitialized
6250  * to a runable state. Chip interrupts are *not* enabled after
6251  * a reinitialization. The caller must enable interrupts via
6252  * ahd_intr_enable().
6253  */
6254 int
6255 ahd_reset(struct ahd_softc *ahd, int reinit)
6256 {
6257  u_int sxfrctl1;
6258  int wait;
6259  uint32_t cmd;
6260 
6261  /*
6262  * Preserve the value of the SXFRCTL1 register for all channels.
6263  * It contains settings that affect termination and we don't want
6264  * to disturb the integrity of the bus.
6265  */
6266  ahd_pause(ahd);
6267  ahd_update_modes(ahd);
6269  sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6270 
6271  cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6272  if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6273  uint32_t mod_cmd;
6274 
6275  /*
6276  * A4 Razor #632
6277  * During the assertion of CHIPRST, the chip
6278  * does not disable its parity logic prior to
6279  * the start of the reset. This may cause a
6280  * parity error to be detected and thus a
6281  * spurious SERR or PERR assertion. Disble
6282  * PERR and SERR responses during the CHIPRST.
6283  */
6284  mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6286  mod_cmd, /*bytes*/2);
6287  }
6288  ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6289 
6290  /*
6291  * Ensure that the reset has finished. We delay 1000us
6292  * prior to reading the register to make sure the chip
6293  * has sufficiently completed its reset to handle register
6294  * accesses.
6295  */
6296  wait = 1000;
6297  do {
6298  ahd_delay(1000);
6299  } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6300 
6301  if (wait == 0) {
6302  printk("%s: WARNING - Failed chip reset! "
6303  "Trying to initialize anyway.\n", ahd_name(ahd));
6304  }
6305  ahd_outb(ahd, HCNTRL, ahd->pause);
6306 
6307  if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6308  /*
6309  * Clear any latched PCI error status and restore
6310  * previous SERR and PERR response enables.
6311  */
6313  0xFF, /*bytes*/1);
6315  cmd, /*bytes*/2);
6316  }
6317 
6318  /*
6319  * Mode should be SCSI after a chip reset, but lets
6320  * set it just to be safe. We touch the MODE_PTR
6321  * register directly so as to bypass the lazy update
6322  * code in ahd_set_modes().
6323  */
6324  ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6325  ahd_outb(ahd, MODE_PTR,
6326  ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6327 
6328  /*
6329  * Restore SXFRCTL1.
6330  *
6331  * We must always initialize STPWEN to 1 before we
6332  * restore the saved values. STPWEN is initialized
6333  * to a tri-state condition which can only be cleared
6334  * by turning it on.
6335  */
6336  ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6337  ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6338 
6339  /* Determine chip configuration */
6340  ahd->features &= ~AHD_WIDE;
6341  if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6342  ahd->features |= AHD_WIDE;
6343 
6344  /*
6345  * If a recovery action has forced a chip reset,
6346  * re-initialize the chip to our liking.
6347  */
6348  if (reinit != 0)
6349  ahd_chip_init(ahd);
6350 
6351  return (0);
6352 }
6353 
6354 /*
6355  * Determine the number of SCBs available on the controller
6356  */
6357 static int
6358 ahd_probe_scbs(struct ahd_softc *ahd) {
6359  int i;
6360 
6363  for (i = 0; i < AHD_SCB_MAX; i++) {
6364  int j;
6365 
6366  ahd_set_scbptr(ahd, i);
6367  ahd_outw(ahd, SCB_BASE, i);
6368  for (j = 2; j < 64; j++)
6369  ahd_outb(ahd, SCB_BASE+j, 0);
6370  /* Start out life as unallocated (needing an abort) */
6372  if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6373  break;
6374  ahd_set_scbptr(ahd, 0);
6375  if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6376  break;
6377  }
6378  return (i);
6379 }
6380 
6381 static void
6382 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6383 {
6384  dma_addr_t *baddr;
6385 
6386  baddr = (dma_addr_t *)arg;
6387  *baddr = segs->ds_addr;
6388 }
6389 
6390 static void
6391 ahd_initialize_hscbs(struct ahd_softc *ahd)
6392 {
6393  int i;
6394 
6395  for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6396  ahd_set_scbptr(ahd, i);
6397 
6398  /* Clear the control byte. */
6399  ahd_outb(ahd, SCB_CONTROL, 0);
6400 
6401  /* Set the next pointer */
6403  }
6404 }
6405 
6406 static int
6407 ahd_init_scbdata(struct ahd_softc *ahd)
6408 {
6409  struct scb_data *scb_data;
6410  int i;
6411 
6412  scb_data = &ahd->scb_data;
6413  TAILQ_INIT(&scb_data->free_scbs);
6414  for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6415  LIST_INIT(&scb_data->free_scb_lists[i]);
6416  LIST_INIT(&scb_data->any_dev_free_scb_list);
6417  SLIST_INIT(&scb_data->hscb_maps);
6418  SLIST_INIT(&scb_data->sg_maps);
6419  SLIST_INIT(&scb_data->sense_maps);
6420 
6421  /* Determine the number of hardware SCBs and initialize them */
6422  scb_data->maxhscbs = ahd_probe_scbs(ahd);
6423  if (scb_data->maxhscbs == 0) {
6424  printk("%s: No SCB space found\n", ahd_name(ahd));
6425  return (ENXIO);
6426  }
6427 
6428  ahd_initialize_hscbs(ahd);
6429 
6430  /*
6431  * Create our DMA tags. These tags define the kinds of device
6432  * accessible memory allocations and memory mappings we will
6433  * need to perform during normal operation.
6434  *
6435  * Unless we need to further restrict the allocation, we rely
6436  * on the restrictions of the parent dmat, hence the common
6437  * use of MAXADDR and MAXSIZE.
6438  */
6439 
6440  /* DMA tag for our hardware scb structures */
6441  if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6442  /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6443  /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6444  /*highaddr*/BUS_SPACE_MAXADDR,
6445  /*filter*/NULL, /*filterarg*/NULL,
6446  PAGE_SIZE, /*nsegments*/1,
6447  /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6448  /*flags*/0, &scb_data->hscb_dmat) != 0) {
6449  goto error_exit;
6450  }
6451 
6452  scb_data->init_level++;
6453 
6454  /* DMA tag for our S/G structures. */
6455  if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6456  /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6457  /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6458  /*highaddr*/BUS_SPACE_MAXADDR,
6459  /*filter*/NULL, /*filterarg*/NULL,
6460  ahd_sglist_allocsize(ahd), /*nsegments*/1,
6461  /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6462  /*flags*/0, &scb_data->sg_dmat) != 0) {
6463  goto error_exit;
6464  }
6465 #ifdef AHD_DEBUG
6466  if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6467  printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6468  ahd_sglist_allocsize(ahd));
6469 #endif
6470 
6471  scb_data->init_level++;
6472 
6473  /* DMA tag for our sense buffers. We allocate in page sized chunks */
6474  if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6475  /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6476  /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6477  /*highaddr*/BUS_SPACE_MAXADDR,
6478  /*filter*/NULL, /*filterarg*/NULL,
6479  PAGE_SIZE, /*nsegments*/1,
6480  /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6481  /*flags*/0, &scb_data->sense_dmat) != 0) {
6482  goto error_exit;
6483  }
6484 
6485  scb_data->init_level++;
6486 
6487  /* Perform initial CCB allocation */
6488  ahd_alloc_scbs(ahd);
6489 
6490  if (scb_data->numscbs == 0) {
6491  printk("%s: ahd_init_scbdata - "
6492  "Unable to allocate initial scbs\n",
6493  ahd_name(ahd));
6494  goto error_exit;
6495  }
6496 
6497  /*
6498  * Note that we were successful
6499  */
6500  return (0);
6501 
6502 error_exit:
6503 
6504  return (ENOMEM);
6505 }
6506 
6507 static struct scb *
6508 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6509 {
6510  struct scb *scb;
6511 
6512  /*
6513  * Look on the pending list.
6514  */
6515  LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6516  if (SCB_GET_TAG(scb) == tag)
6517  return (scb);
6518  }
6519 
6520  /*
6521  * Then on all of the collision free lists.
6522  */
6523  TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6524  struct scb *list_scb;
6525 
6526  list_scb = scb;
6527  do {
6528  if (SCB_GET_TAG(list_scb) == tag)
6529  return (list_scb);
6530  list_scb = LIST_NEXT(list_scb, collision_links);
6531  } while (list_scb);
6532  }
6533 
6534  /*
6535  * And finally on the generic free list.
6536  */
6537  LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6538  if (SCB_GET_TAG(scb) == tag)
6539  return (scb);
6540  }
6541 
6542  return (NULL);
6543 }
6544 
6545 static void
6546 ahd_fini_scbdata(struct ahd_softc *ahd)
6547 {
6548  struct scb_data *scb_data;
6549 
6550  scb_data = &ahd->scb_data;
6551  if (scb_data == NULL)
6552  return;
6553 
6554  switch (scb_data->init_level) {
6555  default:
6556  case 7:
6557  {
6558  struct map_node *sns_map;
6559 
6560  while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6561  SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6562  ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6563  sns_map->dmamap);
6564  ahd_dmamem_free(ahd, scb_data->sense_dmat,
6565  sns_map->vaddr, sns_map->dmamap);
6566  kfree(sns_map);
6567  }
6568  ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6569  /* FALLTHROUGH */
6570  }
6571  case 6:
6572  {
6573  struct map_node *sg_map;
6574 
6575  while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6576  SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6577  ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6578  sg_map->dmamap);
6579  ahd_dmamem_free(ahd, scb_data->sg_dmat,
6580  sg_map->vaddr, sg_map->dmamap);
6581  kfree(sg_map);
6582  }
6583  ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6584  /* FALLTHROUGH */
6585  }
6586  case 5:
6587  {
6588  struct map_node *hscb_map;
6589 
6590  while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6591  SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6592  ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6593  hscb_map->dmamap);
6594  ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6595  hscb_map->vaddr, hscb_map->dmamap);
6596  kfree(hscb_map);
6597  }
6598  ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6599  /* FALLTHROUGH */
6600  }
6601  case 4:
6602  case 3:
6603  case 2:
6604  case 1:
6605  case 0:
6606  break;
6607  }
6608 }
6609 
6610 /*
6611  * DSP filter Bypass must be enabled until the first selection
6612  * after a change in bus mode (Razor #491 and #493).
6613  */
6614 static void
6615 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6616 {
6617  ahd_mode_state saved_modes;
6618 
6619  saved_modes = ahd_save_modes(ahd);
6621  ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6622  | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6623  ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6624 #ifdef AHD_DEBUG
6625  if ((ahd_debug & AHD_SHOW_MISC) != 0)
6626  printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6627 #endif
6628  ahd_restore_modes(ahd, saved_modes);
6629  ahd->flags &= ~AHD_HAD_FIRST_SEL;
6630 }
6631 
6632 static void
6633 ahd_iocell_first_selection(struct ahd_softc *ahd)
6634 {
6635  ahd_mode_state saved_modes;
6636  u_int sblkctl;
6637 
6638  if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6639  return;
6640  saved_modes = ahd_save_modes(ahd);
6642  sblkctl = ahd_inb(ahd, SBLKCTL);
6644 #ifdef AHD_DEBUG
6645  if ((ahd_debug & AHD_SHOW_MISC) != 0)
6646  printk("%s: iocell first selection\n", ahd_name(ahd));
6647 #endif
6648  if ((sblkctl & ENAB40) != 0) {
6649  ahd_outb(ahd, DSPDATACTL,
6650  ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6651 #ifdef AHD_DEBUG
6652  if ((ahd_debug & AHD_SHOW_MISC) != 0)
6653  printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6654 #endif
6655  }
6656  ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6657  ahd_outb(ahd, CLRINT, CLRSCSIINT);
6658  ahd_restore_modes(ahd, saved_modes);
6659  ahd->flags |= AHD_HAD_FIRST_SEL;
6660 }
6661 
6662 /*************************** SCB Management ***********************************/
6663 static void
6664 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6665 {
6666  struct scb_list *free_list;
6667  struct scb_tailq *free_tailq;
6668  struct scb *first_scb;
6669 
6670  scb->flags |= SCB_ON_COL_LIST;
6671  AHD_SET_SCB_COL_IDX(scb, col_idx);
6672  free_list = &ahd->scb_data.free_scb_lists[col_idx];
6673  free_tailq = &ahd->scb_data.free_scbs;
6674  first_scb = LIST_FIRST(free_list);
6675  if (first_scb != NULL) {
6676  LIST_INSERT_AFTER(first_scb, scb, collision_links);
6677  } else {
6678  LIST_INSERT_HEAD(free_list, scb, collision_links);
6679  TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6680  }
6681 }
6682 
6683 static void
6684 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6685 {
6686  struct scb_list *free_list;
6687  struct scb_tailq *free_tailq;
6688  struct scb *first_scb;
6689  u_int col_idx;
6690 
6691  scb->flags &= ~SCB_ON_COL_LIST;
6692  col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6693  free_list = &ahd->scb_data.free_scb_lists[col_idx];
6694  free_tailq = &ahd->scb_data.free_scbs;
6695  first_scb = LIST_FIRST(free_list);
6696  if (first_scb == scb) {
6697  struct scb *next_scb;
6698 
6699  /*
6700  * Maintain order in the collision free
6701  * lists for fairness if this device has
6702  * other colliding tags active.
6703  */
6704  next_scb = LIST_NEXT(scb, collision_links);
6705  if (next_scb != NULL) {
6706  TAILQ_INSERT_AFTER(free_tailq, scb,
6707  next_scb, links.tqe);
6708  }
6709  TAILQ_REMOVE(free_tailq, scb, links.tqe);
6710  }
6712 }
6713 
6714 /*
6715  * Get a free scb. If there are none, see if we can allocate a new SCB.
6716  */
6717 struct scb *
6718 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6719 {
6720  struct scb *scb;
6721  int tries;
6722 
6723  tries = 0;
6724 look_again:
6725  TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6726  if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6727  ahd_rem_col_list(ahd, scb);
6728  goto found;
6729  }
6730  }
6731  if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6732 
6733  if (tries++ != 0)
6734  return (NULL);
6735  ahd_alloc_scbs(ahd);
6736  goto look_again;
6737  }
6738  LIST_REMOVE(scb, links.le);
6739  if (col_idx != AHD_NEVER_COL_IDX
6740  && (scb->col_scb != NULL)
6741  && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6742  LIST_REMOVE(scb->col_scb, links.le);
6743  ahd_add_col_list(ahd, scb->col_scb, col_idx);
6744  }
6745 found:
6746  scb->flags |= SCB_ACTIVE;
6747  return (scb);
6748 }
6749 
6750 /*
6751  * Return an SCB resource to the free list.
6752  */
6753 void
6754 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6755 {
6756  /* Clean up for the next user */
6757  scb->flags = SCB_FLAG_NONE;
6758  scb->hscb->control = 0;
6759  ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6760 
6761  if (scb->col_scb == NULL) {
6762 
6763  /*
6764  * No collision possible. Just free normally.
6765  */
6766  LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6767  scb, links.le);
6768  } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6769 
6770  /*
6771  * The SCB we might have collided with is on
6772  * a free collision list. Put both SCBs on
6773  * the generic list.
6774  */
6775  ahd_rem_col_list(ahd, scb->col_scb);
6776  LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6777  scb, links.le);
6778  LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6779  scb->col_scb, links.le);
6780  } else if ((scb->col_scb->flags
6782  && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6783 
6784  /*
6785  * The SCB we might collide with on the next allocation
6786  * is still active in a non-packetized, tagged, context.
6787  * Put us on the SCB collision list.
6788  */
6789  ahd_add_col_list(ahd, scb,
6790  AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6791  } else {
6792  /*
6793  * The SCB we might collide with on the next allocation
6794  * is either active in a packetized context, or free.
6795  * Since we can't collide, put this SCB on the generic
6796  * free list.
6797  */
6798  LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6799  scb, links.le);
6800  }
6801 
6802  ahd_platform_scb_free(ahd, scb);
6803 }
6804 
6805 static void
6806 ahd_alloc_scbs(struct ahd_softc *ahd)
6807 {
6808  struct scb_data *scb_data;
6809  struct scb *next_scb;
6810  struct hardware_scb *hscb;
6811  struct map_node *hscb_map;
6812  struct map_node *sg_map;
6813  struct map_node *sense_map;
6814  uint8_t *segs;
6816  dma_addr_t hscb_busaddr;
6817  dma_addr_t sg_busaddr;
6818  dma_addr_t sense_busaddr;
6819  int newcount;
6820  int i;
6821 
6822  scb_data = &ahd->scb_data;
6823  if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6824  /* Can't allocate any more */
6825  return;
6826 
6827  if (scb_data->scbs_left != 0) {
6828  int offset;
6829 
6830  offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6831  hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6832  hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6833  hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6834  } else {
6835  hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6836 
6837  if (hscb_map == NULL)
6838  return;
6839 
6840  /* Allocate the next batch of hardware SCBs */
6841  if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6842  (void **)&hscb_map->vaddr,
6843  BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6844  kfree(hscb_map);
6845  return;
6846  }
6847 
6848  SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6849 
6850  ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6851  hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6852  &hscb_map->physaddr, /*flags*/0);
6853 
6854  hscb = (struct hardware_scb *)hscb_map->vaddr;
6855  hscb_busaddr = hscb_map->physaddr;
6856  scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6857  }
6858 
6859  if (scb_data->sgs_left != 0) {
6860  int offset;
6861 
6862  offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6863  - scb_data->sgs_left) * ahd_sglist_size(ahd);
6864  sg_map = SLIST_FIRST(&scb_data->sg_maps);
6865  segs = sg_map->vaddr + offset;
6866  sg_busaddr = sg_map->physaddr + offset;
6867  } else {
6868  sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6869 
6870  if (sg_map == NULL)
6871  return;
6872 
6873  /* Allocate the next batch of S/G lists */
6874  if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6875  (void **)&sg_map->vaddr,
6876  BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6877  kfree(sg_map);
6878  return;
6879  }
6880 
6881  SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6882 
6883  ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6884  sg_map->vaddr, ahd_sglist_allocsize(ahd),
6885  ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6886 
6887  segs = sg_map->vaddr;
6888  sg_busaddr = sg_map->physaddr;
6889  scb_data->sgs_left =
6890  ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6891 #ifdef AHD_DEBUG
6892  if (ahd_debug & AHD_SHOW_MEMORY)
6893  printk("Mapped SG data\n");
6894 #endif
6895  }
6896 
6897  if (scb_data->sense_left != 0) {
6898  int offset;
6899 
6900  offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6901  sense_map = SLIST_FIRST(&scb_data->sense_maps);
6902  sense_data = sense_map->vaddr + offset;
6903  sense_busaddr = sense_map->physaddr + offset;
6904  } else {
6905  sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6906 
6907  if (sense_map == NULL)
6908  return;
6909 
6910  /* Allocate the next batch of sense buffers */
6911  if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6912  (void **)&sense_map->vaddr,
6913  BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6914  kfree(sense_map);
6915  return;
6916  }
6917 
6918  SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6919 
6920  ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6921  sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6922  &sense_map->physaddr, /*flags*/0);
6923 
6924  sense_data = sense_map->vaddr;
6925  sense_busaddr = sense_map->physaddr;
6926  scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6927 #ifdef AHD_DEBUG
6928  if (ahd_debug & AHD_SHOW_MEMORY)
6929  printk("Mapped sense data\n");
6930 #endif
6931  }
6932 
6933  newcount = min(scb_data->sense_left, scb_data->scbs_left);
6934  newcount = min(newcount, scb_data->sgs_left);
6935  newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6936  for (i = 0; i < newcount; i++) {
6937  struct scb_platform_data *pdata;
6938  u_int col_tag;
6939 #ifndef __linux__
6940  int error;
6941 #endif
6942 
6943  next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6944  if (next_scb == NULL)
6945  break;
6946 
6947  pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6948  if (pdata == NULL) {
6949  kfree(next_scb);
6950  break;
6951  }
6952  next_scb->platform_data = pdata;
6953  next_scb->hscb_map = hscb_map;
6954  next_scb->sg_map = sg_map;
6955  next_scb->sense_map = sense_map;
6956  next_scb->sg_list = segs;
6957  next_scb->sense_data = sense_data;
6958  next_scb->sense_busaddr = sense_busaddr;
6959  memset(hscb, 0, sizeof(*hscb));
6960  next_scb->hscb = hscb;
6961  hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6962 
6963  /*
6964  * The sequencer always starts with the second entry.
6965  * The first entry is embedded in the scb.
6966  */
6967  next_scb->sg_list_busaddr = sg_busaddr;
6968  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6969  next_scb->sg_list_busaddr
6970  += sizeof(struct ahd_dma64_seg);
6971  else
6972  next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6973  next_scb->ahd_softc = ahd;
6974  next_scb->flags = SCB_FLAG_NONE;
6975 #ifndef __linux__
6976  error = ahd_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0,
6977  &next_scb->dmamap);
6978  if (error != 0) {
6979  kfree(next_scb);
6980  kfree(pdata);
6981  break;
6982  }
6983 #endif
6984  next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6985  col_tag = scb_data->numscbs ^ 0x100;
6986  next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6987  if (next_scb->col_scb != NULL)
6988  next_scb->col_scb->col_scb = next_scb;
6989  ahd_free_scb(ahd, next_scb);
6990  hscb++;
6991  hscb_busaddr += sizeof(*hscb);
6992  segs += ahd_sglist_size(ahd);
6993  sg_busaddr += ahd_sglist_size(ahd);
6994  sense_data += AHD_SENSE_BUFSIZE;
6995  sense_busaddr += AHD_SENSE_BUFSIZE;
6996  scb_data->numscbs++;
6997  scb_data->sense_left--;
6998  scb_data->scbs_left--;
6999  scb_data->sgs_left--;
7000  }
7001 }
7002 
7003 void
7004 ahd_controller_info(struct ahd_softc *ahd, char *buf)
7005 {
7006  const char *speed;
7007  const char *type;
7008  int len;
7009 
7010  len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
7011  buf += len;
7012 
7013  speed = "Ultra320 ";
7014  if ((ahd->features & AHD_WIDE) != 0) {
7015  type = "Wide ";
7016  } else {
7017  type = "Single ";
7018  }
7019  len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
7020  speed, type, ahd->channel, ahd->our_id);
7021  buf += len;
7022 
7023  sprintf(buf, "%s, %d SCBs", ahd->bus_description,
7024  ahd->scb_data.maxhscbs);
7025 }
7026 
7027 static const char *channel_strings[] = {
7028  "Primary Low",
7029  "Primary High",
7030  "Secondary Low",
7031  "Secondary High"
7032 };
7033 
7034 static const char *termstat_strings[] = {
7035  "Terminated Correctly",
7036  "Over Terminated",
7037  "Under Terminated",
7038  "Not Configured"
7039 };
7040 
7041 /***************************** Timer Facilities *******************************/
7042 #define ahd_timer_init init_timer
7043 #define ahd_timer_stop del_timer_sync
7045 
7046 static void
7047 ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg)
7048 {
7049  struct ahd_softc *ahd;
7050 
7051  ahd = (struct ahd_softc *)arg;
7052  del_timer(timer);
7053  timer->data = (u_long)arg;
7054  timer->expires = jiffies + (usec * HZ)/1000000;
7055  timer->function = (ahd_linux_callback_t*)func;
7056  add_timer(timer);
7057 }
7058 
7059 /*
7060  * Start the board, ready for normal operation
7061  */
7062 int
7063 ahd_init(struct ahd_softc *ahd)
7064 {
7065  uint8_t *next_vaddr;
7066  dma_addr_t next_baddr;
7067  size_t driver_data_size;
7068  int i;
7069  int error;
7070  u_int warn_user;
7071  uint8_t current_sensing;
7072  uint8_t fstat;
7073 
7075 
7076  ahd->stack_size = ahd_probe_stack_size(ahd);
7077  ahd->saved_stack = kmalloc(ahd->stack_size * sizeof(uint16_t), GFP_ATOMIC);
7078  if (ahd->saved_stack == NULL)
7079  return (ENOMEM);
7080 
7081  /*
7082  * Verify that the compiler hasn't over-aggressively
7083  * padded important structures.
7084  */
7085  if (sizeof(struct hardware_scb) != 64)
7086  panic("Hardware SCB size is incorrect");
7087 
7088 #ifdef AHD_DEBUG
7089  if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7090  ahd->flags |= AHD_SEQUENCER_DEBUG;
7091 #endif
7092 
7093  /*
7094  * Default to allowing initiator operations.
7095  */
7096  ahd->flags |= AHD_INITIATORROLE;
7097 
7098  /*
7099  * Only allow target mode features if this unit has them enabled.
7100  */
7101  if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7102  ahd->features &= ~AHD_TARGETMODE;
7103 
7104 #ifndef __linux__
7105  /* DMA tag for mapping buffers into device visible space. */
7106  if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7107  /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7108  /*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING
7109  ? (dma_addr_t)0x7FFFFFFFFFULL
7111  /*highaddr*/BUS_SPACE_MAXADDR,
7112  /*filter*/NULL, /*filterarg*/NULL,
7113  /*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE,
7114  /*nsegments*/AHD_NSEG,
7115  /*maxsegsz*/AHD_MAXTRANSFER_SIZE,
7116  /*flags*/BUS_DMA_ALLOCNOW,
7117  &ahd->buffer_dmat) != 0) {
7118  return (ENOMEM);
7119  }
7120 #endif
7121 
7122  ahd->init_level++;
7123 
7124  /*
7125  * DMA tag for our command fifos and other data in system memory
7126  * the card's sequencer must be able to access. For initiator
7127  * roles, we need to allocate space for the qoutfifo. When providing
7128  * for the target mode role, we must additionally provide space for
7129  * the incoming target command fifo.
7130  */
7131  driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7132  + sizeof(struct hardware_scb);
7133  if ((ahd->features & AHD_TARGETMODE) != 0)
7134  driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7135  if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7136  driver_data_size += PKT_OVERRUN_BUFSIZE;
7137  if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7138  /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7139  /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7140  /*highaddr*/BUS_SPACE_MAXADDR,
7141  /*filter*/NULL, /*filterarg*/NULL,
7142  driver_data_size,
7143  /*nsegments*/1,
7144  /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7145  /*flags*/0, &ahd->shared_data_dmat) != 0) {
7146  return (ENOMEM);
7147  }
7148 
7149  ahd->init_level++;
7150 
7151  /* Allocation of driver data */
7152  if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7153  (void **)&ahd->shared_data_map.vaddr,
7155  &ahd->shared_data_map.dmamap) != 0) {
7156  return (ENOMEM);
7157  }
7158 
7159  ahd->init_level++;
7160 
7161  /* And permanently map it in */
7162  ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7163  ahd->shared_data_map.vaddr, driver_data_size,
7164  ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7165  /*flags*/0);
7166  ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7167  next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7168  next_baddr = ahd->shared_data_map.physaddr
7169  + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7170  if ((ahd->features & AHD_TARGETMODE) != 0) {
7171  ahd->targetcmds = (struct target_cmd *)next_vaddr;
7172  next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7173  next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7174  }
7175 
7176  if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7177  ahd->overrun_buf = next_vaddr;
7178  next_vaddr += PKT_OVERRUN_BUFSIZE;
7179  next_baddr += PKT_OVERRUN_BUFSIZE;
7180  }
7181 
7182  /*
7183  * We need one SCB to serve as the "next SCB". Since the
7184  * tag identifier in this SCB will never be used, there is
7185  * no point in using a valid HSCB tag from an SCB pulled from
7186  * the standard free pool. So, we allocate this "sentinel"
7187  * specially from the DMA safe memory chunk used for the QOUTFIFO.
7188  */
7189  ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7191  ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7192 
7193  ahd->init_level++;
7194 
7195  /* Allocate SCB data now that buffer_dmat is initialized */
7196  if (ahd_init_scbdata(ahd) != 0)
7197  return (ENOMEM);
7198 
7199  if ((ahd->flags & AHD_INITIATORROLE) == 0)
7200  ahd->flags &= ~AHD_RESET_BUS_A;
7201 
7202  /*
7203  * Before committing these settings to the chip, give
7204  * the OSM one last chance to modify our configuration.
7205  */
7206  ahd_platform_init(ahd);
7207 
7208  /* Bring up the chip. */
7209  ahd_chip_init(ahd);
7210 
7212 
7213  if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7214  goto init_done;
7215 
7216  /*
7217  * Verify termination based on current draw and
7218  * warn user if the bus is over/under terminated.
7219  */
7221  CURSENSE_ENB);
7222  if (error != 0) {
7223  printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7224  goto init_done;
7225  }
7226  for (i = 20, fstat = FLX_FSTAT_BUSY;
7227  (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7228  error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7229  if (error != 0) {
7230  printk("%s: current sensing timeout 2\n",
7231  ahd_name(ahd));
7232  goto init_done;
7233  }
7234  }
7235  if (i == 0) {
7236  printk("%s: Timedout during current-sensing test\n",
7237  ahd_name(ahd));
7238  goto init_done;
7239  }
7240 
7241  /* Latch Current Sensing status. */
7242  error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7243  if (error != 0) {
7244  printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7245  goto init_done;
7246  }
7247 
7248  /* Diable current sensing. */
7250 
7251 #ifdef AHD_DEBUG
7252  if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7253  printk("%s: current_sensing == 0x%x\n",
7254  ahd_name(ahd), current_sensing);
7255  }
7256 #endif
7257  warn_user = 0;
7258  for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7259  u_int term_stat;
7260 
7261  term_stat = (current_sensing & FLX_CSTAT_MASK);
7262  switch (term_stat) {
7263  case FLX_CSTAT_OVER:
7264  case FLX_CSTAT_UNDER:
7265  warn_user++;
7266  case FLX_CSTAT_INVALID:
7267  case FLX_CSTAT_OKAY:
7268  if (warn_user == 0 && bootverbose == 0)
7269  break;
7270  printk("%s: %s Channel %s\n", ahd_name(ahd),
7271  channel_strings[i], termstat_strings[term_stat]);
7272  break;
7273  }
7274  }
7275  if (warn_user) {
7276  printk("%s: WARNING. Termination is not configured correctly.\n"
7277  "%s: WARNING. SCSI bus operations may FAIL.\n",
7278  ahd_name(ahd), ahd_name(ahd));
7279  }
7280 init_done:
7281  ahd_restart(ahd);
7282  ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US,
7283  ahd_stat_timer, ahd);
7284  return (0);
7285 }
7286 
7287 /*
7288  * (Re)initialize chip state after a chip reset.
7289  */
7290 static void
7291 ahd_chip_init(struct ahd_softc *ahd)
7292 {
7293  uint32_t busaddr;
7294  u_int sxfrctl1;
7295  u_int scsiseq_template;
7296  u_int wait;
7297  u_int i;
7298  u_int target;
7299 
7301  /*
7302  * Take the LED out of diagnostic mode
7303  */
7304  ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7305 
7306  /*
7307  * Return HS_MAILBOX to its default value.
7308  */
7309  ahd->hs_mailbox = 0;
7310  ahd_outb(ahd, HS_MAILBOX, 0);
7311 
7312  /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7313  ahd_outb(ahd, IOWNID, ahd->our_id);
7314  ahd_outb(ahd, TOWNID, ahd->our_id);
7315  sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7316  sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7317  if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7318  && (ahd->seltime != STIMESEL_MIN)) {
7319  /*
7320  * The selection timer duration is twice as long
7321  * as it should be. Halve it by adding "1" to
7322  * the user specified setting.
7323  */
7324  sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7325  } else {
7326  sxfrctl1 |= ahd->seltime;
7327  }
7328 
7329  ahd_outb(ahd, SXFRCTL0, DFON);
7330  ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7332 
7333  /*
7334  * Now that termination is set, wait for up
7335  * to 500ms for our transceivers to settle. If
7336  * the adapter does not have a cable attached,
7337  * the transceivers may never settle, so don't
7338  * complain if we fail here.
7339  */
7340  for (wait = 10000;
7341  (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7342  wait--)
7343  ahd_delay(100);
7344 
7345  /* Clear any false bus resets due to the transceivers settling */
7346  ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7347  ahd_outb(ahd, CLRINT, CLRSCSIINT);
7348 
7349  /* Initialize mode specific S/G state. */
7350  for (i = 0; i < 2; i++) {
7351  ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7352  ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7353  ahd_outb(ahd, SG_STATE, 0);
7354  ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7355  ahd_outb(ahd, SEQIMODE,
7356  ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7357  |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7358  }
7359 
7363  ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7364  ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7365  if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7367  } else {
7369  }
7370  ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7371  if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7372  /*
7373  * Do not issue a target abort when a split completion
7374  * error occurs. Let our PCIX interrupt handler deal
7375  * with it instead. H2A4 Razor #625
7376  */
7377  ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7378 
7379  if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7380  ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7381 
7382  /*
7383  * Tweak IOCELL settings.
7384  */
7385  if ((ahd->flags & AHD_HP_BOARD) != 0) {
7386  for (i = 0; i < NUMDSPS; i++) {
7387  ahd_outb(ahd, DSPSELECT, i);
7388  ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7389  }
7390 #ifdef AHD_DEBUG
7391  if ((ahd_debug & AHD_SHOW_MISC) != 0)
7392  printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7393  WRTBIASCTL_HP_DEFAULT);
7394 #endif
7395  }
7396  ahd_setup_iocell_workaround(ahd);
7397 
7398  /*
7399  * Enable LQI Manager interrupts.
7400  */
7401  ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7402  | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7403  | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7404  ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7405  /*
7406  * We choose to have the sequencer catch LQOPHCHGINPKT errors
7407  * manually for the command phase at the start of a packetized
7408  * selection case. ENLQOBUSFREE should be made redundant by
7409  * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7410  * events fail to assert the BUSFREE interrupt so we must
7411  * also enable LQOBUSFREE interrupts.
7412  */
7413  ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7414 
7415  /*
7416  * Setup sequencer interrupt handlers.
7417  */
7418  ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7419  ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7420 
7421  /*
7422  * Setup SCB Offset registers.
7423  */
7424  if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7425  ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7426  pkt_long_lun));
7427  } else {
7428  ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7429  }
7430  ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7431  ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7432  ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7433  ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7434  shared_data.idata.cdb));
7435  ahd_outb(ahd, QNEXTPTR,
7437  ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7438  ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7439  if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7440  ahd_outb(ahd, LUNLEN,
7441  sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7442  } else {
7443  ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7444  }
7445  ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7446  ahd_outb(ahd, MAXCMD, 0xFF);
7447  ahd_outb(ahd, SCBAUTOPTR,
7448  AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7449 
7450  /* We haven't been enabled for target mode yet. */
7451  ahd_outb(ahd, MULTARGID, 0);
7452  ahd_outb(ahd, MULTARGID + 1, 0);
7453 
7455  /* Initialize the negotiation table. */
7456  if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7457  /*
7458  * Clear the spare bytes in the neg table to avoid
7459  * spurious parity errors.
7460  */
7461  for (target = 0; target < AHD_NUM_TARGETS; target++) {
7462  ahd_outb(ahd, NEGOADDR, target);
7463  ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7464  for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7465  ahd_outb(ahd, ANNEXDAT, 0);
7466  }
7467  }
7468  for (target = 0; target < AHD_NUM_TARGETS; target++) {
7469  struct ahd_devinfo devinfo;
7470  struct ahd_initiator_tinfo *tinfo;
7471  struct ahd_tmode_tstate *tstate;
7472 
7473  tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7474  target, &tstate);
7475  ahd_compile_devinfo(&devinfo, ahd->our_id,
7476  target, CAM_LUN_WILDCARD,
7477  'A', ROLE_INITIATOR);
7478  ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7479  }
7480 
7481  ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7482  ahd_outb(ahd, CLRINT, CLRSCSIINT);
7483 
7484 #ifdef NEEDS_MORE_TESTING
7485  /*
7486  * Always enable abort on incoming L_Qs if this feature is
7487  * supported. We use this to catch invalid SCB references.
7488  */
7489  if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7490  ahd_outb(ahd, LQCTL1, ABORTPENDING);
7491  else
7492 #endif
7493  ahd_outb(ahd, LQCTL1, 0);
7494 
7495  /* All of our queues are empty */
7496  ahd->qoutfifonext = 0;
7498  ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7499  for (i = 0; i < AHD_QOUT_SIZE; i++)
7500  ahd->qoutfifo[i].valid_tag = 0;
7501  ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7502 
7503  ahd->qinfifonext = 0;
7504  for (i = 0; i < AHD_QIN_SIZE; i++)
7505  ahd->qinfifo[i] = SCB_LIST_NULL;
7506 
7507  if ((ahd->features & AHD_TARGETMODE) != 0) {
7508  /* All target command blocks start out invalid. */
7509  for (i = 0; i < AHD_TMODE_CMDS; i++)
7510  ahd->targetcmds[i].cmd_valid = 0;
7511  ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7512  ahd->tqinfifonext = 1;
7513  ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7514  ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7515  }
7516 
7517  /* Initialize Scratch Ram. */
7518  ahd_outb(ahd, SEQ_FLAGS, 0);
7519  ahd_outb(ahd, SEQ_FLAGS2, 0);
7520 
7521  /* We don't have any waiting selections */
7522  ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7523  ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7524  ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7525  ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7526  for (i = 0; i < AHD_NUM_TARGETS; i++)
7527  ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7528 
7529  /*
7530  * Nobody is waiting to be DMAed into the QOUTFIFO.
7531  */
7532  ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7533  ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7534  ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7535  ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7536  ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7537 
7538  /*
7539  * The Freeze Count is 0.
7540  */
7541  ahd->qfreeze_cnt = 0;
7542  ahd_outw(ahd, QFREEZE_COUNT, 0);
7543  ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7544 
7545  /*
7546  * Tell the sequencer where it can find our arrays in memory.
7547  */
7548  busaddr = ahd->shared_data_map.physaddr;
7549  ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7550  ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7551 
7552  /*
7553  * Setup the allowed SCSI Sequences based on operational mode.
7554  * If we are a target, we'll enable select in operations once
7555  * we've had a lun enabled.
7556  */
7557  scsiseq_template = ENAUTOATNP;
7558  if ((ahd->flags & AHD_INITIATORROLE) != 0)
7559  scsiseq_template |= ENRSELI;
7560  ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7561 
7562  /* There are no busy SCBs yet. */
7563  for (target = 0; target < AHD_NUM_TARGETS; target++) {
7564  int lun;
7565 
7566  for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7567  ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7568  }
7569 
7570  /*
7571  * Initialize the group code to command length table.
7572  * Vendor Unique codes are set to 0 so we only capture
7573  * the first byte of the cdb. These can be overridden
7574  * when target mode is enabled.
7575  */
7576  ahd_outb(ahd, CMDSIZE_TABLE, 5);
7577  ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7578  ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7579  ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7580  ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7581  ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7582  ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7583  ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7584 
7585  /* Tell the sequencer of our initial queue positions */
7587  ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7588  ahd->qinfifonext = 0;
7589  ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7590  ahd_set_hescb_qoff(ahd, 0);
7591  ahd_set_snscb_qoff(ahd, 0);
7592  ahd_set_sescb_qoff(ahd, 0);
7593  ahd_set_sdscb_qoff(ahd, 0);
7594 
7595  /*
7596  * Tell the sequencer which SCB will be the next one it receives.
7597  */
7598  busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7599  ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7600 
7601  /*
7602  * Default to coalescing disabled.
7603  */
7604  ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7605  ahd_outw(ahd, CMDS_PENDING, 0);
7606  ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7608  ahd->int_coalescing_mincmds);
7609  ahd_enable_coalescing(ahd, FALSE);
7610 
7611  ahd_loadseq(ahd);
7613 
7614  if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7615  u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7616 
7617  negodat3 |= ENSLOWCRC;
7618  ahd_outb(ahd, NEGCONOPTS, negodat3);
7619  negodat3 = ahd_inb(ahd, NEGCONOPTS);
7620  if (!(negodat3 & ENSLOWCRC))
7621  printk("aic79xx: failed to set the SLOWCRC bit\n");
7622  else
7623  printk("aic79xx: SLOWCRC bit set\n");
7624  }
7625 }
7626 
7627 /*
7628  * Setup default device and controller settings.
7629  * This should only be called if our probe has
7630  * determined that no configuration data is available.
7631  */
7632 int
7634 {
7635  int targ;
7636 
7637  ahd->our_id = 7;
7638 
7639  /*
7640  * Allocate a tstate to house information for our
7641  * initiator presence on the bus as well as the user
7642  * data for any target mode initiator.
7643  */
7644  if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7645  printk("%s: unable to allocate ahd_tmode_tstate. "
7646  "Failing attach\n", ahd_name(ahd));
7647  return (ENOMEM);
7648  }
7649 
7650  for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7651  struct ahd_devinfo devinfo;
7652  struct ahd_initiator_tinfo *tinfo;
7653  struct ahd_tmode_tstate *tstate;
7654  uint16_t target_mask;
7655 
7656  tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7657  targ, &tstate);
7658  /*
7659  * We support SPC2 and SPI4.
7660  */
7661  tinfo->user.protocol_version = 4;
7662  tinfo->user.transport_version = 4;
7663 
7664  target_mask = 0x01 << targ;
7665  ahd->user_discenable |= target_mask;
7666  tstate->discenable |= target_mask;
7667  ahd->user_tagenable |= target_mask;
7668 #ifdef AHD_FORCE_160
7669  tinfo->user.period = AHD_SYNCRATE_DT;
7670 #else
7671  tinfo->user.period = AHD_SYNCRATE_160;
7672 #endif
7673  tinfo->user.offset = MAX_OFFSET;
7674  tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7677  | MSG_EXT_PPR_IU_REQ
7680  if ((ahd->features & AHD_RTI) != 0)
7681  tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7682 
7683  tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7684 
7685  /*
7686  * Start out Async/Narrow/Untagged and with
7687  * conservative protocol support.
7688  */
7689  tinfo->goal.protocol_version = 2;
7690  tinfo->goal.transport_version = 2;
7691  tinfo->curr.protocol_version = 2;
7692  tinfo->curr.transport_version = 2;
7693  ahd_compile_devinfo(&devinfo, ahd->our_id,
7694  targ, CAM_LUN_WILDCARD,
7695  'A', ROLE_INITIATOR);
7696  tstate->tagenable &= ~target_mask;
7697  ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7698  AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7699  ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7700  /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7701  /*paused*/TRUE);
7702  }
7703  return (0);
7704 }
7705 
7706 /*
7707  * Parse device configuration information.
7708  */
7709 int
7711 {
7712  int targ;
7713  int max_targ;
7714 
7715  max_targ = sc->max_targets & CFMAXTARG;
7716  ahd->our_id = sc->brtime_id & CFSCSIID;
7717 
7718  /*
7719  * Allocate a tstate to house information for our
7720  * initiator presence on the bus as well as the user
7721  * data for any target mode initiator.
7722  */
7723  if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7724  printk("%s: unable to allocate ahd_tmode_tstate. "
7725  "Failing attach\n", ahd_name(ahd));
7726  return (ENOMEM);
7727  }
7728 
7729  for (targ = 0; targ < max_targ; targ++) {
7730  struct ahd_devinfo devinfo;
7731  struct ahd_initiator_tinfo *tinfo;
7732  struct ahd_transinfo *user_tinfo;
7733  struct ahd_tmode_tstate *tstate;
7734  uint16_t target_mask;
7735 
7736  tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7737  targ, &tstate);
7738  user_tinfo = &tinfo->user;
7739 
7740  /*
7741  * We support SPC2 and SPI4.
7742  */
7743  tinfo->user.protocol_version = 4;
7744  tinfo->user.transport_version = 4;
7745 
7746  target_mask = 0x01 << targ;
7747  ahd->user_discenable &= ~target_mask;
7748  tstate->discenable &= ~target_mask;
7749  ahd->user_tagenable &= ~target_mask;
7750  if (sc->device_flags[targ] & CFDISC) {
7751  tstate->discenable |= target_mask;
7752  ahd->user_discenable |= target_mask;
7753  ahd->user_tagenable |= target_mask;
7754  } else {
7755  /*
7756  * Cannot be packetized without disconnection.
7757  */
7758  sc->device_flags[targ] &= ~CFPACKETIZED;
7759  }
7760 
7761  user_tinfo->ppr_options = 0;
7762  user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7763  if (user_tinfo->period < CFXFER_ASYNC) {
7764  if (user_tinfo->period <= AHD_PERIOD_10MHz)
7765  user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7766  user_tinfo->offset = MAX_OFFSET;
7767  } else {
7768  user_tinfo->offset = 0;
7769  user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7770  }
7771 #ifdef AHD_FORCE_160
7772  if (user_tinfo->period <= AHD_SYNCRATE_160)
7773  user_tinfo->period = AHD_SYNCRATE_DT;
7774 #endif
7775 
7776  if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7777  user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7781  if ((ahd->features & AHD_RTI) != 0)
7782  user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7783  }
7784 
7785  if ((sc->device_flags[targ] & CFQAS) != 0)
7786  user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7787 
7788  if ((sc->device_flags[targ] & CFWIDEB) != 0)
7789  user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7790  else
7791  user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7792 #ifdef AHD_DEBUG
7793  if ((ahd_debug & AHD_SHOW_MISC) != 0)
7794  printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7795  user_tinfo->period, user_tinfo->offset,
7796  user_tinfo->ppr_options);
7797 #endif
7798  /*
7799  * Start out Async/Narrow/Untagged and with
7800  * conservative protocol support.
7801  */
7802  tstate->tagenable &= ~target_mask;
7803  tinfo->goal.protocol_version = 2;
7804  tinfo->goal.transport_version = 2;
7805  tinfo->curr.protocol_version = 2;
7806  tinfo->curr.transport_version = 2;
7807  ahd_compile_devinfo(&devinfo, ahd->our_id,
7808  targ, CAM_LUN_WILDCARD,
7809  'A', ROLE_INITIATOR);
7810  ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7811  AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7812  ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7813  /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7814  /*paused*/TRUE);
7815  }
7816 
7817  ahd->flags &= ~AHD_SPCHK_ENB_A;
7818  if (sc->bios_control & CFSPARITY)
7819  ahd->flags |= AHD_SPCHK_ENB_A;
7820 
7821  ahd->flags &= ~AHD_RESET_BUS_A;
7822  if (sc->bios_control & CFRESETB)
7823  ahd->flags |= AHD_RESET_BUS_A;
7824 
7825  ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7826  if (sc->bios_control & CFEXTEND)
7827  ahd->flags |= AHD_EXTENDED_TRANS_A;
7828 
7829  ahd->flags &= ~AHD_BIOS_ENABLED;
7830  if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7831  ahd->flags |= AHD_BIOS_ENABLED;
7832 
7833  ahd->flags &= ~AHD_STPWLEVEL_A;
7834  if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7835  ahd->flags |= AHD_STPWLEVEL_A;
7836 
7837  return (0);
7838 }
7839 
7840 /*
7841  * Parse device configuration information.
7842  */
7843 int
7845 {
7846  int error;
7847 
7848  error = ahd_verify_vpd_cksum(vpd);
7849  if (error == 0)
7850  return (EINVAL);
7851  if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7852  ahd->flags |= AHD_BOOT_CHANNEL;
7853  return (0);
7854 }
7855 
7856 void
7858 {
7859  u_int hcntrl;
7860 
7861  hcntrl = ahd_inb(ahd, HCNTRL);
7862  hcntrl &= ~INTEN;
7863  ahd->pause &= ~INTEN;
7864  ahd->unpause &= ~INTEN;
7865  if (enable) {
7866  hcntrl |= INTEN;
7867  ahd->pause |= INTEN;
7868  ahd->unpause |= INTEN;
7869  }
7870  ahd_outb(ahd, HCNTRL, hcntrl);
7871 }
7872 
7873 static void
7874 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7875  u_int mincmds)
7876 {
7877  if (timer > AHD_TIMER_MAX_US)
7878  timer = AHD_TIMER_MAX_US;
7879  ahd->int_coalescing_timer = timer;
7880 
7881  if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7883  if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7885  ahd->int_coalescing_maxcmds = maxcmds;
7886  ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7887  ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7888  ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7889 }
7890 
7891 static void
7892 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7893 {
7894 
7895  ahd->hs_mailbox &= ~ENINT_COALESCE;
7896  if (enable)
7897  ahd->hs_mailbox |= ENINT_COALESCE;
7898  ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7899  ahd_flush_device_writes(ahd);
7900  ahd_run_qoutfifo(ahd);
7901 }
7902 
7903 /*
7904  * Ensure that the card is paused in a location
7905  * outside of all critical sections and that all
7906  * pending work is completed prior to returning.
7907  * This routine should only be called from outside
7908  * an interrupt context.
7909  */
7910 void
7912 {
7913  u_int intstat;
7914  u_int maxloops;
7915 
7916  maxloops = 1000;
7917  ahd->flags |= AHD_ALL_INTERRUPTS;
7918  ahd_pause(ahd);
7919  /*
7920  * Freeze the outgoing selections. We do this only
7921  * until we are safely paused without further selections
7922  * pending.
7923  */
7924  ahd->qfreeze_cnt--;
7925  ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7926  ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7927  do {
7928 
7929  ahd_unpause(ahd);
7930  /*
7931  * Give the sequencer some time to service
7932  * any active selections.
7933  */
7934  ahd_delay(500);
7935 
7936  ahd_intr(ahd);
7937  ahd_pause(ahd);
7938  intstat = ahd_inb(ahd, INTSTAT);
7939  if ((intstat & INT_PEND) == 0) {
7940  ahd_clear_critical_section(ahd);
7941  intstat = ahd_inb(ahd, INTSTAT);
7942  }
7943  } while (--maxloops
7944  && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7945  && ((intstat & INT_PEND) != 0
7946  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7947  || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7948 
7949  if (maxloops == 0) {
7950  printk("Infinite interrupt loop, INTSTAT = %x",
7951  ahd_inb(ahd, INTSTAT));
7952  }
7953  ahd->qfreeze_cnt++;
7954  ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7955 
7956  ahd_flush_qoutfifo(ahd);
7957 
7958  ahd->flags &= ~AHD_ALL_INTERRUPTS;
7959 }
7960 
7961 #ifdef CONFIG_PM
7962 int
7963 ahd_suspend(struct ahd_softc *ahd)
7964 {
7965 
7967 
7968  if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7969  ahd_unpause(ahd);
7970  return (EBUSY);
7971  }
7972  ahd_shutdown(ahd);
7973  return (0);
7974 }
7975 
7976 void
7977 ahd_resume(struct ahd_softc *ahd)
7978 {
7979 
7980  ahd_reset(ahd, /*reinit*/TRUE);
7981  ahd_intr_enable(ahd, TRUE);
7982  ahd_restart(ahd);
7983 }
7984 #endif
7985 
7986 /************************** Busy Target Table *********************************/
7987 /*
7988  * Set SCBPTR to the SCB that contains the busy
7989  * table entry for TCL. Return the offset into
7990  * the SCB that contains the entry for TCL.
7991  * saved_scbid is dereferenced and set to the
7992  * scbid that should be restored once manipualtion
7993  * of the TCL entry is complete.
7994  */
7995 static inline u_int
7996 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7997 {
7998  /*
7999  * Index to the SCB that contains the busy entry.
8000  */
8002  *saved_scbid = ahd_get_scbptr(ahd);
8003  ahd_set_scbptr(ahd, TCL_LUN(tcl)
8004  | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
8005 
8006  /*
8007  * And now calculate the SCB offset to the entry.
8008  * Each entry is 2 bytes wide, hence the
8009  * multiplication by 2.
8010  */
8011  return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
8012 }
8013 
8014 /*
8015  * Return the untagged transaction id for a given target/channel lun.
8016  */
8017 static u_int
8018 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
8019 {
8020  u_int scbid;
8021  u_int scb_offset;
8022  u_int saved_scbptr;
8023 
8024  scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
8025  scbid = ahd_inw_scbram(ahd, scb_offset);
8026  ahd_set_scbptr(ahd, saved_scbptr);
8027  return (scbid);
8028 }
8029 
8030 static void
8031 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
8032 {
8033  u_int scb_offset;
8034  u_int saved_scbptr;
8035 
8036  scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
8037  ahd_outw(ahd, scb_offset, scbid);
8038  ahd_set_scbptr(ahd, saved_scbptr);
8039 }
8040 
8041 /************************** SCB and SCB queue management **********************/
8042 static int
8043 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
8044  char channel, int lun, u_int tag, role_t role)
8045 {
8046  int targ = SCB_GET_TARGET(ahd, scb);
8047  char chan = SCB_GET_CHANNEL(ahd, scb);
8048  int slun = SCB_GET_LUN(scb);
8049  int match;
8050 
8051  match = ((chan == channel) || (channel == ALL_CHANNELS));
8052  if (match != 0)
8053  match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
8054  if (match != 0)
8055  match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
8056  if (match != 0) {
8057 #ifdef AHD_TARGET_MODE
8058  int group;
8059 
8060  group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
8061  if (role == ROLE_INITIATOR) {
8062  match = (group != XPT_FC_GROUP_TMODE)
8063  && ((tag == SCB_GET_TAG(scb))
8064  || (tag == SCB_LIST_NULL));
8065  } else if (role == ROLE_TARGET) {
8066  match = (group == XPT_FC_GROUP_TMODE)
8067  && ((tag == scb->io_ctx->csio.tag_id)
8068  || (tag == SCB_LIST_NULL));
8069  }
8070 #else /* !AHD_TARGET_MODE */
8071  match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
8072 #endif /* AHD_TARGET_MODE */
8073  }
8074 
8075  return match;
8076 }
8077 
8078 static void
8079 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8080 {
8081  int target;
8082  char channel;
8083  int lun;
8084 
8085  target = SCB_GET_TARGET(ahd, scb);
8086  lun = SCB_GET_LUN(scb);
8087  channel = SCB_GET_CHANNEL(ahd, scb);
8088 
8089  ahd_search_qinfifo(ahd, target, channel, lun,
8090  /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8092 
8093  ahd_platform_freeze_devq(ahd, scb);
8094 }
8095 
8096 void
8097 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8098 {
8099  struct scb *prev_scb;
8100  ahd_mode_state saved_modes;
8101 
8102  saved_modes = ahd_save_modes(ahd);
8104  prev_scb = NULL;
8105  if (ahd_qinfifo_count(ahd) != 0) {
8106  u_int prev_tag;
8107  u_int prev_pos;
8108 
8109  prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8110  prev_tag = ahd->qinfifo[prev_pos];
8111  prev_scb = ahd_lookup_scb(ahd, prev_tag);
8112  }
8113  ahd_qinfifo_requeue(ahd, prev_scb, scb);
8114  ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8115  ahd_restore_modes(ahd, saved_modes);
8116 }
8117 
8118 static void
8119 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8120  struct scb *scb)
8121 {
8122  if (prev_scb == NULL) {
8123  uint32_t busaddr;
8124 
8125  busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8126  ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8127  } else {
8128  prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8129  ahd_sync_scb(ahd, prev_scb,
8131  }
8132  ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8133  ahd->qinfifonext++;
8134  scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8135  ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8136 }
8137 
8138 static int
8139 ahd_qinfifo_count(struct ahd_softc *ahd)
8140 {
8141  u_int qinpos;
8142  u_int wrap_qinpos;
8143  u_int wrap_qinfifonext;
8144 
8146  qinpos = ahd_get_snscb_qoff(ahd);
8147  wrap_qinpos = AHD_QIN_WRAP(qinpos);
8148  wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8149  if (wrap_qinfifonext >= wrap_qinpos)
8150  return (wrap_qinfifonext - wrap_qinpos);
8151  else
8152  return (wrap_qinfifonext
8153  + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8154 }
8155 
8156 static void
8157 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8158 {
8159  struct scb *scb;
8160  ahd_mode_state saved_modes;
8161  u_int pending_cmds;
8162 
8163  saved_modes = ahd_save_modes(ahd);
8165 
8166  /*
8167  * Don't count any commands as outstanding that the
8168  * sequencer has already marked for completion.
8169  */
8170  ahd_flush_qoutfifo(ahd);
8171 
8172  pending_cmds = 0;
8173  LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8174  pending_cmds++;
8175  }
8176  ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8177  ahd_restore_modes(ahd, saved_modes);
8178  ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8179 }
8180 
8181 static void
8182 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8183 {
8184  cam_status ostat;
8185  cam_status cstat;
8186 
8187  ostat = ahd_get_transaction_status(scb);
8188  if (ostat == CAM_REQ_INPROG)
8189  ahd_set_transaction_status(scb, status);
8190  cstat = ahd_get_transaction_status(scb);
8191  if (cstat != CAM_REQ_CMP)
8192  ahd_freeze_scb(scb);
8193  ahd_done(ahd, scb);
8194 }
8195 
8196 int
8197 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8198  int lun, u_int tag, role_t role, uint32_t status,
8200 {
8201  struct scb *scb;
8202  struct scb *mk_msg_scb;
8203  struct scb *prev_scb;
8204  ahd_mode_state saved_modes;
8205  u_int qinstart;
8206  u_int qinpos;
8207  u_int qintail;
8208  u_int tid_next;
8209  u_int tid_prev;
8210  u_int scbid;
8211  u_int seq_flags2;
8212  u_int savedscbptr;
8213  uint32_t busaddr;
8214  int found;
8215  int targets;
8216 
8217  /* Must be in CCHAN mode */
8218  saved_modes = ahd_save_modes(ahd);
8220 
8221  /*
8222  * Halt any pending SCB DMA. The sequencer will reinitiate
8223  * this dma if the qinfifo is not empty once we unpause.
8224  */
8225  if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8226  == (CCARREN|CCSCBEN|CCSCBDIR)) {
8227  ahd_outb(ahd, CCSCBCTL,
8228  ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8229  while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8230  ;
8231  }
8232  /* Determine sequencer's position in the qinfifo. */
8233  qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8234  qinstart = ahd_get_snscb_qoff(ahd);
8235  qinpos = AHD_QIN_WRAP(qinstart);
8236  found = 0;
8237  prev_scb = NULL;
8238 
8239  if (action == SEARCH_PRINT) {
8240  printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8241  qinstart, ahd->qinfifonext);
8242  }
8243 
8244  /*
8245  * Start with an empty queue. Entries that are not chosen
8246  * for removal will be re-added to the queue as we go.
8247  */
8248  ahd->qinfifonext = qinstart;
8249  busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8250  ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8251 
8252  while (qinpos != qintail) {
8253  scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8254  if (scb == NULL) {
8255  printk("qinpos = %d, SCB index = %d\n",
8256  qinpos, ahd->qinfifo[qinpos]);
8257  panic("Loop 1\n");
8258  }
8259 
8260  if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8261  /*
8262  * We found an scb that needs to be acted on.
8263  */
8264  found++;
8265  switch (action) {
8266  case SEARCH_COMPLETE:
8267  if ((scb->flags & SCB_ACTIVE) == 0)
8268  printk("Inactive SCB in qinfifo\n");
8269  ahd_done_with_status(ahd, scb, status);
8270  /* FALLTHROUGH */
8271  case SEARCH_REMOVE:
8272  break;
8273  case SEARCH_PRINT:
8274  printk(" 0x%x", ahd->qinfifo[qinpos]);
8275  /* FALLTHROUGH */
8276  case SEARCH_COUNT:
8277  ahd_qinfifo_requeue(ahd, prev_scb, scb);
8278  prev_scb = scb;
8279  break;
8280  }
8281  } else {
8282  ahd_qinfifo_requeue(ahd, prev_scb, scb);
8283  prev_scb = scb;
8284  }
8285  qinpos = AHD_QIN_WRAP(qinpos+1);
8286  }
8287 
8288  ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8289 
8290  if (action == SEARCH_PRINT)
8291  printk("\nWAITING_TID_QUEUES:\n");
8292 
8293  /*
8294  * Search waiting for selection lists. We traverse the
8295  * list of "their ids" waiting for selection and, if
8296  * appropriate, traverse the SCBs of each "their id"
8297  * looking for matches.
8298  */
8300  seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8301  if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8302  scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8303  mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8304  } else
8305  mk_msg_scb = NULL;
8306  savedscbptr = ahd_get_scbptr(ahd);
8307  tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8308  tid_prev = SCB_LIST_NULL;
8309  targets = 0;
8310  for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8311  u_int tid_head;
8312  u_int tid_tail;
8313 
8314  targets++;
8315  if (targets > AHD_NUM_TARGETS)
8316  panic("TID LIST LOOP");
8317 
8318  if (scbid >= ahd->scb_data.numscbs) {
8319  printk("%s: Waiting TID List inconsistency. "
8320  "SCB index == 0x%x, yet numscbs == 0x%x.",
8321  ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8322  ahd_dump_card_state(ahd);
8323  panic("for safety");
8324  }
8325  scb = ahd_lookup_scb(ahd, scbid);
8326  if (scb == NULL) {
8327  printk("%s: SCB = 0x%x Not Active!\n",
8328  ahd_name(ahd), scbid);
8329  panic("Waiting TID List traversal\n");
8330  }
8331  ahd_set_scbptr(ahd, scbid);
8332  tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8333  if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8334  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8335  tid_prev = scbid;
8336  continue;
8337  }
8338 
8339  /*
8340  * We found a list of scbs that needs to be searched.
8341  */
8342  if (action == SEARCH_PRINT)
8343  printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
8344  tid_head = scbid;
8345  found += ahd_search_scb_list(ahd, target, channel,
8346  lun, tag, role, status,
8347  action, &tid_head, &tid_tail,
8348  SCB_GET_TARGET(ahd, scb));
8349  /*
8350  * Check any MK_MESSAGE SCB that is still waiting to
8351  * enter this target's waiting for selection queue.
8352  */
8353  if (mk_msg_scb != NULL
8354  && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8355  lun, tag, role)) {
8356 
8357  /*
8358  * We found an scb that needs to be acted on.
8359  */
8360  found++;
8361  switch (action) {
8362  case SEARCH_COMPLETE:
8363  if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8364  printk("Inactive SCB pending MK_MSG\n");
8365  ahd_done_with_status(ahd, mk_msg_scb, status);
8366  /* FALLTHROUGH */
8367  case SEARCH_REMOVE:
8368  {
8369  u_int tail_offset;
8370 
8371  printk("Removing MK_MSG scb\n");
8372 
8373  /*
8374  * Reset our tail to the tail of the
8375  * main per-target list.
8376  */
8377  tail_offset = WAITING_SCB_TAILS
8378  + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8379  ahd_outw(ahd, tail_offset, tid_tail);
8380 
8381  seq_flags2 &= ~PENDING_MK_MESSAGE;
8382  ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8383  ahd_outw(ahd, CMDS_PENDING,
8384  ahd_inw(ahd, CMDS_PENDING)-1);
8385  mk_msg_scb = NULL;
8386  break;
8387  }
8388  case SEARCH_PRINT:
8389  printk(" 0x%x", SCB_GET_TAG(scb));
8390  /* FALLTHROUGH */
8391  case SEARCH_COUNT:
8392  break;
8393  }
8394  }
8395 
8396  if (mk_msg_scb != NULL
8397  && SCBID_IS_NULL(tid_head)
8398  && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8400 
8401  /*
8402  * When removing the last SCB for a target
8403  * queue with a pending MK_MESSAGE scb, we
8404  * must queue the MK_MESSAGE scb.
8405  */
8406  printk("Queueing mk_msg_scb\n");
8407  tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8408  seq_flags2 &= ~PENDING_MK_MESSAGE;
8409  ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8410  mk_msg_scb = NULL;
8411  }
8412  if (tid_head != scbid)
8413  ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8414  if (!SCBID_IS_NULL(tid_head))
8415  tid_prev = tid_head;
8416  if (action == SEARCH_PRINT)
8417  printk(")\n");
8418  }
8419 
8420  /* Restore saved state. */
8421  ahd_set_scbptr(ahd, savedscbptr);
8422  ahd_restore_modes(ahd, saved_modes);
8423  return (found);
8424 }
8425 
8426 static int
8427 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8428  int lun, u_int tag, role_t role, uint32_t status,
8430  u_int *list_tail, u_int tid)
8431 {
8432  struct scb *scb;
8433  u_int scbid;
8434  u_int next;
8435  u_int prev;
8436  int found;
8437 
8439  found = 0;
8440  prev = SCB_LIST_NULL;
8441  next = *list_head;
8442  *list_tail = SCB_LIST_NULL;
8443  for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8444  if (scbid >= ahd->scb_data.numscbs) {
8445  printk("%s:SCB List inconsistency. "
8446  "SCB == 0x%x, yet numscbs == 0x%x.",
8447  ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8448  ahd_dump_card_state(ahd);
8449  panic("for safety");
8450  }
8451  scb = ahd_lookup_scb(ahd, scbid);
8452  if (scb == NULL) {
8453  printk("%s: SCB = %d Not Active!\n",
8454  ahd_name(ahd), scbid);
8455  panic("Waiting List traversal\n");
8456  }
8457  ahd_set_scbptr(ahd, scbid);
8458  *list_tail = scbid;
8459  next = ahd_inw_scbram(ahd, SCB_NEXT);
8460  if (ahd_match_scb(ahd, scb, target, channel,
8461  lun, SCB_LIST_NULL, role) == 0) {
8462  prev = scbid;
8463  continue;
8464  }
8465  found++;
8466  switch (action) {
8467  case SEARCH_COMPLETE:
8468  if ((scb->flags & SCB_ACTIVE) == 0)
8469  printk("Inactive SCB in Waiting List\n");
8470  ahd_done_with_status(ahd, scb, status);
8471  /* FALLTHROUGH */
8472  case SEARCH_REMOVE:
8473  ahd_rem_wscb(ahd, scbid, prev, next, tid);
8474  *list_tail = prev;
8475  if (SCBID_IS_NULL(prev))
8476  *list_head = next;
8477  break;
8478  case SEARCH_PRINT:
8479  printk("0x%x ", scbid);
8480  case SEARCH_COUNT:
8481  prev = scbid;
8482  break;
8483  }
8484  if (found > AHD_SCB_MAX)
8485  panic("SCB LIST LOOP");
8486  }
8487  if (action == SEARCH_COMPLETE
8488  || action == SEARCH_REMOVE)
8489  ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8490  return (found);
8491 }
8492 
8493 static void
8494 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8495  u_int tid_cur, u_int tid_next)
8496 {
8498 
8499  if (SCBID_IS_NULL(tid_cur)) {
8500 
8501  /* Bypass current TID list */
8502  if (SCBID_IS_NULL(tid_prev)) {
8503  ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8504  } else {
8505  ahd_set_scbptr(ahd, tid_prev);
8506  ahd_outw(ahd, SCB_NEXT2, tid_next);
8507  }
8508  if (SCBID_IS_NULL(tid_next))
8509  ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8510  } else {
8511 
8512  /* Stitch through tid_cur */
8513  if (SCBID_IS_NULL(tid_prev)) {
8514  ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8515  } else {
8516  ahd_set_scbptr(ahd, tid_prev);
8517  ahd_outw(ahd, SCB_NEXT2, tid_cur);
8518  }
8519  ahd_set_scbptr(ahd, tid_cur);
8520  ahd_outw(ahd, SCB_NEXT2, tid_next);
8521 
8522  if (SCBID_IS_NULL(tid_next))
8523  ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8524  }
8525 }
8526 
8527 /*
8528  * Manipulate the waiting for selection list and return the
8529  * scb that follows the one that we remove.
8530  */
8531 static u_int
8532 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8533  u_int prev, u_int next, u_int tid)
8534 {
8535  u_int tail_offset;
8536 
8538  if (!SCBID_IS_NULL(prev)) {
8539  ahd_set_scbptr(ahd, prev);
8540  ahd_outw(ahd, SCB_NEXT, next);
8541  }
8542 
8543  /*
8544  * SCBs that have MK_MESSAGE set in them may
8545  * cause the tail pointer to be updated without
8546  * setting the next pointer of the previous tail.
8547  * Only clear the tail if the removed SCB was
8548  * the tail.
8549  */
8550  tail_offset = WAITING_SCB_TAILS + (2 * tid);
8551  if (SCBID_IS_NULL(next)
8552  && ahd_inw(ahd, tail_offset) == scbid)
8553  ahd_outw(ahd, tail_offset, prev);
8554 
8555  ahd_add_scb_to_free_list(ahd, scbid);
8556  return (next);
8557 }
8558 
8559 /*
8560  * Add the SCB as selected by SCBPTR onto the on chip list of
8561  * free hardware SCBs. This list is empty/unused if we are not
8562  * performing SCB paging.
8563  */
8564 static void
8565 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8566 {
8567 /* XXX Need some other mechanism to designate "free". */
8568  /*
8569  * Invalidate the tag so that our abort
8570  * routines don't think it's active.
8571  ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8572  */
8573 }
8574 
8575 /******************************** Error Handling ******************************/
8576 /*
8577  * Abort all SCBs that match the given description (target/channel/lun/tag),
8578  * setting their status to the passed in status if the status has not already
8579  * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
8580  * is paused before it is called.
8581  */
8582 static int
8583 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8584  int lun, u_int tag, role_t role, uint32_t status)
8585 {
8586  struct scb *scbp;
8587  struct scb *scbp_next;
8588  u_int i, j;
8589  u_int maxtarget;
8590  u_int minlun;
8591  u_int maxlun;
8592  int found;
8593  ahd_mode_state saved_modes;
8594 
8595  /* restore this when we're done */
8596  saved_modes = ahd_save_modes(ahd);
8598 
8599  found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8601 
8602  /*
8603  * Clean out the busy target table for any untagged commands.
8604  */
8605  i = 0;
8606  maxtarget = 16;
8607  if (target != CAM_TARGET_WILDCARD) {
8608  i = target;
8609  if (channel == 'B')
8610  i += 8;
8611  maxtarget = i + 1;
8612  }
8613 
8614  if (lun == CAM_LUN_WILDCARD) {
8615  minlun = 0;
8616  maxlun = AHD_NUM_LUNS_NONPKT;
8617  } else if (lun >= AHD_NUM_LUNS_NONPKT) {
8618  minlun = maxlun = 0;
8619  } else {
8620  minlun = lun;
8621  maxlun = lun + 1;
8622  }
8623 
8624  if (role != ROLE_TARGET) {
8625  for (;i < maxtarget; i++) {
8626  for (j = minlun;j < maxlun; j++) {
8627  u_int scbid;
8628  u_int tcl;
8629 
8630  tcl = BUILD_TCL_RAW(i, 'A', j);
8631  scbid = ahd_find_busy_tcl(ahd, tcl);
8632  scbp = ahd_lookup_scb(ahd, scbid);
8633  if (scbp == NULL
8634  || ahd_match_scb(ahd, scbp, target, channel,
8635  lun, tag, role) == 0)
8636  continue;
8637  ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8638  }
8639  }
8640  }
8641 
8642  /*
8643  * Don't abort commands that have already completed,
8644  * but haven't quite made it up to the host yet.
8645  */
8646  ahd_flush_qoutfifo(ahd);
8647 
8648  /*
8649  * Go through the pending CCB list and look for
8650  * commands for this target that are still active.
8651  * These are other tagged commands that were
8652  * disconnected when the reset occurred.
8653  */
8654  scbp_next = LIST_FIRST(&ahd->pending_scbs);
8655  while (scbp_next != NULL) {
8656  scbp = scbp_next;
8657  scbp_next = LIST_NEXT(scbp, pending_links);
8658  if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8659  cam_status ostat;
8660 
8661  ostat = ahd_get_transaction_status(scbp);
8662  if (ostat == CAM_REQ_INPROG)
8663  ahd_set_transaction_status(scbp, status);
8664  if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8665  ahd_freeze_scb(scbp);
8666  if ((scbp->flags & SCB_ACTIVE) == 0)
8667  printk("Inactive SCB on pending list\n");
8668  ahd_done(ahd, scbp);
8669  found++;
8670  }
8671  }
8672  ahd_restore_modes(ahd, saved_modes);
8673  ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8674  ahd->flags |= AHD_UPDATE_PEND_CMDS;
8675  return found;
8676 }
8677 
8678 static void
8679 ahd_reset_current_bus(struct ahd_softc *ahd)
8680 {
8681  uint8_t scsiseq;
8682 
8684  ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8685  scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8686  ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8687  ahd_flush_device_writes(ahd);
8689  /* Turn off the bus reset */
8690  ahd_outb(ahd, SCSISEQ0, scsiseq);
8691  ahd_flush_device_writes(ahd);
8693  if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8694  /*
8695  * 2A Razor #474
8696  * Certain chip state is not cleared for
8697  * SCSI bus resets that we initiate, so
8698  * we must reset the chip.
8699  */
8700  ahd_reset(ahd, /*reinit*/TRUE);
8701  ahd_intr_enable(ahd, /*enable*/TRUE);
8703  }
8704 
8705  ahd_clear_intstat(ahd);
8706 }
8707 
8708 int
8709 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8710 {
8711  struct ahd_devinfo caminfo;
8712  u_int initiator;
8713  u_int target;
8714  u_int max_scsiid;
8715  int found;
8716  u_int fifo;
8717  u_int next_fifo;
8718  uint8_t scsiseq;
8719 
8720  /*
8721  * Check if the last bus reset is cleared
8722  */
8723  if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8724  printk("%s: bus reset still active\n",
8725  ahd_name(ahd));
8726  return 0;
8727  }
8728  ahd->flags |= AHD_BUS_RESET_ACTIVE;
8729 
8730  ahd->pending_device = NULL;
8731 
8732  ahd_compile_devinfo(&caminfo,
8736  channel, ROLE_UNKNOWN);
8737  ahd_pause(ahd);
8738 
8739  /* Make sure the sequencer is in a safe location. */
8740  ahd_clear_critical_section(ahd);
8741 
8742  /*
8743  * Run our command complete fifos to ensure that we perform
8744  * completion processing on any commands that 'completed'
8745  * before the reset occurred.
8746  */
8747  ahd_run_qoutfifo(ahd);
8748 #ifdef AHD_TARGET_MODE
8749  if ((ahd->flags & AHD_TARGETROLE) != 0) {
8750  ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8751  }
8752 #endif
8754 
8755  /*
8756  * Disable selections so no automatic hardware
8757  * functions will modify chip state.
8758  */
8759  ahd_outb(ahd, SCSISEQ0, 0);
8760  ahd_outb(ahd, SCSISEQ1, 0);
8761 
8762  /*
8763  * Safely shut down our DMA engines. Always start with
8764  * the FIFO that is not currently active (if any are
8765  * actively connected).
8766  */
8767  next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8768  if (next_fifo > CURRFIFO_1)
8769  /* If disconneced, arbitrarily start with FIFO1. */
8770  next_fifo = fifo = 0;
8771  do {
8772  next_fifo ^= CURRFIFO_1;
8773  ahd_set_modes(ahd, next_fifo, next_fifo);
8774  ahd_outb(ahd, DFCNTRL,
8775  ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8776  while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8777  ahd_delay(10);
8778  /*
8779  * Set CURRFIFO to the now inactive channel.
8780  */
8782  ahd_outb(ahd, DFFSTAT, next_fifo);
8783  } while (next_fifo != fifo);
8784 
8785  /*
8786  * Reset the bus if we are initiating this reset
8787  */
8788  ahd_clear_msg_state(ahd);
8789  ahd_outb(ahd, SIMODE1,
8790  ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8791 
8792  if (initiate_reset)
8793  ahd_reset_current_bus(ahd);
8794 
8795  ahd_clear_intstat(ahd);
8796 
8797  /*
8798  * Clean up all the state information for the
8799  * pending transactions on this bus.
8800  */
8801  found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8804 
8805  /*
8806  * Cleanup anything left in the FIFOs.
8807  */
8808  ahd_clear_fifo(ahd, 0);
8809  ahd_clear_fifo(ahd, 1);
8810 
8811  /*
8812  * Clear SCSI interrupt status
8813  */
8814  ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8815 
8816  /*
8817  * Reenable selections
8818  */
8819  ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8820  scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8821  ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8822 
8823  max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8824 #ifdef AHD_TARGET_MODE
8825  /*
8826  * Send an immediate notify ccb to all target more peripheral
8827  * drivers affected by this action.
8828  */
8829  for (target = 0; target <= max_scsiid; target++) {
8830  struct ahd_tmode_tstate* tstate;
8831  u_int lun;
8832 
8833  tstate = ahd->enabled_targets[target];
8834  if (tstate == NULL)
8835  continue;
8836  for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8837  struct ahd_tmode_lstate* lstate;
8838 
8839  lstate = tstate->enabled_luns[lun];
8840  if (lstate == NULL)
8841  continue;
8842 
8843  ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8844  EVENT_TYPE_BUS_RESET, /*arg*/0);
8845  ahd_send_lstate_events(ahd, lstate);
8846  }
8847  }
8848 #endif
8849  /*
8850  * Revert to async/narrow transfers until we renegotiate.
8851  */
8852  for (target = 0; target <= max_scsiid; target++) {
8853 
8854  if (ahd->enabled_targets[target] == NULL)
8855  continue;
8856  for (initiator = 0; initiator <= max_scsiid; initiator++) {
8857  struct ahd_devinfo devinfo;
8858 
8859  ahd_compile_devinfo(&devinfo, target, initiator,
8861  'A', ROLE_UNKNOWN);
8862  ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8863  AHD_TRANS_CUR, /*paused*/TRUE);
8864  ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8865  /*offset*/0, /*ppr_options*/0,
8866  AHD_TRANS_CUR, /*paused*/TRUE);
8867  }
8868  }
8869 
8870  /* Notify the XPT that a bus reset occurred */
8873 
8874  ahd_restart(ahd);
8875 
8876  return (found);
8877 }
8878 
8879 /**************************** Statistics Processing ***************************/
8880 static void
8881 ahd_stat_timer(void *arg)
8882 {
8883  struct ahd_softc *ahd = arg;
8884  u_long s;
8885  int enint_coal;
8886 
8887  ahd_lock(ahd, &s);
8888 
8889  enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8890  if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8891  enint_coal |= ENINT_COALESCE;
8892  else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8893  enint_coal &= ~ENINT_COALESCE;
8894 
8895  if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8896  ahd_enable_coalescing(ahd, enint_coal);
8897 #ifdef AHD_DEBUG
8898  if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8899  printk("%s: Interrupt coalescing "
8900  "now %sabled. Cmds %d\n",
8901  ahd_name(ahd),
8902  (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8903  ahd->cmdcmplt_total);
8904 #endif
8905  }
8906 
8907  ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8908  ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8909  ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8910  ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US,
8911  ahd_stat_timer, ahd);
8912  ahd_unlock(ahd, &s);
8913 }
8914 
8915 /****************************** Status Processing *****************************/
8916 
8917 static void
8918 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8919 {
8920  struct hardware_scb *hscb;
8921  int paused;
8922 
8923  /*
8924  * The sequencer freezes its select-out queue
8925  * anytime a SCSI status error occurs. We must
8926  * handle the error and increment our qfreeze count
8927  * to allow the sequencer to continue. We don't
8928  * bother clearing critical sections here since all
8929  * operations are on data structures that the sequencer
8930  * is not touching once the queue is frozen.
8931  */
8932  hscb = scb->hscb;
8933 
8934  if (ahd_is_paused(ahd)) {
8935  paused = 1;
8936  } else {
8937  paused = 0;
8938  ahd_pause(ahd);
8939  }
8940 
8941  /* Freeze the queue until the client sees the error. */
8942  ahd_freeze_devq(ahd, scb);
8943  ahd_freeze_scb(scb);
8944  ahd->qfreeze_cnt++;
8945  ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8946 
8947  if (paused == 0)
8948  ahd_unpause(ahd);
8949 
8950  /* Don't want to clobber the original sense code */
8951  if ((scb->flags & SCB_SENSE) != 0) {
8952  /*
8953  * Clear the SCB_SENSE Flag and perform
8954  * a normal command completion.
8955  */
8956  scb->flags &= ~SCB_SENSE;
8957  ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8958  ahd_done(ahd, scb);
8959  return;
8960  }
8961  ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8962  ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8963  switch (hscb->shared_data.istatus.scsi_status) {
8964  case STATUS_PKT_SENSE:
8965  {
8966  struct scsi_status_iu_header *siu;
8967 
8968  ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8969  siu = (struct scsi_status_iu_header *)scb->sense_data;
8970  ahd_set_scsi_status(scb, siu->status);
8971 #ifdef AHD_DEBUG
8972  if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8973  ahd_print_path(ahd, scb);
8974  printk("SCB 0x%x Received PKT Status of 0x%x\n",
8975  SCB_GET_TAG(scb), siu->status);
8976  printk("\tflags = 0x%x, sense len = 0x%x, "
8977  "pktfail = 0x%x\n",
8978  siu->flags, scsi_4btoul(siu->sense_length),
8979  scsi_4btoul(siu->pkt_failures_length));
8980  }
8981 #endif
8982  if ((siu->flags & SIU_RSPVALID) != 0) {
8983  ahd_print_path(ahd, scb);
8984  if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8985  printk("Unable to parse pkt_failures\n");
8986  } else {
8987 
8988  switch (SIU_PKTFAIL_CODE(siu)) {
8989  case SIU_PFC_NONE:
8990  printk("No packet failure found\n");
8991  break;
8993  printk("Invalid Command IU Field\n");
8994  break;
8996  printk("TMF not supported\n");
8997  break;
8998  case SIU_PFC_TMF_FAILED:
8999  printk("TMF failed\n");
9000  break;
9002  printk("Invalid L_Q Type code\n");
9003  break;
9005  printk("Illegal request\n");
9006  default:
9007  break;
9008  }
9009  }
9010  if (siu->status == SCSI_STATUS_OK)
9011  ahd_set_transaction_status(scb,
9012  CAM_REQ_CMP_ERR);
9013  }
9014  if ((siu->flags & SIU_SNSVALID) != 0) {
9015  scb->flags |= SCB_PKT_SENSE;
9016 #ifdef AHD_DEBUG
9017  if ((ahd_debug & AHD_SHOW_SENSE) != 0)
9018  printk("Sense data available\n");
9019 #endif
9020  }
9021  ahd_done(ahd, scb);
9022  break;
9023  }
9026  {
9027  struct ahd_devinfo devinfo;
9028  struct ahd_dma_seg *sg;
9029  struct scsi_sense *sc;
9030  struct ahd_initiator_tinfo *targ_info;
9031  struct ahd_tmode_tstate *tstate;
9032  struct ahd_transinfo *tinfo;
9033 #ifdef AHD_DEBUG
9034  if (ahd_debug & AHD_SHOW_SENSE) {
9035  ahd_print_path(ahd, scb);
9036  printk("SCB %d: requests Check Status\n",
9037  SCB_GET_TAG(scb));
9038  }
9039 #endif
9040 
9041  if (ahd_perform_autosense(scb) == 0)
9042  break;
9043 
9044  ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
9045  SCB_GET_TARGET(ahd, scb),
9046  SCB_GET_LUN(scb),
9047  SCB_GET_CHANNEL(ahd, scb),
9048  ROLE_INITIATOR);
9049  targ_info = ahd_fetch_transinfo(ahd,
9050  devinfo.channel,
9051  devinfo.our_scsiid,
9052  devinfo.target,
9053  &tstate);
9054  tinfo = &targ_info->curr;
9055  sg = scb->sg_list;
9056  sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
9057  /*
9058  * Save off the residual if there is one.
9059  */
9060  ahd_update_residual(ahd, scb);
9061 #ifdef AHD_DEBUG
9062  if (ahd_debug & AHD_SHOW_SENSE) {
9063  ahd_print_path(ahd, scb);
9064  printk("Sending Sense\n");
9065  }
9066 #endif
9067  scb->sg_count = 0;
9068  sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
9069  ahd_get_sense_bufsize(ahd, scb),
9070  /*last*/TRUE);
9071  sc->opcode = REQUEST_SENSE;
9072  sc->byte2 = 0;
9073  if (tinfo->protocol_version <= SCSI_REV_2
9074  && SCB_GET_LUN(scb) < 8)
9075  sc->byte2 = SCB_GET_LUN(scb) << 5;
9076  sc->unused[0] = 0;
9077  sc->unused[1] = 0;
9078  sc->length = ahd_get_sense_bufsize(ahd, scb);
9079  sc->control = 0;
9080 
9081  /*
9082  * We can't allow the target to disconnect.
9083  * This will be an untagged transaction and
9084  * having the target disconnect will make this
9085  * transaction indestinguishable from outstanding
9086  * tagged transactions.
9087  */
9088  hscb->control = 0;
9089 
9090  /*
9091  * This request sense could be because the
9092  * the device lost power or in some other
9093  * way has lost our transfer negotiations.
9094  * Renegotiate if appropriate. Unit attention
9095  * errors will be reported before any data
9096  * phases occur.
9097  */
9098  if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9099  ahd_update_neg_request(ahd, &devinfo,
9100  tstate, targ_info,
9102  }
9103  if (tstate->auto_negotiate & devinfo.target_mask) {
9104  hscb->control |= MK_MESSAGE;
9105  scb->flags &=
9107  scb->flags |= SCB_AUTO_NEGOTIATE;
9108  }
9109  hscb->cdb_len = sizeof(*sc);
9110  ahd_setup_data_scb(ahd, scb);
9111  scb->flags |= SCB_SENSE;
9112  ahd_queue_scb(ahd, scb);
9113  break;
9114  }
9115  case SCSI_STATUS_OK:
9116  printk("%s: Interrupted for status of 0???\n",
9117  ahd_name(ahd));
9118  /* FALLTHROUGH */
9119  default:
9120  ahd_done(ahd, scb);
9121  break;
9122  }
9123 }
9124 
9125 static void
9126 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9127 {
9128  if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9129  ahd_handle_scsi_status(ahd, scb);
9130  } else {
9131  ahd_calc_residual(ahd, scb);
9132  ahd_done(ahd, scb);
9133  }
9134 }
9135 
9136 /*
9137  * Calculate the residual for a just completed SCB.
9138  */
9139 static void
9140 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9141 {
9142  struct hardware_scb *hscb;
9143  struct initiator_status *spkt;
9144  uint32_t sgptr;
9145  uint32_t resid_sgptr;
9146  uint32_t resid;
9147 
9148  /*
9149  * 5 cases.
9150  * 1) No residual.
9151  * SG_STATUS_VALID clear in sgptr.
9152  * 2) Transferless command
9153  * 3) Never performed any transfers.
9154  * sgptr has SG_FULL_RESID set.
9155  * 4) No residual but target did not
9156  * save data pointers after the
9157  * last transfer, so sgptr was
9158  * never updated.
9159  * 5) We have a partial residual.
9160  * Use residual_sgptr to determine
9161  * where we are.
9162  */
9163 
9164  hscb = scb->hscb;
9165  sgptr = ahd_le32toh(hscb->sgptr);
9166  if ((sgptr & SG_STATUS_VALID) == 0)
9167  /* Case 1 */
9168  return;
9169  sgptr &= ~SG_STATUS_VALID;
9170 
9171  if ((sgptr & SG_LIST_NULL) != 0)
9172  /* Case 2 */
9173  return;
9174 
9175  /*
9176  * Residual fields are the same in both
9177  * target and initiator status packets,
9178  * so we can always use the initiator fields
9179  * regardless of the role for this SCB.
9180  */
9181  spkt = &hscb->shared_data.istatus;
9182  resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9183  if ((sgptr & SG_FULL_RESID) != 0) {
9184  /* Case 3 */
9185  resid = ahd_get_transfer_length(scb);
9186  } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9187  /* Case 4 */
9188  return;
9189  } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9190  ahd_print_path(ahd, scb);
9191  printk("data overrun detected Tag == 0x%x.\n",
9192  SCB_GET_TAG(scb));
9193  ahd_freeze_devq(ahd, scb);
9194  ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9195  ahd_freeze_scb(scb);
9196  return;
9197  } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9198  panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9199  /* NOTREACHED */
9200  } else {
9201  struct ahd_dma_seg *sg;
9202 
9203  /*
9204  * Remainder of the SG where the transfer
9205  * stopped.
9206  */
9207  resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9208  sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9209 
9210  /* The residual sg_ptr always points to the next sg */
9211  sg--;
9212 
9213  /*
9214  * Add up the contents of all residual
9215  * SG segments that are after the SG where
9216  * the transfer stopped.
9217  */
9218  while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9219  sg++;
9220  resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9221  }
9222  }
9223  if ((scb->flags & SCB_SENSE) == 0)
9224  ahd_set_residual(scb, resid);
9225  else
9226  ahd_set_sense_residual(scb, resid);
9227 
9228 #ifdef AHD_DEBUG
9229  if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9230  ahd_print_path(ahd, scb);
9231  printk("Handled %sResidual of %d bytes\n",
9232  (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9233  }
9234 #endif
9235 }
9236 
9237 /******************************* Target Mode **********************************/
9238 #ifdef AHD_TARGET_MODE
9239 /*
9240  * Add a target mode event to this lun's queue
9241  */
9242 static void
9243 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9244  u_int initiator_id, u_int event_type, u_int event_arg)
9245 {
9246  struct ahd_tmode_event *event;
9247  int pending;
9248 
9249  xpt_freeze_devq(lstate->path, /*count*/1);
9250  if (lstate->event_w_idx >= lstate->event_r_idx)
9251  pending = lstate->event_w_idx - lstate->event_r_idx;
9252  else
9253  pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9254  - (lstate->event_r_idx - lstate->event_w_idx);
9255 
9256  if (event_type == EVENT_TYPE_BUS_RESET
9257  || event_type == MSG_BUS_DEV_RESET) {
9258  /*
9259  * Any earlier events are irrelevant, so reset our buffer.
9260  * This has the effect of allowing us to deal with reset
9261  * floods (an external device holding down the reset line)
9262  * without losing the event that is really interesting.
9263  */
9264  lstate->event_r_idx = 0;
9265  lstate->event_w_idx = 0;
9266  xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9267  }
9268 
9269  if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9270  xpt_print_path(lstate->path);
9271  printk("immediate event %x:%x lost\n",
9272  lstate->event_buffer[lstate->event_r_idx].event_type,
9273  lstate->event_buffer[lstate->event_r_idx].event_arg);
9274  lstate->event_r_idx++;
9275  if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9276  lstate->event_r_idx = 0;
9277  xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9278  }
9279 
9280  event = &lstate->event_buffer[lstate->event_w_idx];
9281  event->initiator_id = initiator_id;
9282  event->event_type = event_type;
9283  event->event_arg = event_arg;
9284  lstate->event_w_idx++;
9285  if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9286  lstate->event_w_idx = 0;
9287 }
9288 
9289 /*
9290  * Send any target mode events queued up waiting
9291  * for immediate notify resources.
9292  */
9293 void
9294 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9295 {
9296  struct ccb_hdr *ccbh;
9297  struct ccb_immed_notify *inot;
9298 
9299  while (lstate->event_r_idx != lstate->event_w_idx
9300  && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9301  struct ahd_tmode_event *event;
9302 
9303  event = &lstate->event_buffer[lstate->event_r_idx];
9304  SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9305  inot = (struct ccb_immed_notify *)ccbh;
9306  switch (event->event_type) {
9307  case EVENT_TYPE_BUS_RESET:
9308  ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9309  break;
9310  default:
9311  ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9312  inot->message_args[0] = event->event_type;
9313  inot->message_args[1] = event->event_arg;
9314  break;
9315  }
9316  inot->initiator_id = event->initiator_id;
9317  inot->sense_len = 0;
9318  xpt_done((union ccb *)inot);
9319  lstate->event_r_idx++;
9320  if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9321  lstate->event_r_idx = 0;
9322  }
9323 }
9324 #endif
9325 
9326 /******************** Sequencer Program Patching/Download *********************/
9327 
9328 #ifdef AHD_DUMP_SEQ
9329 void
9330 ahd_dumpseq(struct ahd_softc* ahd)
9331 {
9332  int i;
9333  int max_prog;
9334 
9335  max_prog = 2048;
9336 
9337  ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9338  ahd_outw(ahd, PRGMCNT, 0);
9339  for (i = 0; i < max_prog; i++) {
9340  uint8_t ins_bytes[4];
9341 
9342  ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9343  printk("0x%08x\n", ins_bytes[0] << 24
9344  | ins_bytes[1] << 16
9345  | ins_bytes[2] << 8
9346  | ins_bytes[3]);
9347  }
9348 }
9349 #endif
9350 
9351 static void
9352 ahd_loadseq(struct ahd_softc *ahd)
9353 {
9354  struct cs cs_table[num_critical_sections];
9355  u_int begin_set[num_critical_sections];
9356  u_int end_set[num_critical_sections];
9357  const struct patch *cur_patch;
9358  u_int cs_count;
9359  u_int cur_cs;
9360  u_int i;
9361  int downloaded;
9362  u_int skip_addr;
9363  u_int sg_prefetch_cnt;
9364  u_int sg_prefetch_cnt_limit;
9365  u_int sg_prefetch_align;
9366  u_int sg_size;
9367  u_int cacheline_mask;
9368  uint8_t download_consts[DOWNLOAD_CONST_COUNT];
9369 
9370  if (bootverbose)
9371  printk("%s: Downloading Sequencer Program...",
9372  ahd_name(ahd));
9373 
9374 #if DOWNLOAD_CONST_COUNT != 8
9375 #error "Download Const Mismatch"
9376 #endif
9377  /*
9378  * Start out with 0 critical sections
9379  * that apply to this firmware load.
9380  */
9381  cs_count = 0;
9382  cur_cs = 0;
9383  memset(begin_set, 0, sizeof(begin_set));
9384  memset(end_set, 0, sizeof(end_set));
9385 
9386  /*
9387  * Setup downloadable constant table.
9388  *
9389  * The computation for the S/G prefetch variables is
9390  * a bit complicated. We would like to always fetch
9391  * in terms of cachelined sized increments. However,
9392  * if the cacheline is not an even multiple of the
9393  * SG element size or is larger than our SG RAM, using
9394  * just the cache size might leave us with only a portion
9395  * of an SG element at the tail of a prefetch. If the
9396  * cacheline is larger than our S/G prefetch buffer less
9397  * the size of an SG element, we may round down to a cacheline
9398  * that doesn't contain any or all of the S/G of interest
9399  * within the bounds of our S/G ram. Provide variables to
9400  * the sequencer that will allow it to handle these edge
9401  * cases.
9402  */
9403  /* Start by aligning to the nearest cacheline. */
9404  sg_prefetch_align = ahd->pci_cachesize;
9405  if (sg_prefetch_align == 0)
9406  sg_prefetch_align = 8;
9407  /* Round down to the nearest power of 2. */
9408  while (powerof2(sg_prefetch_align) == 0)
9409  sg_prefetch_align--;
9410 
9411  cacheline_mask = sg_prefetch_align - 1;
9412 
9413  /*
9414  * If the cacheline boundary is greater than half our prefetch RAM
9415  * we risk not being able to fetch even a single complete S/G
9416  * segment if we align to that boundary.
9417  */
9418  if (sg_prefetch_align > CCSGADDR_MAX/2)
9419  sg_prefetch_align = CCSGADDR_MAX/2;
9420  /* Start by fetching a single cacheline. */
9421  sg_prefetch_cnt = sg_prefetch_align;
9422  /*
9423  * Increment the prefetch count by cachelines until
9424  * at least one S/G element will fit.
9425  */
9426  sg_size = sizeof(struct ahd_dma_seg);
9427  if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9428  sg_size = sizeof(struct ahd_dma64_seg);
9429  while (sg_prefetch_cnt < sg_size)
9430  sg_prefetch_cnt += sg_prefetch_align;
9431  /*
9432  * If the cacheline is not an even multiple of
9433  * the S/G size, we may only get a partial S/G when
9434  * we align. Add a cacheline if this is the case.
9435  */
9436  if ((sg_prefetch_align % sg_size) != 0
9437  && (sg_prefetch_cnt < CCSGADDR_MAX))
9438  sg_prefetch_cnt += sg_prefetch_align;
9439  /*
9440  * Lastly, compute a value that the sequencer can use
9441  * to determine if the remainder of the CCSGRAM buffer
9442  * has a full S/G element in it.
9443  */
9444  sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9445  download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9446  download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9447  download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9448  download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9449  download_consts[SG_SIZEOF] = sg_size;
9450  download_consts[PKT_OVERRUN_BUFOFFSET] =
9451  (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9452  download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9453  download_consts[CACHELINE_MASK] = cacheline_mask;
9454  cur_patch = patches;
9455  downloaded = 0;
9456  skip_addr = 0;
9457  ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9458  ahd_outw(ahd, PRGMCNT, 0);
9459 
9460  for (i = 0; i < sizeof(seqprog)/4; i++) {
9461  if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9462  /*
9463  * Don't download this instruction as it
9464  * is in a patch that was removed.
9465  */
9466  continue;
9467  }
9468  /*
9469  * Move through the CS table until we find a CS
9470  * that might apply to this instruction.
9471  */
9472  for (; cur_cs < num_critical_sections; cur_cs++) {
9473  if (critical_sections[cur_cs].end <= i) {
9474  if (begin_set[cs_count] == TRUE
9475  && end_set[cs_count] == FALSE) {
9476  cs_table[cs_count].end = downloaded;
9477  end_set[cs_count] = TRUE;
9478  cs_count++;
9479  }
9480  continue;
9481  }
9482  if (critical_sections[cur_cs].begin <= i
9483  && begin_set[cs_count] == FALSE) {
9484  cs_table[cs_count].begin = downloaded;
9485  begin_set[cs_count] = TRUE;
9486  }
9487  break;
9488  }
9489  ahd_download_instr(ahd, i, download_consts);
9490  downloaded++;
9491  }
9492 
9493  ahd->num_critical_sections = cs_count;
9494  if (cs_count != 0) {
9495 
9496  cs_count *= sizeof(struct cs);
9497  ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9498  if (ahd->critical_sections == NULL)
9499  panic("ahd_loadseq: Could not malloc");
9500  memcpy(ahd->critical_sections, cs_table, cs_count);
9501  }
9502  ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9503 
9504  if (bootverbose) {
9505  printk(" %d instructions downloaded\n", downloaded);
9506  printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9507  ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9508  }
9509 }
9510 
9511 static int
9512 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9513  u_int start_instr, u_int *skip_addr)
9514 {
9515  const struct patch *cur_patch;
9516  const struct patch *last_patch;
9517  u_int num_patches;
9518 
9519  num_patches = ARRAY_SIZE(patches);
9520  last_patch = &patches[num_patches];
9521  cur_patch = *start_patch;
9522 
9523  while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9524 
9525  if (cur_patch->patch_func(ahd) == 0) {
9526 
9527  /* Start rejecting code */
9528  *skip_addr = start_instr + cur_patch->skip_instr;
9529  cur_patch += cur_patch->skip_patch;
9530  } else {
9531  /* Accepted this patch. Advance to the next
9532  * one and wait for our intruction pointer to
9533  * hit this point.
9534  */
9535  cur_patch++;
9536  }
9537  }
9538 
9539  *start_patch = cur_patch;
9540  if (start_instr < *skip_addr)
9541  /* Still skipping */
9542  return (0);
9543 
9544  return (1);
9545 }
9546 
9547 static u_int
9548 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9549 {
9550  const struct patch *cur_patch;
9551  int address_offset;
9552  u_int skip_addr;
9553  u_int i;
9554 
9555  address_offset = 0;
9556  cur_patch = patches;
9557  skip_addr = 0;
9558 
9559  for (i = 0; i < address;) {
9560 
9561  ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9562 
9563  if (skip_addr > i) {
9564  int end_addr;
9565 
9566  end_addr = min(address, skip_addr);
9567  address_offset += end_addr - i;
9568  i = skip_addr;
9569  } else {
9570  i++;
9571  }
9572  }
9573  return (address - address_offset);
9574 }
9575 
9576 static void
9577 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9578 {
9579  union ins_formats instr;
9580  struct ins_format1 *fmt1_ins;
9581  struct ins_format3 *fmt3_ins;
9582  u_int opcode;
9583 
9584  /*
9585  * The firmware is always compiled into a little endian format.
9586  */
9587  instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9588 
9589  fmt1_ins = &instr.format1;
9590  fmt3_ins = NULL;
9591 
9592  /* Pull the opcode */
9593  opcode = instr.format1.opcode;
9594  switch (opcode) {
9595  case AIC_OP_JMP:
9596  case AIC_OP_JC:
9597  case AIC_OP_JNC:
9598  case AIC_OP_CALL:
9599  case AIC_OP_JNE:
9600  case AIC_OP_JNZ:
9601  case AIC_OP_JE:
9602  case AIC_OP_JZ:
9603  {
9604  fmt3_ins = &instr.format3;
9605  fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9606  /* FALLTHROUGH */
9607  }
9608  case AIC_OP_OR:
9609  case AIC_OP_AND:
9610  case AIC_OP_XOR:
9611  case AIC_OP_ADD:
9612  case AIC_OP_ADC:
9613  case AIC_OP_BMOV:
9614  if (fmt1_ins->parity != 0) {
9615  fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9616  }
9617  fmt1_ins->parity = 0;
9618  /* FALLTHROUGH */
9619  case AIC_OP_ROL:
9620  {
9621  int i, count;
9622 
9623  /* Calculate odd parity for the instruction */
9624  for (i = 0, count = 0; i < 31; i++) {
9625  uint32_t mask;
9626 
9627  mask = 0x01 << i;
9628  if ((instr.integer & mask) != 0)
9629  count++;
9630  }
9631  if ((count & 0x01) == 0)
9632  instr.format1.parity = 1;
9633 
9634  /* The sequencer is a little endian cpu */
9635  instr.integer = ahd_htole32(instr.integer);
9636  ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9637  break;
9638  }
9639  default:
9640  panic("Unknown opcode encountered in seq program");
9641  break;
9642  }
9643 }
9644 
9645 static int
9646 ahd_probe_stack_size(struct ahd_softc *ahd)
9647 {
9648  int last_probe;
9649 
9650  last_probe = 0;
9651  while (1) {
9652  int i;
9653 
9654  /*
9655  * We avoid using 0 as a pattern to avoid
9656  * confusion if the stack implementation
9657  * "back-fills" with zeros when "poping'
9658  * entries.
9659  */
9660  for (i = 1; i <= last_probe+1; i++) {
9661  ahd_outb(ahd, STACK, i & 0xFF);
9662  ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9663  }
9664 
9665  /* Verify */
9666  for (i = last_probe+1; i > 0; i--) {
9667  u_int stack_entry;
9668 
9669  stack_entry = ahd_inb(ahd, STACK)
9670  |(ahd_inb(ahd, STACK) << 8);
9671  if (stack_entry != i)
9672  goto sized;
9673  }
9674  last_probe++;
9675  }
9676 sized:
9677  return (last_probe);
9678 }
9679 
9680 int
9681 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9682  const char *name, u_int address, u_int value,
9683  u_int *cur_column, u_int wrap_point)
9684 {
9685  int printed;
9686  u_int printed_mask;
9687 
9688  if (cur_column != NULL && *cur_column >= wrap_point) {
9689  printk("\n");
9690  *cur_column = 0;
9691  }
9692  printed = printk("%s[0x%x]", name, value);
9693  if (table == NULL) {
9694  printed += printk(" ");
9695  *cur_column += printed;
9696  return (printed);
9697  }
9698  printed_mask = 0;
9699  while (printed_mask != 0xFF) {
9700  int entry;
9701 
9702  for (entry = 0; entry < num_entries; entry++) {
9703  if (((value & table[entry].mask)
9704  != table[entry].value)
9705  || ((printed_mask & table[entry].mask)
9706  == table[entry].mask))
9707  continue;
9708 
9709  printed += printk("%s%s",
9710  printed_mask == 0 ? ":(" : "|",
9711  table[entry].name);
9712  printed_mask |= table[entry].mask;
9713 
9714  break;
9715  }
9716  if (entry >= num_entries)
9717  break;
9718  }
9719  if (printed_mask != 0)
9720  printed += printk(") ");
9721  else
9722  printed += printk(" ");
9723  if (cur_column != NULL)
9724  *cur_column += printed;
9725  return (printed);
9726 }
9727 
9728 void
9730 {
9731  struct scb *scb;
9732  ahd_mode_state saved_modes;
9733  u_int dffstat;
9734  int paused;
9735  u_int scb_index;
9736  u_int saved_scb_index;
9737  u_int cur_col;
9738  int i;
9739 
9740  if (ahd_is_paused(ahd)) {
9741  paused = 1;
9742  } else {
9743  paused = 0;
9744  ahd_pause(ahd);
9745  }
9746  saved_modes = ahd_save_modes(ahd);
9748  printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9749  "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9750  ahd_name(ahd),
9751  ahd_inw(ahd, CURADDR),
9752  ahd_build_mode_state(ahd, ahd->saved_src_mode,
9753  ahd->saved_dst_mode));
9754  if (paused)
9755  printk("Card was paused\n");
9756 
9757  if (ahd_check_cmdcmpltqueues(ahd))
9758  printk("Completions are pending\n");
9759 
9760  /*
9761  * Mode independent registers.
9762  */
9763  cur_col = 0;
9764  ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9765  ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9766  ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9767  ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9768  ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9769  ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9770  ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9771  ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9772  ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9773  ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9774  ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9775  ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9776  ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9777  ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9778  ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9779  ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9780  ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9781  ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9782  ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9783  ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9784  &cur_col, 50);
9785  ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9786  ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9787  &cur_col, 50);
9788  ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9789  ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9790  ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9791  ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9792  ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9793  ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9794  ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9795  ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9796  ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9797  ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9798  ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9799  ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9800  printk("\n");
9801  printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9802  "CURRSCB 0x%x NEXTSCB 0x%x\n",
9803  ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9804  ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9805  ahd_inw(ahd, NEXTSCB));
9806  cur_col = 0;
9807  /* QINFIFO */
9810  ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9811  saved_scb_index = ahd_get_scbptr(ahd);
9812  printk("Pending list:");
9813  i = 0;
9814  LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9815  if (i++ > AHD_SCB_MAX)
9816  break;
9817  cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9818  ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9819  ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9820  ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9821  &cur_col, 60);
9822  ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9823  &cur_col, 60);
9824  }
9825  printk("\nTotal %d\n", i);
9826 
9827  printk("Kernel Free SCB list: ");
9828  i = 0;
9829  TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9830  struct scb *list_scb;
9831 
9832  list_scb = scb;
9833  do {
9834  printk("%d ", SCB_GET_TAG(list_scb));
9835  list_scb = LIST_NEXT(list_scb, collision_links);
9836  } while (list_scb && i++ < AHD_SCB_MAX);
9837  }
9838 
9839  LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9840  if (i++ > AHD_SCB_MAX)
9841  break;
9842  printk("%d ", SCB_GET_TAG(scb));
9843  }
9844  printk("\n");
9845 
9846  printk("Sequencer Complete DMA-inprog list: ");
9847  scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9848  i = 0;
9849  while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9850  ahd_set_scbptr(ahd, scb_index);
9851  printk("%d ", scb_index);
9852  scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9853  }
9854  printk("\n");
9855 
9856  printk("Sequencer Complete list: ");
9857  scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9858  i = 0;
9859  while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9860  ahd_set_scbptr(ahd, scb_index);
9861  printk("%d ", scb_index);
9862  scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9863  }
9864  printk("\n");
9865 
9866 
9867  printk("Sequencer DMA-Up and Complete list: ");
9868  scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9869  i = 0;
9870  while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9871  ahd_set_scbptr(ahd, scb_index);
9872  printk("%d ", scb_index);
9873  scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9874  }
9875  printk("\n");
9876  printk("Sequencer On QFreeze and Complete list: ");
9877  scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9878  i = 0;
9879  while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9880  ahd_set_scbptr(ahd, scb_index);
9881  printk("%d ", scb_index);
9882  scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9883  }
9884  printk("\n");
9885  ahd_set_scbptr(ahd, saved_scb_index);
9886  dffstat = ahd_inb(ahd, DFFSTAT);
9887  for (i = 0; i < 2; i++) {
9888 #ifdef AHD_DEBUG
9889  struct scb *fifo_scb;
9890 #endif
9891  u_int fifo_scbptr;
9892 
9893  ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9894  fifo_scbptr = ahd_get_scbptr(ahd);
9895  printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9896  ahd_name(ahd), i,
9897  (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9898  ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9899  cur_col = 0;
9900  ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9901  ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9902  ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9903  ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9904  ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9905  &cur_col, 50);
9906  ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9907  ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9908  ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9909  ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9910  if (cur_col > 50) {
9911  printk("\n");
9912  cur_col = 0;
9913  }
9914  cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9915  ahd_inl(ahd, SHADDR+4),
9916  ahd_inl(ahd, SHADDR),
9917  (ahd_inb(ahd, SHCNT)
9918  | (ahd_inb(ahd, SHCNT + 1) << 8)
9919  | (ahd_inb(ahd, SHCNT + 2) << 16)));
9920  if (cur_col > 50) {
9921  printk("\n");
9922  cur_col = 0;
9923  }
9924  cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9925  ahd_inl(ahd, HADDR+4),
9926  ahd_inl(ahd, HADDR),
9927  (ahd_inb(ahd, HCNT)
9928  | (ahd_inb(ahd, HCNT + 1) << 8)
9929  | (ahd_inb(ahd, HCNT + 2) << 16)));
9930  ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9931 #ifdef AHD_DEBUG
9932  if ((ahd_debug & AHD_SHOW_SG) != 0) {
9933  fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9934  if (fifo_scb != NULL)
9935  ahd_dump_sglist(fifo_scb);
9936  }
9937 #endif
9938  }
9939  printk("\nLQIN: ");
9940  for (i = 0; i < 20; i++)
9941  printk("0x%x ", ahd_inb(ahd, LQIN + i));
9942  printk("\n");
9944  printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9945  ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9946  ahd_inb(ahd, OPTIONMODE));
9947  printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9948  ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9949  ahd_inb(ahd, MAXCMDCNT));
9950  printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9951  ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9952  ahd_inb(ahd, SAVED_LUN));
9953  ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9954  printk("\n");
9956  cur_col = 0;
9957  ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9958  printk("\n");
9959  ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9960  printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9961  ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9962  ahd_inw(ahd, DINDEX));
9963  printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9964  ahd_name(ahd), ahd_get_scbptr(ahd),
9965  ahd_inw_scbram(ahd, SCB_NEXT),
9966  ahd_inw_scbram(ahd, SCB_NEXT2));
9967  printk("CDB %x %x %x %x %x %x\n",
9968  ahd_inb_scbram(ahd, SCB_CDB_STORE),
9969  ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9970  ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9971  ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9972  ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9973  ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9974  printk("STACK:");
9975  for (i = 0; i < ahd->stack_size; i++) {
9976  ahd->saved_stack[i] =
9977  ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9978  printk(" 0x%x", ahd->saved_stack[i]);
9979  }
9980  for (i = ahd->stack_size-1; i >= 0; i--) {
9981  ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9982  ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9983  }
9984  printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9985  ahd_restore_modes(ahd, saved_modes);
9986  if (paused == 0)
9987  ahd_unpause(ahd);
9988 }
9989 
9990 #if 0
9991 void
9992 ahd_dump_scbs(struct ahd_softc *ahd)
9993 {
9994  ahd_mode_state saved_modes;
9995  u_int saved_scb_index;
9996  int i;
9997 
9998  saved_modes = ahd_save_modes(ahd);
10000  saved_scb_index = ahd_get_scbptr(ahd);
10001  for (i = 0; i < AHD_SCB_MAX; i++) {
10002  ahd_set_scbptr(ahd, i);
10003  printk("%3d", i);
10004  printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
10006  ahd_inb_scbram(ahd, SCB_SCSIID),
10007  ahd_inw_scbram(ahd, SCB_NEXT),
10008  ahd_inw_scbram(ahd, SCB_NEXT2),
10009  ahd_inl_scbram(ahd, SCB_SGPTR),
10010  ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
10011  }
10012  printk("\n");
10013  ahd_set_scbptr(ahd, saved_scb_index);
10014  ahd_restore_modes(ahd, saved_modes);
10015 }
10016 #endif /* 0 */
10017 
10018 /**************************** Flexport Logic **********************************/
10019 /*
10020  * Read count 16bit words from 16bit word address start_addr from the
10021  * SEEPROM attached to the controller, into buf, using the controller's
10022  * SEEPROM reading state machine. Optionally treat the data as a byte
10023  * stream in terms of byte order.
10024  */
10025 int
10027  u_int start_addr, u_int count, int bytestream)
10028 {
10029  u_int cur_addr;
10030  u_int end_addr;
10031  int error;
10032 
10033  /*
10034  * If we never make it through the loop even once,
10035  * we were passed invalid arguments.
10036  */
10037  error = EINVAL;
10039  end_addr = start_addr + count;
10040  for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10041 
10042  ahd_outb(ahd, SEEADR, cur_addr);
10043  ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
10044 
10045  error = ahd_wait_seeprom(ahd);
10046  if (error)
10047  break;
10048  if (bytestream != 0) {
10049  uint8_t *bytestream_ptr;
10050 
10051  bytestream_ptr = (uint8_t *)buf;
10052  *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
10053  *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
10054  } else {
10055  /*
10056  * ahd_inw() already handles machine byte order.
10057  */
10058  *buf = ahd_inw(ahd, SEEDAT);
10059  }
10060  buf++;
10061  }
10062  return (error);
10063 }
10064 
10065 /*
10066  * Write count 16bit words from buf, into SEEPROM attache to the
10067  * controller starting at 16bit word address start_addr, using the
10068  * controller's SEEPROM writing state machine.
10069  */
10070 int
10072  u_int start_addr, u_int count)
10073 {
10074  u_int cur_addr;
10075  u_int end_addr;
10076  int error;
10077  int retval;
10078 
10080  error = ENOENT;
10081 
10082  /* Place the chip into write-enable mode */
10083  ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10084  ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10085  error = ahd_wait_seeprom(ahd);
10086  if (error)
10087  return (error);
10088 
10089  /*
10090  * Write the data. If we don't get through the loop at
10091  * least once, the arguments were invalid.
10092  */
10093  retval = EINVAL;
10094  end_addr = start_addr + count;
10095  for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10096  ahd_outw(ahd, SEEDAT, *buf++);
10097  ahd_outb(ahd, SEEADR, cur_addr);
10098  ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10099 
10100  retval = ahd_wait_seeprom(ahd);
10101  if (retval)
10102  break;
10103  }
10104 
10105  /*
10106  * Disable writes.
10107  */
10108  ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10109  ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10110  error = ahd_wait_seeprom(ahd);
10111  if (error)
10112  return (error);
10113  return (retval);
10114 }
10115 
10116 /*
10117  * Wait ~100us for the serial eeprom to satisfy our request.
10118  */
10119 static int
10120 ahd_wait_seeprom(struct ahd_softc *ahd)
10121 {
10122  int cnt;
10123 
10124  cnt = 5000;
10125  while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10126  ahd_delay(5);
10127 
10128  if (cnt == 0)
10129  return (ETIMEDOUT);
10130  return (0);
10131 }
10132 
10133 /*
10134  * Validate the two checksums in the per_channel
10135  * vital product data struct.
10136  */
10137 static int
10138 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10139 {
10140  int i;
10141  int maxaddr;
10143  uint8_t *vpdarray;
10144 
10145  vpdarray = (uint8_t *)vpd;
10146  maxaddr = offsetof(struct vpd_config, vpd_checksum);
10147  checksum = 0;
10148  for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10149  checksum = checksum + vpdarray[i];
10150  if (checksum == 0
10151  || (-checksum & 0xFF) != vpd->vpd_checksum)
10152  return (0);
10153 
10154  checksum = 0;
10155  maxaddr = offsetof(struct vpd_config, checksum);
10156  for (i = offsetof(struct vpd_config, default_target_flags);
10157  i < maxaddr; i++)
10158  checksum = checksum + vpdarray[i];
10159  if (checksum == 0
10160  || (-checksum & 0xFF) != vpd->checksum)
10161  return (0);
10162  return (1);
10163 }
10164 
10165 int
10167 {
10168  int i;
10169  int maxaddr;
10171  uint16_t *scarray;
10172 
10173  maxaddr = (sizeof(*sc)/2) - 1;
10174  checksum = 0;
10175  scarray = (uint16_t *)sc;
10176 
10177  for (i = 0; i < maxaddr; i++)
10178  checksum = checksum + scarray[i];
10179  if (checksum == 0
10180  || (checksum & 0xFFFF) != sc->checksum) {
10181  return (0);
10182  } else {
10183  return (1);
10184  }
10185 }
10186 
10187 int
10189 {
10190  /*
10191  * We should be able to determine the SEEPROM type
10192  * from the flexport logic, but unfortunately not
10193  * all implementations have this logic and there is
10194  * no programatic method for determining if the logic
10195  * is present.
10196  */
10197  return (1);
10198 #if 0
10199  uint8_t seetype;
10200  int error;
10201 
10202  error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10203  if (error != 0
10204  || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10205  return (0);
10206  return (1);
10207 #endif
10208 }
10209 
10210 void
10212 {
10213  /* Currently a no-op */
10214 }
10215 
10216 /*
10217  * Wait at most 2 seconds for flexport arbitration to succeed.
10218  */
10219 static int
10220 ahd_wait_flexport(struct ahd_softc *ahd)
10221 {
10222  int cnt;
10223 
10225  cnt = 1000000 * 2 / 5;
10226  while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10227  ahd_delay(5);
10228 
10229  if (cnt == 0)
10230  return (ETIMEDOUT);
10231  return (0);
10232 }
10233 
10234 int
10235 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10236 {
10237  int error;
10238 
10240  if (addr > 7)
10241  panic("ahd_write_flexport: address out of range");
10242  ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10243  error = ahd_wait_flexport(ahd);
10244  if (error != 0)
10245  return (error);
10246  ahd_outb(ahd, BRDDAT, value);
10247  ahd_flush_device_writes(ahd);
10248  ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10249  ahd_flush_device_writes(ahd);
10250  ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10251  ahd_flush_device_writes(ahd);
10252  ahd_outb(ahd, BRDCTL, 0);
10253  ahd_flush_device_writes(ahd);
10254  return (0);
10255 }
10256 
10257 int
10258 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10259 {
10260  int error;
10261 
10263  if (addr > 7)
10264  panic("ahd_read_flexport: address out of range");
10265  ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10266  error = ahd_wait_flexport(ahd);
10267  if (error != 0)
10268  return (error);
10269  *value = ahd_inb(ahd, BRDDAT);
10270  ahd_outb(ahd, BRDCTL, 0);
10271  ahd_flush_device_writes(ahd);
10272  return (0);
10273 }
10274 
10275 /************************* Target Mode ****************************************/
10276 #ifdef AHD_TARGET_MODE
10277 cam_status
10278 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10279  struct ahd_tmode_tstate **tstate,
10280  struct ahd_tmode_lstate **lstate,
10281  int notfound_failure)
10282 {
10283 
10284  if ((ahd->features & AHD_TARGETMODE) == 0)
10285  return (CAM_REQ_INVALID);
10286 
10287  /*
10288  * Handle the 'black hole' device that sucks up
10289  * requests to unattached luns on enabled targets.
10290  */
10291  if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10292  && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10293  *tstate = NULL;
10294  *lstate = ahd->black_hole;
10295  } else {
10296  u_int max_id;
10297 
10298  max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10299  if (ccb->ccb_h.target_id >= max_id)
10300  return (CAM_TID_INVALID);
10301 
10302  if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10303  return (CAM_LUN_INVALID);
10304 
10305  *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10306  *lstate = NULL;
10307  if (*tstate != NULL)
10308  *lstate =
10309  (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10310  }
10311 
10312  if (notfound_failure != 0 && *lstate == NULL)
10313  return (CAM_PATH_INVALID);
10314 
10315  return (CAM_REQ_CMP);
10316 }
10317 
10318 void
10319 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10320 {
10321 #if NOT_YET
10322  struct ahd_tmode_tstate *tstate;
10323  struct ahd_tmode_lstate *lstate;
10324  struct ccb_en_lun *cel;
10326  u_int target;
10327  u_int lun;
10328  u_int target_mask;
10329  u_long s;
10330  char channel;
10331 
10332  status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10333  /*notfound_failure*/FALSE);
10334 
10335  if (status != CAM_REQ_CMP) {
10336  ccb->ccb_h.status = status;
10337  return;
10338  }
10339 
10340  if ((ahd->features & AHD_MULTIROLE) != 0) {
10341  u_int our_id;
10342 
10343  our_id = ahd->our_id;
10344  if (ccb->ccb_h.target_id != our_id) {
10345  if ((ahd->features & AHD_MULTI_TID) != 0
10346  && (ahd->flags & AHD_INITIATORROLE) != 0) {
10347  /*
10348  * Only allow additional targets if
10349  * the initiator role is disabled.
10350  * The hardware cannot handle a re-select-in
10351  * on the initiator id during a re-select-out
10352  * on a different target id.
10353  */
10354  status = CAM_TID_INVALID;
10355  } else if ((ahd->flags & AHD_INITIATORROLE) != 0
10356  || ahd->enabled_luns > 0) {
10357  /*
10358  * Only allow our target id to change
10359  * if the initiator role is not configured
10360  * and there are no enabled luns which
10361  * are attached to the currently registered
10362  * scsi id.
10363  */
10364  status = CAM_TID_INVALID;
10365  }
10366  }
10367  }
10368 
10369  if (status != CAM_REQ_CMP) {
10370  ccb->ccb_h.status = status;
10371  return;
10372  }
10373 
10374  /*
10375  * We now have an id that is valid.
10376  * If we aren't in target mode, switch modes.
10377  */
10378  if ((ahd->flags & AHD_TARGETROLE) == 0
10379  && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10380  u_long s;
10381 
10382  printk("Configuring Target Mode\n");
10383  ahd_lock(ahd, &s);
10384  if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10385  ccb->ccb_h.status = CAM_BUSY;
10386  ahd_unlock(ahd, &s);
10387  return;
10388  }
10389  ahd->flags |= AHD_TARGETROLE;
10390  if ((ahd->features & AHD_MULTIROLE) == 0)
10391  ahd->flags &= ~AHD_INITIATORROLE;
10392  ahd_pause(ahd);
10393  ahd_loadseq(ahd);
10394  ahd_restart(ahd);
10395  ahd_unlock(ahd, &s);
10396  }
10397  cel = &ccb->cel;
10398  target = ccb->ccb_h.target_id;
10399  lun = ccb->ccb_h.target_lun;
10400  channel = SIM_CHANNEL(ahd, sim);
10401  target_mask = 0x01 << target;
10402  if (channel == 'B')
10403  target_mask <<= 8;
10404 
10405  if (cel->enable != 0) {
10406  u_int scsiseq1;
10407 
10408  /* Are we already enabled?? */
10409  if (lstate != NULL) {
10410  xpt_print_path(ccb->ccb_h.path);
10411  printk("Lun already enabled\n");
10412  ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10413  return;
10414  }
10415 
10416  if (cel->grp6_len != 0
10417  || cel->grp7_len != 0) {
10418  /*
10419  * Don't (yet?) support vendor
10420  * specific commands.
10421  */
10422  ccb->ccb_h.status = CAM_REQ_INVALID;
10423  printk("Non-zero Group Codes\n");
10424  return;
10425  }
10426 
10427  /*
10428  * Seems to be okay.
10429  * Setup our data structures.
10430  */
10431  if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10432  tstate = ahd_alloc_tstate(ahd, target, channel);
10433  if (tstate == NULL) {
10434  xpt_print_path(ccb->ccb_h.path);
10435  printk("Couldn't allocate tstate\n");
10436  ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10437  return;
10438  }
10439  }
10440  lstate = kmalloc(sizeof(*lstate), GFP_ATOMIC);
10441  if (lstate == NULL) {
10442  xpt_print_path(ccb->ccb_h.path);
10443  printk("Couldn't allocate lstate\n");
10444  ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10445  return;
10446  }
10447  memset(lstate, 0, sizeof(*lstate));
10448  status = xpt_create_path(&lstate->path, /*periph*/NULL,
10449  xpt_path_path_id(ccb->ccb_h.path),
10450  xpt_path_target_id(ccb->ccb_h.path),
10451  xpt_path_lun_id(ccb->ccb_h.path));
10452  if (status != CAM_REQ_CMP) {
10453  kfree(lstate);
10454  xpt_print_path(ccb->ccb_h.path);
10455  printk("Couldn't allocate path\n");
10456  ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10457  return;
10458  }
10459  SLIST_INIT(&lstate->accept_tios);
10460  SLIST_INIT(&lstate->immed_notifies);
10461  ahd_lock(ahd, &s);
10462  ahd_pause(ahd);
10463  if (target != CAM_TARGET_WILDCARD) {
10464  tstate->enabled_luns[lun] = lstate;
10465  ahd->enabled_luns++;
10466 
10467  if ((ahd->features & AHD_MULTI_TID) != 0) {
10468  u_int targid_mask;
10469 
10470  targid_mask = ahd_inw(ahd, TARGID);
10471  targid_mask |= target_mask;
10472  ahd_outw(ahd, TARGID, targid_mask);
10473  ahd_update_scsiid(ahd, targid_mask);
10474  } else {
10475  u_int our_id;
10476  char channel;
10477 
10478  channel = SIM_CHANNEL(ahd, sim);
10479  our_id = SIM_SCSI_ID(ahd, sim);
10480 
10481  /*
10482  * This can only happen if selections
10483  * are not enabled
10484  */
10485  if (target != our_id) {
10486  u_int sblkctl;
10487  char cur_channel;
10488  int swap;
10489 
10490  sblkctl = ahd_inb(ahd, SBLKCTL);
10491  cur_channel = (sblkctl & SELBUSB)
10492  ? 'B' : 'A';
10493  if ((ahd->features & AHD_TWIN) == 0)
10494  cur_channel = 'A';
10495  swap = cur_channel != channel;
10496  ahd->our_id = target;
10497 
10498  if (swap)
10499  ahd_outb(ahd, SBLKCTL,
10500  sblkctl ^ SELBUSB);
10501 
10502  ahd_outb(ahd, SCSIID, target);
10503 
10504  if (swap)
10505  ahd_outb(ahd, SBLKCTL, sblkctl);
10506  }
10507  }
10508  } else
10509  ahd->black_hole = lstate;
10510  /* Allow select-in operations */
10511  if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10512  scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10513  scsiseq1 |= ENSELI;
10514  ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10515  scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10516  scsiseq1 |= ENSELI;
10517  ahd_outb(ahd, SCSISEQ1, scsiseq1);
10518  }
10519  ahd_unpause(ahd);
10520  ahd_unlock(ahd, &s);
10521  ccb->ccb_h.status = CAM_REQ_CMP;
10522  xpt_print_path(ccb->ccb_h.path);
10523  printk("Lun now enabled for target mode\n");
10524  } else {
10525  struct scb *scb;
10526  int i, empty;
10527 
10528  if (lstate == NULL) {
10529  ccb->ccb_h.status = CAM_LUN_INVALID;
10530  return;
10531  }
10532 
10533  ahd_lock(ahd, &s);
10534 
10535  ccb->ccb_h.status = CAM_REQ_CMP;
10536  LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10537  struct ccb_hdr *ccbh;
10538 
10539  ccbh = &scb->io_ctx->ccb_h;
10540  if (ccbh->func_code == XPT_CONT_TARGET_IO
10541  && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10542  printk("CTIO pending\n");
10543  ccb->ccb_h.status = CAM_REQ_INVALID;
10544  ahd_unlock(ahd, &s);
10545  return;
10546  }
10547  }
10548 
10549  if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10550  printk("ATIOs pending\n");
10551  ccb->ccb_h.status = CAM_REQ_INVALID;
10552  }
10553 
10554  if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10555  printk("INOTs pending\n");
10556  ccb->ccb_h.status = CAM_REQ_INVALID;
10557  }
10558 
10559  if (ccb->ccb_h.status != CAM_REQ_CMP) {
10560  ahd_unlock(ahd, &s);
10561  return;
10562  }
10563 
10564  xpt_print_path(ccb->ccb_h.path);
10565  printk("Target mode disabled\n");
10566  xpt_free_path(lstate->path);
10567  kfree(lstate);
10568 
10569  ahd_pause(ahd);
10570  /* Can we clean up the target too? */
10571  if (target != CAM_TARGET_WILDCARD) {
10572  tstate->enabled_luns[lun] = NULL;
10573  ahd->enabled_luns--;
10574  for (empty = 1, i = 0; i < 8; i++)
10575  if (tstate->enabled_luns[i] != NULL) {
10576  empty = 0;
10577  break;
10578  }
10579 
10580  if (empty) {
10581  ahd_free_tstate(ahd, target, channel,
10582  /*force*/FALSE);
10583  if (ahd->features & AHD_MULTI_TID) {
10584  u_int targid_mask;
10585 
10586  targid_mask = ahd_inw(ahd, TARGID);
10587  targid_mask &= ~target_mask;
10588  ahd_outw(ahd, TARGID, targid_mask);
10589  ahd_update_scsiid(ahd, targid_mask);
10590  }
10591  }
10592  } else {
10593 
10594  ahd->black_hole = NULL;
10595 
10596  /*
10597  * We can't allow selections without
10598  * our black hole device.
10599  */
10600  empty = TRUE;
10601  }
10602  if (ahd->enabled_luns == 0) {
10603  /* Disallow select-in */
10604  u_int scsiseq1;
10605 
10606  scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10607  scsiseq1 &= ~ENSELI;
10608  ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10609  scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10610  scsiseq1 &= ~ENSELI;
10611  ahd_outb(ahd, SCSISEQ1, scsiseq1);
10612 
10613  if ((ahd->features & AHD_MULTIROLE) == 0) {
10614  printk("Configuring Initiator Mode\n");
10615  ahd->flags &= ~AHD_TARGETROLE;
10616  ahd->flags |= AHD_INITIATORROLE;
10617  ahd_pause(ahd);
10618  ahd_loadseq(ahd);
10619  ahd_restart(ahd);
10620  /*
10621  * Unpaused. The extra unpause
10622  * that follows is harmless.
10623  */
10624  }
10625  }
10626  ahd_unpause(ahd);
10627  ahd_unlock(ahd, &s);
10628  }
10629 #endif
10630 }
10631 
10632 static void
10633 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10634 {
10635 #if NOT_YET
10636  u_int scsiid_mask;
10637  u_int scsiid;
10638 
10639  if ((ahd->features & AHD_MULTI_TID) == 0)
10640  panic("ahd_update_scsiid called on non-multitid unit\n");
10641 
10642  /*
10643  * Since we will rely on the TARGID mask
10644  * for selection enables, ensure that OID
10645  * in SCSIID is not set to some other ID
10646  * that we don't want to allow selections on.
10647  */
10648  if ((ahd->features & AHD_ULTRA2) != 0)
10649  scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10650  else
10651  scsiid = ahd_inb(ahd, SCSIID);
10652  scsiid_mask = 0x1 << (scsiid & OID);
10653  if ((targid_mask & scsiid_mask) == 0) {
10654  u_int our_id;
10655 
10656  /* ffs counts from 1 */
10657  our_id = ffs(targid_mask);
10658  if (our_id == 0)
10659  our_id = ahd->our_id;
10660  else
10661  our_id--;
10662  scsiid &= TID;
10663  scsiid |= our_id;
10664  }
10665  if ((ahd->features & AHD_ULTRA2) != 0)
10666  ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10667  else
10668  ahd_outb(ahd, SCSIID, scsiid);
10669 #endif
10670 }
10671 
10672 static void
10673 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10674 {
10675  struct target_cmd *cmd;
10676 
10677  ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10678  while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10679 
10680  /*
10681  * Only advance through the queue if we
10682  * have the resources to process the command.
10683  */
10684  if (ahd_handle_target_cmd(ahd, cmd) != 0)
10685  break;
10686 
10687  cmd->cmd_valid = 0;
10689  ahd->shared_data_map.dmamap,
10690  ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10691  sizeof(struct target_cmd),
10693  ahd->tqinfifonext++;
10694 
10695  /*
10696  * Lazily update our position in the target mode incoming
10697  * command queue as seen by the sequencer.
10698  */
10699  if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10700  u_int hs_mailbox;
10701 
10702  hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10703  hs_mailbox &= ~HOST_TQINPOS;
10704  hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10705  ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10706  }
10707  }
10708 }
10709 
10710 static int
10711 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10712 {
10713  struct ahd_tmode_tstate *tstate;
10714  struct ahd_tmode_lstate *lstate;
10715  struct ccb_accept_tio *atio;
10716  uint8_t *byte;
10717  int initiator;
10718  int target;
10719  int lun;
10720 
10721  initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10722  target = SCSIID_OUR_ID(cmd->scsiid);
10723  lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10724 
10725  byte = cmd->bytes;
10726  tstate = ahd->enabled_targets[target];
10727  lstate = NULL;
10728  if (tstate != NULL)
10729  lstate = tstate->enabled_luns[lun];
10730 
10731  /*
10732  * Commands for disabled luns go to the black hole driver.
10733  */
10734  if (lstate == NULL)
10735  lstate = ahd->black_hole;
10736 
10737  atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10738  if (atio == NULL) {
10739  ahd->flags |= AHD_TQINFIFO_BLOCKED;
10740  /*
10741  * Wait for more ATIOs from the peripheral driver for this lun.
10742  */
10743  return (1);
10744  } else
10745  ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10746 #ifdef AHD_DEBUG
10747  if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10748  printk("Incoming command from %d for %d:%d%s\n",
10749  initiator, target, lun,
10750  lstate == ahd->black_hole ? "(Black Holed)" : "");
10751 #endif
10752  SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10753 
10754  if (lstate == ahd->black_hole) {
10755  /* Fill in the wildcards */
10756  atio->ccb_h.target_id = target;
10757  atio->ccb_h.target_lun = lun;
10758  }
10759 
10760  /*
10761  * Package it up and send it off to
10762  * whomever has this lun enabled.
10763  */
10764  atio->sense_len = 0;
10765  atio->init_id = initiator;
10766  if (byte[0] != 0xFF) {
10767  /* Tag was included */
10768  atio->tag_action = *byte++;
10769  atio->tag_id = *byte++;
10770  atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10771  } else {
10772  atio->ccb_h.flags = 0;
10773  }
10774  byte++;
10775 
10776  /* Okay. Now determine the cdb size based on the command code */
10777  switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10778  case 0:
10779  atio->cdb_len = 6;
10780  break;
10781  case 1:
10782  case 2:
10783  atio->cdb_len = 10;
10784  break;
10785  case 4:
10786  atio->cdb_len = 16;
10787  break;
10788  case 5:
10789  atio->cdb_len = 12;
10790  break;
10791  case 3:
10792  default:
10793  /* Only copy the opcode. */
10794  atio->cdb_len = 1;
10795  printk("Reserved or VU command code type encountered\n");
10796  break;
10797  }
10798 
10799  memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10800 
10801  atio->ccb_h.status |= CAM_CDB_RECVD;
10802 
10803  if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10804  /*
10805  * We weren't allowed to disconnect.
10806  * We're hanging on the bus until a
10807  * continue target I/O comes in response
10808  * to this accept tio.
10809  */
10810 #ifdef AHD_DEBUG
10811  if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10812  printk("Received Immediate Command %d:%d:%d - %p\n",
10813  initiator, target, lun, ahd->pending_device);
10814 #endif
10815  ahd->pending_device = lstate;
10816  ahd_freeze_ccb((union ccb *)atio);
10817  atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10818  }
10819  xpt_done((union ccb*)atio);
10820  return (0);
10821 }
10822 
10823 #endif