Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
amba-pl011.c
Go to the documentation of this file.
1 /*
2  * Driver for AMBA serial ports
3  *
4  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  * Copyright 1999 ARM Limited
7  * Copyright (C) 2000 Deep Blue Solutions Ltd.
8  * Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports. They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs. If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/pinctrl/consumer.h>
58 #include <linux/sizes.h>
59 
60 #include <asm/io.h>
61 
62 #define UART_NR 14
63 
64 #define SERIAL_AMBA_MAJOR 204
65 #define SERIAL_AMBA_MINOR 64
66 #define SERIAL_AMBA_NR UART_NR
67 
68 #define AMBA_ISR_PASS_LIMIT 256
69 
70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX (1 << 16)
72 
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75  unsigned int ifls;
76  unsigned int fifosize;
77  unsigned int lcrh_tx;
78  unsigned int lcrh_rx;
82 };
83 
84 static struct vendor_data vendor_arm = {
86  .fifosize = 16,
87  .lcrh_tx = UART011_LCRH,
88  .lcrh_rx = UART011_LCRH,
89  .oversampling = false,
90  .dma_threshold = false,
91  .cts_event_workaround = false,
92 };
93 
94 static struct vendor_data vendor_st = {
96  .fifosize = 64,
97  .lcrh_tx = ST_UART011_LCRH_TX,
98  .lcrh_rx = ST_UART011_LCRH_RX,
99  .oversampling = true,
100  .dma_threshold = true,
101  .cts_event_workaround = true,
102 };
103 
104 static struct uart_amba_port *amba_ports[UART_NR];
105 
106 /* Deals with DMA transactions */
107 
108 struct pl011_sgbuf {
109  struct scatterlist sg;
110  char *buf;
111 };
112 
114  struct dma_chan *chan;
116  bool use_buf_b;
120  bool running;
121 };
122 
124  struct dma_chan *chan;
125  struct scatterlist sg;
126  char *buf;
127  bool queued;
128 };
129 
130 /*
131  * We wrap our port structure around the generic uart_port.
132  */
133 struct uart_amba_port {
134  struct uart_port port;
135  struct clk *clk;
136  /* Two optional pin states - default & sleep */
137  struct pinctrl *pinctrl;
140  const struct vendor_data *vendor;
141  unsigned int dmacr; /* dma control reg */
142  unsigned int im; /* interrupt mask */
143  unsigned int old_status;
144  unsigned int fifosize; /* vendor-specific */
145  unsigned int lcrh_tx; /* vendor-specific */
146  unsigned int lcrh_rx; /* vendor-specific */
147  unsigned int old_cr; /* state during shutdown */
148  bool autorts;
149  char type[12];
150 #ifdef CONFIG_DMA_ENGINE
151  /* DMA stuff */
152  bool using_tx_dma;
153  bool using_rx_dma;
154  struct pl011_dmarx_data dmarx;
155  struct pl011_dmatx_data dmatx;
156 #endif
157 };
158 
159 /*
160  * Reads up to 256 characters from the FIFO or until it's empty and
161  * inserts them into the TTY layer. Returns the number of characters
162  * read from the FIFO.
163  */
164 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
165 {
166  u16 status, ch;
167  unsigned int flag, max_count = 256;
168  int fifotaken = 0;
169 
170  while (max_count--) {
171  status = readw(uap->port.membase + UART01x_FR);
172  if (status & UART01x_FR_RXFE)
173  break;
174 
175  /* Take chars from the FIFO and update status */
176  ch = readw(uap->port.membase + UART01x_DR) |
178  flag = TTY_NORMAL;
179  uap->port.icount.rx++;
180  fifotaken++;
181 
182  if (unlikely(ch & UART_DR_ERROR)) {
183  if (ch & UART011_DR_BE) {
184  ch &= ~(UART011_DR_FE | UART011_DR_PE);
185  uap->port.icount.brk++;
186  if (uart_handle_break(&uap->port))
187  continue;
188  } else if (ch & UART011_DR_PE)
189  uap->port.icount.parity++;
190  else if (ch & UART011_DR_FE)
191  uap->port.icount.frame++;
192  if (ch & UART011_DR_OE)
193  uap->port.icount.overrun++;
194 
195  ch &= uap->port.read_status_mask;
196 
197  if (ch & UART011_DR_BE)
198  flag = TTY_BREAK;
199  else if (ch & UART011_DR_PE)
200  flag = TTY_PARITY;
201  else if (ch & UART011_DR_FE)
202  flag = TTY_FRAME;
203  }
204 
205  if (uart_handle_sysrq_char(&uap->port, ch & 255))
206  continue;
207 
208  uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
209  }
210 
211  return fifotaken;
212 }
213 
214 
215 /*
216  * All the DMA operation mode stuff goes inside this ifdef.
217  * This assumes that you have a generic DMA device interface,
218  * no custom DMA interfaces are supported.
219  */
220 #ifdef CONFIG_DMA_ENGINE
221 
222 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
223 
224 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
225  enum dma_data_direction dir)
226 {
227  sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
228  if (!sg->buf)
229  return -ENOMEM;
230 
231  sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
232 
233  if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
234  kfree(sg->buf);
235  return -EINVAL;
236  }
237  return 0;
238 }
239 
240 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
241  enum dma_data_direction dir)
242 {
243  if (sg->buf) {
244  dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
245  kfree(sg->buf);
246  }
247 }
248 
249 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
250 {
251  /* DMA is the sole user of the platform data right now */
252  struct amba_pl011_data *plat = uap->port.dev->platform_data;
253  struct dma_slave_config tx_conf = {
254  .dst_addr = uap->port.mapbase + UART01x_DR,
255  .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
256  .direction = DMA_MEM_TO_DEV,
257  .dst_maxburst = uap->fifosize >> 1,
258  .device_fc = false,
259  };
260  struct dma_chan *chan;
262 
263  /* We need platform data */
264  if (!plat || !plat->dma_filter) {
265  dev_info(uap->port.dev, "no DMA platform data\n");
266  return;
267  }
268 
269  /* Try to acquire a generic DMA engine slave TX channel */
270  dma_cap_zero(mask);
271  dma_cap_set(DMA_SLAVE, mask);
272 
273  chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
274  if (!chan) {
275  dev_err(uap->port.dev, "no TX DMA channel!\n");
276  return;
277  }
278 
279  dmaengine_slave_config(chan, &tx_conf);
280  uap->dmatx.chan = chan;
281 
282  dev_info(uap->port.dev, "DMA channel TX %s\n",
283  dma_chan_name(uap->dmatx.chan));
284 
285  /* Optionally make use of an RX channel as well */
286  if (plat->dma_rx_param) {
287  struct dma_slave_config rx_conf = {
288  .src_addr = uap->port.mapbase + UART01x_DR,
289  .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
290  .direction = DMA_DEV_TO_MEM,
291  .src_maxburst = uap->fifosize >> 1,
292  .device_fc = false,
293  };
294 
295  chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
296  if (!chan) {
297  dev_err(uap->port.dev, "no RX DMA channel!\n");
298  return;
299  }
300 
301  dmaengine_slave_config(chan, &rx_conf);
302  uap->dmarx.chan = chan;
303 
304  dev_info(uap->port.dev, "DMA channel RX %s\n",
305  dma_chan_name(uap->dmarx.chan));
306  }
307 }
308 
309 #ifndef MODULE
310 /*
311  * Stack up the UARTs and let the above initcall be done at device
312  * initcall time, because the serial driver is called as an arch
313  * initcall, and at this time the DMA subsystem is not yet registered.
314  * At this point the driver will switch over to using DMA where desired.
315  */
316 struct dma_uap {
317  struct list_head node;
318  struct uart_amba_port *uap;
319 };
320 
321 static LIST_HEAD(pl011_dma_uarts);
322 
323 static int __init pl011_dma_initcall(void)
324 {
325  struct list_head *node, *tmp;
326 
327  list_for_each_safe(node, tmp, &pl011_dma_uarts) {
328  struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
329  pl011_dma_probe_initcall(dmau->uap);
330  list_del(node);
331  kfree(dmau);
332  }
333  return 0;
334 }
335 
336 device_initcall(pl011_dma_initcall);
337 
338 static void pl011_dma_probe(struct uart_amba_port *uap)
339 {
340  struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
341  if (dmau) {
342  dmau->uap = uap;
343  list_add_tail(&dmau->node, &pl011_dma_uarts);
344  }
345 }
346 #else
347 static void pl011_dma_probe(struct uart_amba_port *uap)
348 {
349  pl011_dma_probe_initcall(uap);
350 }
351 #endif
352 
353 static void pl011_dma_remove(struct uart_amba_port *uap)
354 {
355  /* TODO: remove the initcall if it has not yet executed */
356  if (uap->dmatx.chan)
357  dma_release_channel(uap->dmatx.chan);
358  if (uap->dmarx.chan)
359  dma_release_channel(uap->dmarx.chan);
360 }
361 
362 /* Forward declare this for the refill routine */
363 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
364 
365 /*
366  * The current DMA TX buffer has been sent.
367  * Try to queue up another DMA buffer.
368  */
369 static void pl011_dma_tx_callback(void *data)
370 {
371  struct uart_amba_port *uap = data;
372  struct pl011_dmatx_data *dmatx = &uap->dmatx;
373  unsigned long flags;
374  u16 dmacr;
375 
376  spin_lock_irqsave(&uap->port.lock, flags);
377  if (uap->dmatx.queued)
378  dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
379  DMA_TO_DEVICE);
380 
381  dmacr = uap->dmacr;
382  uap->dmacr = dmacr & ~UART011_TXDMAE;
383  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
384 
385  /*
386  * If TX DMA was disabled, it means that we've stopped the DMA for
387  * some reason (eg, XOFF received, or we want to send an X-char.)
388  *
389  * Note: we need to be careful here of a potential race between DMA
390  * and the rest of the driver - if the driver disables TX DMA while
391  * a TX buffer completing, we must update the tx queued status to
392  * get further refills (hence we check dmacr).
393  */
394  if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
395  uart_circ_empty(&uap->port.state->xmit)) {
396  uap->dmatx.queued = false;
397  spin_unlock_irqrestore(&uap->port.lock, flags);
398  return;
399  }
400 
401  if (pl011_dma_tx_refill(uap) <= 0) {
402  /*
403  * We didn't queue a DMA buffer for some reason, but we
404  * have data pending to be sent. Re-enable the TX IRQ.
405  */
406  uap->im |= UART011_TXIM;
407  writew(uap->im, uap->port.membase + UART011_IMSC);
408  }
409  spin_unlock_irqrestore(&uap->port.lock, flags);
410 }
411 
412 /*
413  * Try to refill the TX DMA buffer.
414  * Locking: called with port lock held and IRQs disabled.
415  * Returns:
416  * 1 if we queued up a TX DMA buffer.
417  * 0 if we didn't want to handle this by DMA
418  * <0 on error
419  */
420 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
421 {
422  struct pl011_dmatx_data *dmatx = &uap->dmatx;
423  struct dma_chan *chan = dmatx->chan;
424  struct dma_device *dma_dev = chan->device;
426  struct circ_buf *xmit = &uap->port.state->xmit;
427  unsigned int count;
428 
429  /*
430  * Try to avoid the overhead involved in using DMA if the
431  * transaction fits in the first half of the FIFO, by using
432  * the standard interrupt handling. This ensures that we
433  * issue a uart_write_wakeup() at the appropriate time.
434  */
435  count = uart_circ_chars_pending(xmit);
436  if (count < (uap->fifosize >> 1)) {
437  uap->dmatx.queued = false;
438  return 0;
439  }
440 
441  /*
442  * Bodge: don't send the last character by DMA, as this
443  * will prevent XON from notifying us to restart DMA.
444  */
445  count -= 1;
446 
447  /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
448  if (count > PL011_DMA_BUFFER_SIZE)
449  count = PL011_DMA_BUFFER_SIZE;
450 
451  if (xmit->tail < xmit->head)
452  memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
453  else {
454  size_t first = UART_XMIT_SIZE - xmit->tail;
455  size_t second = xmit->head;
456 
457  memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
458  if (second)
459  memcpy(&dmatx->buf[first], &xmit->buf[0], second);
460  }
461 
462  dmatx->sg.length = count;
463 
464  if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
465  uap->dmatx.queued = false;
466  dev_dbg(uap->port.dev, "unable to map TX DMA\n");
467  return -EBUSY;
468  }
469 
470  desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
472  if (!desc) {
473  dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
474  uap->dmatx.queued = false;
475  /*
476  * If DMA cannot be used right now, we complete this
477  * transaction via IRQ and let the TTY layer retry.
478  */
479  dev_dbg(uap->port.dev, "TX DMA busy\n");
480  return -EBUSY;
481  }
482 
483  /* Some data to go along to the callback */
484  desc->callback = pl011_dma_tx_callback;
485  desc->callback_param = uap;
486 
487  /* All errors should happen at prepare time */
488  dmaengine_submit(desc);
489 
490  /* Fire the DMA transaction */
491  dma_dev->device_issue_pending(chan);
492 
493  uap->dmacr |= UART011_TXDMAE;
494  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
495  uap->dmatx.queued = true;
496 
497  /*
498  * Now we know that DMA will fire, so advance the ring buffer
499  * with the stuff we just dispatched.
500  */
501  xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
502  uap->port.icount.tx += count;
503 
505  uart_write_wakeup(&uap->port);
506 
507  return 1;
508 }
509 
510 /*
511  * We received a transmit interrupt without a pending X-char but with
512  * pending characters.
513  * Locking: called with port lock held and IRQs disabled.
514  * Returns:
515  * false if we want to use PIO to transmit
516  * true if we queued a DMA buffer
517  */
518 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
519 {
520  if (!uap->using_tx_dma)
521  return false;
522 
523  /*
524  * If we already have a TX buffer queued, but received a
525  * TX interrupt, it will be because we've just sent an X-char.
526  * Ensure the TX DMA is enabled and the TX IRQ is disabled.
527  */
528  if (uap->dmatx.queued) {
529  uap->dmacr |= UART011_TXDMAE;
530  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
531  uap->im &= ~UART011_TXIM;
532  writew(uap->im, uap->port.membase + UART011_IMSC);
533  return true;
534  }
535 
536  /*
537  * We don't have a TX buffer queued, so try to queue one.
538  * If we successfully queued a buffer, mask the TX IRQ.
539  */
540  if (pl011_dma_tx_refill(uap) > 0) {
541  uap->im &= ~UART011_TXIM;
542  writew(uap->im, uap->port.membase + UART011_IMSC);
543  return true;
544  }
545  return false;
546 }
547 
548 /*
549  * Stop the DMA transmit (eg, due to received XOFF).
550  * Locking: called with port lock held and IRQs disabled.
551  */
552 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
553 {
554  if (uap->dmatx.queued) {
555  uap->dmacr &= ~UART011_TXDMAE;
556  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
557  }
558 }
559 
560 /*
561  * Try to start a DMA transmit, or in the case of an XON/OFF
562  * character queued for send, try to get that character out ASAP.
563  * Locking: called with port lock held and IRQs disabled.
564  * Returns:
565  * false if we want the TX IRQ to be enabled
566  * true if we have a buffer queued
567  */
568 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
569 {
570  u16 dmacr;
571 
572  if (!uap->using_tx_dma)
573  return false;
574 
575  if (!uap->port.x_char) {
576  /* no X-char, try to push chars out in DMA mode */
577  bool ret = true;
578 
579  if (!uap->dmatx.queued) {
580  if (pl011_dma_tx_refill(uap) > 0) {
581  uap->im &= ~UART011_TXIM;
582  ret = true;
583  } else {
584  uap->im |= UART011_TXIM;
585  ret = false;
586  }
587  writew(uap->im, uap->port.membase + UART011_IMSC);
588  } else if (!(uap->dmacr & UART011_TXDMAE)) {
589  uap->dmacr |= UART011_TXDMAE;
590  writew(uap->dmacr,
591  uap->port.membase + UART011_DMACR);
592  }
593  return ret;
594  }
595 
596  /*
597  * We have an X-char to send. Disable DMA to prevent it loading
598  * the TX fifo, and then see if we can stuff it into the FIFO.
599  */
600  dmacr = uap->dmacr;
601  uap->dmacr &= ~UART011_TXDMAE;
602  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
603 
604  if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
605  /*
606  * No space in the FIFO, so enable the transmit interrupt
607  * so we know when there is space. Note that once we've
608  * loaded the character, we should just re-enable DMA.
609  */
610  return false;
611  }
612 
613  writew(uap->port.x_char, uap->port.membase + UART01x_DR);
614  uap->port.icount.tx++;
615  uap->port.x_char = 0;
616 
617  /* Success - restore the DMA state */
618  uap->dmacr = dmacr;
619  writew(dmacr, uap->port.membase + UART011_DMACR);
620 
621  return true;
622 }
623 
624 /*
625  * Flush the transmit buffer.
626  * Locking: called with port lock held and IRQs disabled.
627  */
628 static void pl011_dma_flush_buffer(struct uart_port *port)
629 {
630  struct uart_amba_port *uap = (struct uart_amba_port *)port;
631 
632  if (!uap->using_tx_dma)
633  return;
634 
635  /* Avoid deadlock with the DMA engine callback */
636  spin_unlock(&uap->port.lock);
637  dmaengine_terminate_all(uap->dmatx.chan);
638  spin_lock(&uap->port.lock);
639  if (uap->dmatx.queued) {
640  dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
641  DMA_TO_DEVICE);
642  uap->dmatx.queued = false;
643  uap->dmacr &= ~UART011_TXDMAE;
644  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
645  }
646 }
647 
648 static void pl011_dma_rx_callback(void *data);
649 
650 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
651 {
652  struct dma_chan *rxchan = uap->dmarx.chan;
653  struct pl011_dmarx_data *dmarx = &uap->dmarx;
654  struct dma_async_tx_descriptor *desc;
655  struct pl011_sgbuf *sgbuf;
656 
657  if (!rxchan)
658  return -EIO;
659 
660  /* Start the RX DMA job */
661  sgbuf = uap->dmarx.use_buf_b ?
662  &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
663  desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
666  /*
667  * If the DMA engine is busy and cannot prepare a
668  * channel, no big deal, the driver will fall back
669  * to interrupt mode as a result of this error code.
670  */
671  if (!desc) {
672  uap->dmarx.running = false;
673  dmaengine_terminate_all(rxchan);
674  return -EBUSY;
675  }
676 
677  /* Some data to go along to the callback */
678  desc->callback = pl011_dma_rx_callback;
679  desc->callback_param = uap;
680  dmarx->cookie = dmaengine_submit(desc);
681  dma_async_issue_pending(rxchan);
682 
683  uap->dmacr |= UART011_RXDMAE;
684  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
685  uap->dmarx.running = true;
686 
687  uap->im &= ~UART011_RXIM;
688  writew(uap->im, uap->port.membase + UART011_IMSC);
689 
690  return 0;
691 }
692 
693 /*
694  * This is called when either the DMA job is complete, or
695  * the FIFO timeout interrupt occurred. This must be called
696  * with the port spinlock uap->port.lock held.
697  */
698 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
699  u32 pending, bool use_buf_b,
700  bool readfifo)
701 {
702  struct tty_struct *tty = uap->port.state->port.tty;
703  struct pl011_sgbuf *sgbuf = use_buf_b ?
704  &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
705  struct device *dev = uap->dmarx.chan->device->dev;
706  int dma_count = 0;
707  u32 fifotaken = 0; /* only used for vdbg() */
708 
709  /* Pick everything from the DMA first */
710  if (pending) {
711  /* Sync in buffer */
712  dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
713 
714  /*
715  * First take all chars in the DMA pipe, then look in the FIFO.
716  * Note that tty_insert_flip_buf() tries to take as many chars
717  * as it can.
718  */
719  dma_count = tty_insert_flip_string(uap->port.state->port.tty,
720  sgbuf->buf, pending);
721 
722  /* Return buffer to device */
723  dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
724 
725  uap->port.icount.rx += dma_count;
726  if (dma_count < pending)
727  dev_warn(uap->port.dev,
728  "couldn't insert all characters (TTY is full?)\n");
729  }
730 
731  /*
732  * Only continue with trying to read the FIFO if all DMA chars have
733  * been taken first.
734  */
735  if (dma_count == pending && readfifo) {
736  /* Clear any error flags */
738  uap->port.membase + UART011_ICR);
739 
740  /*
741  * If we read all the DMA'd characters, and we had an
742  * incomplete buffer, that could be due to an rx error, or
743  * maybe we just timed out. Read any pending chars and check
744  * the error status.
745  *
746  * Error conditions will only occur in the FIFO, these will
747  * trigger an immediate interrupt and stop the DMA job, so we
748  * will always find the error in the FIFO, never in the DMA
749  * buffer.
750  */
751  fifotaken = pl011_fifo_to_tty(uap);
752  }
753 
754  spin_unlock(&uap->port.lock);
755  dev_vdbg(uap->port.dev,
756  "Took %d chars from DMA buffer and %d chars from the FIFO\n",
757  dma_count, fifotaken);
759  spin_lock(&uap->port.lock);
760 }
761 
762 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
763 {
764  struct pl011_dmarx_data *dmarx = &uap->dmarx;
765  struct dma_chan *rxchan = dmarx->chan;
766  struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
767  &dmarx->sgbuf_b : &dmarx->sgbuf_a;
768  size_t pending;
769  struct dma_tx_state state;
770  enum dma_status dmastat;
771 
772  /*
773  * Pause the transfer so we can trust the current counter,
774  * do this before we pause the PL011 block, else we may
775  * overflow the FIFO.
776  */
777  if (dmaengine_pause(rxchan))
778  dev_err(uap->port.dev, "unable to pause DMA transfer\n");
779  dmastat = rxchan->device->device_tx_status(rxchan,
780  dmarx->cookie, &state);
781  if (dmastat != DMA_PAUSED)
782  dev_err(uap->port.dev, "unable to pause DMA transfer\n");
783 
784  /* Disable RX DMA - incoming data will wait in the FIFO */
785  uap->dmacr &= ~UART011_RXDMAE;
786  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
787  uap->dmarx.running = false;
788 
789  pending = sgbuf->sg.length - state.residue;
790  BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
791  /* Then we terminate the transfer - we now know our residue */
792  dmaengine_terminate_all(rxchan);
793 
794  /*
795  * This will take the chars we have so far and insert
796  * into the framework.
797  */
798  pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
799 
800  /* Switch buffer & re-trigger DMA job */
801  dmarx->use_buf_b = !dmarx->use_buf_b;
802  if (pl011_dma_rx_trigger_dma(uap)) {
803  dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
804  "fall back to interrupt mode\n");
805  uap->im |= UART011_RXIM;
806  writew(uap->im, uap->port.membase + UART011_IMSC);
807  }
808 }
809 
810 static void pl011_dma_rx_callback(void *data)
811 {
812  struct uart_amba_port *uap = data;
813  struct pl011_dmarx_data *dmarx = &uap->dmarx;
814  struct dma_chan *rxchan = dmarx->chan;
815  bool lastbuf = dmarx->use_buf_b;
816  struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
817  &dmarx->sgbuf_b : &dmarx->sgbuf_a;
818  size_t pending;
819  struct dma_tx_state state;
820  int ret;
821 
822  /*
823  * This completion interrupt occurs typically when the
824  * RX buffer is totally stuffed but no timeout has yet
825  * occurred. When that happens, we just want the RX
826  * routine to flush out the secondary DMA buffer while
827  * we immediately trigger the next DMA job.
828  */
829  spin_lock_irq(&uap->port.lock);
830  /*
831  * Rx data can be taken by the UART interrupts during
832  * the DMA irq handler. So we check the residue here.
833  */
834  rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
835  pending = sgbuf->sg.length - state.residue;
836  BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
837  /* Then we terminate the transfer - we now know our residue */
838  dmaengine_terminate_all(rxchan);
839 
840  uap->dmarx.running = false;
841  dmarx->use_buf_b = !lastbuf;
842  ret = pl011_dma_rx_trigger_dma(uap);
843 
844  pl011_dma_rx_chars(uap, pending, lastbuf, false);
845  spin_unlock_irq(&uap->port.lock);
846  /*
847  * Do this check after we picked the DMA chars so we don't
848  * get some IRQ immediately from RX.
849  */
850  if (ret) {
851  dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
852  "fall back to interrupt mode\n");
853  uap->im |= UART011_RXIM;
854  writew(uap->im, uap->port.membase + UART011_IMSC);
855  }
856 }
857 
858 /*
859  * Stop accepting received characters, when we're shutting down or
860  * suspending this port.
861  * Locking: called with port lock held and IRQs disabled.
862  */
863 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
864 {
865  /* FIXME. Just disable the DMA enable */
866  uap->dmacr &= ~UART011_RXDMAE;
867  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
868 }
869 
870 static void pl011_dma_startup(struct uart_amba_port *uap)
871 {
872  int ret;
873 
874  if (!uap->dmatx.chan)
875  return;
876 
877  uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
878  if (!uap->dmatx.buf) {
879  dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
880  uap->port.fifosize = uap->fifosize;
881  return;
882  }
883 
884  sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
885 
886  /* The DMA buffer is now the FIFO the TTY subsystem can use */
887  uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
888  uap->using_tx_dma = true;
889 
890  if (!uap->dmarx.chan)
891  goto skip_rx;
892 
893  /* Allocate and map DMA RX buffers */
894  ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
896  if (ret) {
897  dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
898  "RX buffer A", ret);
899  goto skip_rx;
900  }
901 
902  ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
904  if (ret) {
905  dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
906  "RX buffer B", ret);
907  pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
909  goto skip_rx;
910  }
911 
912  uap->using_rx_dma = true;
913 
914 skip_rx:
915  /* Turn on DMA error (RX/TX will be enabled on demand) */
916  uap->dmacr |= UART011_DMAONERR;
917  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
918 
919  /*
920  * ST Micro variants has some specific dma burst threshold
921  * compensation. Set this to 16 bytes, so burst will only
922  * be issued above/below 16 bytes.
923  */
924  if (uap->vendor->dma_threshold)
926  uap->port.membase + ST_UART011_DMAWM);
927 
928  if (uap->using_rx_dma) {
929  if (pl011_dma_rx_trigger_dma(uap))
930  dev_dbg(uap->port.dev, "could not trigger initial "
931  "RX DMA job, fall back to interrupt mode\n");
932  }
933 }
934 
935 static void pl011_dma_shutdown(struct uart_amba_port *uap)
936 {
937  if (!(uap->using_tx_dma || uap->using_rx_dma))
938  return;
939 
940  /* Disable RX and TX DMA */
941  while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
942  barrier();
943 
944  spin_lock_irq(&uap->port.lock);
946  writew(uap->dmacr, uap->port.membase + UART011_DMACR);
947  spin_unlock_irq(&uap->port.lock);
948 
949  if (uap->using_tx_dma) {
950  /* In theory, this should already be done by pl011_dma_flush_buffer */
951  dmaengine_terminate_all(uap->dmatx.chan);
952  if (uap->dmatx.queued) {
953  dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
954  DMA_TO_DEVICE);
955  uap->dmatx.queued = false;
956  }
957 
958  kfree(uap->dmatx.buf);
959  uap->using_tx_dma = false;
960  }
961 
962  if (uap->using_rx_dma) {
963  dmaengine_terminate_all(uap->dmarx.chan);
964  /* Clean up the RX DMA */
965  pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
966  pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
967  uap->using_rx_dma = false;
968  }
969 }
970 
971 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
972 {
973  return uap->using_rx_dma;
974 }
975 
976 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
977 {
978  return uap->using_rx_dma && uap->dmarx.running;
979 }
980 
981 
982 #else
983 /* Blank functions if the DMA engine is not available */
984 static inline void pl011_dma_probe(struct uart_amba_port *uap)
985 {
986 }
987 
988 static inline void pl011_dma_remove(struct uart_amba_port *uap)
989 {
990 }
991 
992 static inline void pl011_dma_startup(struct uart_amba_port *uap)
993 {
994 }
995 
996 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
997 {
998 }
999 
1000 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001 {
1002  return false;
1003 }
1004 
1005 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006 {
1007 }
1008 
1009 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010 {
1011  return false;
1012 }
1013 
1014 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015 {
1016 }
1017 
1018 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019 {
1020 }
1021 
1022 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023 {
1024  return -EIO;
1025 }
1026 
1027 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028 {
1029  return false;
1030 }
1031 
1032 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033 {
1034  return false;
1035 }
1036 
1037 #define pl011_dma_flush_buffer NULL
1038 #endif
1039 
1040 static void pl011_stop_tx(struct uart_port *port)
1041 {
1042  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1043 
1044  uap->im &= ~UART011_TXIM;
1045  writew(uap->im, uap->port.membase + UART011_IMSC);
1046  pl011_dma_tx_stop(uap);
1047 }
1048 
1049 static void pl011_start_tx(struct uart_port *port)
1050 {
1051  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1052 
1053  if (!pl011_dma_tx_start(uap)) {
1054  uap->im |= UART011_TXIM;
1055  writew(uap->im, uap->port.membase + UART011_IMSC);
1056  }
1057 }
1058 
1059 static void pl011_stop_rx(struct uart_port *port)
1060 {
1061  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1062 
1065  writew(uap->im, uap->port.membase + UART011_IMSC);
1066 
1067  pl011_dma_rx_stop(uap);
1068 }
1069 
1070 static void pl011_enable_ms(struct uart_port *port)
1071 {
1072  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1073 
1075  writew(uap->im, uap->port.membase + UART011_IMSC);
1076 }
1077 
1078 static void pl011_rx_chars(struct uart_amba_port *uap)
1079 {
1080  struct tty_struct *tty = uap->port.state->port.tty;
1081 
1082  pl011_fifo_to_tty(uap);
1083 
1084  spin_unlock(&uap->port.lock);
1085  tty_flip_buffer_push(tty);
1086  /*
1087  * If we were temporarily out of DMA mode for a while,
1088  * attempt to switch back to DMA mode again.
1089  */
1090  if (pl011_dma_rx_available(uap)) {
1091  if (pl011_dma_rx_trigger_dma(uap)) {
1092  dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1093  "fall back to interrupt mode again\n");
1094  uap->im |= UART011_RXIM;
1095  } else
1096  uap->im &= ~UART011_RXIM;
1097  writew(uap->im, uap->port.membase + UART011_IMSC);
1098  }
1099  spin_lock(&uap->port.lock);
1100 }
1101 
1102 static void pl011_tx_chars(struct uart_amba_port *uap)
1103 {
1104  struct circ_buf *xmit = &uap->port.state->xmit;
1105  int count;
1106 
1107  if (uap->port.x_char) {
1108  writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1109  uap->port.icount.tx++;
1110  uap->port.x_char = 0;
1111  return;
1112  }
1113  if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1114  pl011_stop_tx(&uap->port);
1115  return;
1116  }
1117 
1118  /* If we are using DMA mode, try to send some characters. */
1119  if (pl011_dma_tx_irq(uap))
1120  return;
1121 
1122  count = uap->fifosize >> 1;
1123  do {
1124  writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1125  xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1126  uap->port.icount.tx++;
1127  if (uart_circ_empty(xmit))
1128  break;
1129  } while (--count > 0);
1130 
1132  uart_write_wakeup(&uap->port);
1133 
1134  if (uart_circ_empty(xmit))
1135  pl011_stop_tx(&uap->port);
1136 }
1137 
1138 static void pl011_modem_status(struct uart_amba_port *uap)
1139 {
1140  unsigned int status, delta;
1141 
1142  status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1143 
1144  delta = status ^ uap->old_status;
1145  uap->old_status = status;
1146 
1147  if (!delta)
1148  return;
1149 
1150  if (delta & UART01x_FR_DCD)
1151  uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1152 
1153  if (delta & UART01x_FR_DSR)
1154  uap->port.icount.dsr++;
1155 
1156  if (delta & UART01x_FR_CTS)
1157  uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1158 
1159  wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1160 }
1161 
1162 static irqreturn_t pl011_int(int irq, void *dev_id)
1163 {
1164  struct uart_amba_port *uap = dev_id;
1165  unsigned long flags;
1166  unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1167  int handled = 0;
1168  unsigned int dummy_read;
1169 
1170  spin_lock_irqsave(&uap->port.lock, flags);
1171 
1172  status = readw(uap->port.membase + UART011_MIS);
1173  if (status) {
1174  do {
1175  if (uap->vendor->cts_event_workaround) {
1176  /* workaround to make sure that all bits are unlocked.. */
1177  writew(0x00, uap->port.membase + UART011_ICR);
1178 
1179  /*
1180  * WA: introduce 26ns(1 uart clk) delay before W1C;
1181  * single apb access will incur 2 pclk(133.12Mhz) delay,
1182  * so add 2 dummy reads
1183  */
1184  dummy_read = readw(uap->port.membase + UART011_ICR);
1185  dummy_read = readw(uap->port.membase + UART011_ICR);
1186  }
1187 
1188  writew(status & ~(UART011_TXIS|UART011_RTIS|
1189  UART011_RXIS),
1190  uap->port.membase + UART011_ICR);
1191 
1192  if (status & (UART011_RTIS|UART011_RXIS)) {
1193  if (pl011_dma_rx_running(uap))
1194  pl011_dma_rx_irq(uap);
1195  else
1196  pl011_rx_chars(uap);
1197  }
1198  if (status & (UART011_DSRMIS|UART011_DCDMIS|
1200  pl011_modem_status(uap);
1201  if (status & UART011_TXIS)
1202  pl011_tx_chars(uap);
1203 
1204  if (pass_counter-- == 0)
1205  break;
1206 
1207  status = readw(uap->port.membase + UART011_MIS);
1208  } while (status != 0);
1209  handled = 1;
1210  }
1211 
1212  spin_unlock_irqrestore(&uap->port.lock, flags);
1213 
1214  return IRQ_RETVAL(handled);
1215 }
1216 
1217 static unsigned int pl011_tx_empty(struct uart_port *port)
1218 {
1219  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1220  unsigned int status = readw(uap->port.membase + UART01x_FR);
1221  return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1222 }
1223 
1224 static unsigned int pl011_get_mctrl(struct uart_port *port)
1225 {
1226  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1227  unsigned int result = 0;
1228  unsigned int status = readw(uap->port.membase + UART01x_FR);
1229 
1230 #define TIOCMBIT(uartbit, tiocmbit) \
1231  if (status & uartbit) \
1232  result |= tiocmbit
1233 
1234  TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1235  TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1238 #undef TIOCMBIT
1239  return result;
1240 }
1241 
1242 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1243 {
1244  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1245  unsigned int cr;
1246 
1247  cr = readw(uap->port.membase + UART011_CR);
1248 
1249 #define TIOCMBIT(tiocmbit, uartbit) \
1250  if (mctrl & tiocmbit) \
1251  cr |= uartbit; \
1252  else \
1253  cr &= ~uartbit
1254 
1260 
1261  if (uap->autorts) {
1262  /* We need to disable auto-RTS if we want to turn RTS off */
1264  }
1265 #undef TIOCMBIT
1266 
1267  writew(cr, uap->port.membase + UART011_CR);
1268 }
1269 
1270 static void pl011_break_ctl(struct uart_port *port, int break_state)
1271 {
1272  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1273  unsigned long flags;
1274  unsigned int lcr_h;
1275 
1276  spin_lock_irqsave(&uap->port.lock, flags);
1277  lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1278  if (break_state == -1)
1279  lcr_h |= UART01x_LCRH_BRK;
1280  else
1281  lcr_h &= ~UART01x_LCRH_BRK;
1282  writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1283  spin_unlock_irqrestore(&uap->port.lock, flags);
1284 }
1285 
1286 #ifdef CONFIG_CONSOLE_POLL
1287 
1288 static void pl011_quiesce_irqs(struct uart_port *port)
1289 {
1290  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1291  unsigned char __iomem *regs = uap->port.membase;
1292 
1293  writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1294  /*
1295  * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1296  * we simply mask it. start_tx() will unmask it.
1297  *
1298  * Note we can race with start_tx(), and if the race happens, the
1299  * polling user might get another interrupt just after we clear it.
1300  * But it should be OK and can happen even w/o the race, e.g.
1301  * controller immediately got some new data and raised the IRQ.
1302  *
1303  * And whoever uses polling routines assumes that it manages the device
1304  * (including tx queue), so we're also fine with start_tx()'s caller
1305  * side.
1306  */
1307  writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1308 }
1309 
1310 static int pl011_get_poll_char(struct uart_port *port)
1311 {
1312  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1313  unsigned int status;
1314 
1315  /*
1316  * The caller might need IRQs lowered, e.g. if used with KDB NMI
1317  * debugger.
1318  */
1319  pl011_quiesce_irqs(port);
1320 
1321  status = readw(uap->port.membase + UART01x_FR);
1322  if (status & UART01x_FR_RXFE)
1323  return NO_POLL_CHAR;
1324 
1325  return readw(uap->port.membase + UART01x_DR);
1326 }
1327 
1328 static void pl011_put_poll_char(struct uart_port *port,
1329  unsigned char ch)
1330 {
1331  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1332 
1333  while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1334  barrier();
1335 
1336  writew(ch, uap->port.membase + UART01x_DR);
1337 }
1338 
1339 #endif /* CONFIG_CONSOLE_POLL */
1340 
1341 static int pl011_hwinit(struct uart_port *port)
1342 {
1343  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1344  int retval;
1345 
1346  /* Optionaly enable pins to be muxed in and configured */
1347  if (!IS_ERR(uap->pins_default)) {
1348  retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1349  if (retval)
1350  dev_err(port->dev,
1351  "could not set default pins\n");
1352  }
1353 
1354  /*
1355  * Try to enable the clock producer.
1356  */
1357  retval = clk_prepare_enable(uap->clk);
1358  if (retval)
1359  goto out;
1360 
1361  uap->port.uartclk = clk_get_rate(uap->clk);
1362 
1363  /* Clear pending error and receive interrupts */
1365  UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1366 
1367  /*
1368  * Save interrupts enable mask, and enable RX interrupts in case if
1369  * the interrupt is used for NMI entry.
1370  */
1371  uap->im = readw(uap->port.membase + UART011_IMSC);
1372  writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1373 
1374  if (uap->port.dev->platform_data) {
1375  struct amba_pl011_data *plat;
1376 
1377  plat = uap->port.dev->platform_data;
1378  if (plat->init)
1379  plat->init();
1380  }
1381  return 0;
1382  out:
1383  return retval;
1384 }
1385 
1386 static int pl011_startup(struct uart_port *port)
1387 {
1388  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1389  unsigned int cr;
1390  int retval;
1391 
1392  retval = pl011_hwinit(port);
1393  if (retval)
1394  goto clk_dis;
1395 
1396  writew(uap->im, uap->port.membase + UART011_IMSC);
1397 
1398  /*
1399  * Allocate the IRQ
1400  */
1401  retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1402  if (retval)
1403  goto clk_dis;
1404 
1405  writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1406 
1407  /*
1408  * Provoke TX FIFO interrupt into asserting.
1409  */
1411  writew(cr, uap->port.membase + UART011_CR);
1412  writew(0, uap->port.membase + UART011_FBRD);
1413  writew(1, uap->port.membase + UART011_IBRD);
1414  writew(0, uap->port.membase + uap->lcrh_rx);
1415  if (uap->lcrh_tx != uap->lcrh_rx) {
1416  int i;
1417  /*
1418  * Wait 10 PCLKs before writing LCRH_TX register,
1419  * to get this delay write read only register 10 times
1420  */
1421  for (i = 0; i < 10; ++i)
1422  writew(0xff, uap->port.membase + UART011_MIS);
1423  writew(0, uap->port.membase + uap->lcrh_tx);
1424  }
1425  writew(0, uap->port.membase + UART01x_DR);
1426  while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1427  barrier();
1428 
1429  /* restore RTS and DTR */
1430  cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1432  writew(cr, uap->port.membase + UART011_CR);
1433 
1434  /*
1435  * initialise the old status of the modem signals
1436  */
1437  uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1438 
1439  /* Startup DMA */
1440  pl011_dma_startup(uap);
1441 
1442  /*
1443  * Finally, enable interrupts, only timeouts when using DMA
1444  * if initial RX DMA job failed, start in interrupt mode
1445  * as well.
1446  */
1447  spin_lock_irq(&uap->port.lock);
1448  /* Clear out any spuriously appearing RX interrupts */
1450  uap->port.membase + UART011_ICR);
1451  uap->im = UART011_RTIM;
1452  if (!pl011_dma_rx_running(uap))
1453  uap->im |= UART011_RXIM;
1454  writew(uap->im, uap->port.membase + UART011_IMSC);
1455  spin_unlock_irq(&uap->port.lock);
1456 
1457  return 0;
1458 
1459  clk_dis:
1460  clk_disable_unprepare(uap->clk);
1461  return retval;
1462 }
1463 
1464 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1465  unsigned int lcrh)
1466 {
1467  unsigned long val;
1468 
1469  val = readw(uap->port.membase + lcrh);
1470  val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1471  writew(val, uap->port.membase + lcrh);
1472 }
1473 
1474 static void pl011_shutdown(struct uart_port *port)
1475 {
1476  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1477  unsigned int cr;
1478  int retval;
1479 
1480  /*
1481  * disable all interrupts
1482  */
1483  spin_lock_irq(&uap->port.lock);
1484  uap->im = 0;
1485  writew(uap->im, uap->port.membase + UART011_IMSC);
1486  writew(0xffff, uap->port.membase + UART011_ICR);
1487  spin_unlock_irq(&uap->port.lock);
1488 
1489  pl011_dma_shutdown(uap);
1490 
1491  /*
1492  * Free the interrupt
1493  */
1494  free_irq(uap->port.irq, uap);
1495 
1496  /*
1497  * disable the port
1498  * disable the port. It should not disable RTS and DTR.
1499  * Also RTS and DTR state should be preserved to restore
1500  * it during startup().
1501  */
1502  uap->autorts = false;
1503  cr = readw(uap->port.membase + UART011_CR);
1504  uap->old_cr = cr;
1507  writew(cr, uap->port.membase + UART011_CR);
1508 
1509  /*
1510  * disable break condition and fifos
1511  */
1512  pl011_shutdown_channel(uap, uap->lcrh_rx);
1513  if (uap->lcrh_rx != uap->lcrh_tx)
1514  pl011_shutdown_channel(uap, uap->lcrh_tx);
1515 
1516  /*
1517  * Shut down the clock producer
1518  */
1519  clk_disable_unprepare(uap->clk);
1520  /* Optionally let pins go into sleep states */
1521  if (!IS_ERR(uap->pins_sleep)) {
1522  retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1523  if (retval)
1524  dev_err(port->dev,
1525  "could not set pins to sleep state\n");
1526  }
1527 
1528 
1529  if (uap->port.dev->platform_data) {
1530  struct amba_pl011_data *plat;
1531 
1532  plat = uap->port.dev->platform_data;
1533  if (plat->exit)
1534  plat->exit();
1535  }
1536 
1537 }
1538 
1539 static void
1540 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1541  struct ktermios *old)
1542 {
1543  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1544  unsigned int lcr_h, old_cr;
1545  unsigned long flags;
1546  unsigned int baud, quot, clkdiv;
1547 
1548  if (uap->vendor->oversampling)
1549  clkdiv = 8;
1550  else
1551  clkdiv = 16;
1552 
1553  /*
1554  * Ask the core to calculate the divisor for us.
1555  */
1556  baud = uart_get_baud_rate(port, termios, old, 0,
1557  port->uartclk / clkdiv);
1558 
1559  if (baud > port->uartclk/16)
1560  quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1561  else
1562  quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1563 
1564  switch (termios->c_cflag & CSIZE) {
1565  case CS5:
1566  lcr_h = UART01x_LCRH_WLEN_5;
1567  break;
1568  case CS6:
1569  lcr_h = UART01x_LCRH_WLEN_6;
1570  break;
1571  case CS7:
1572  lcr_h = UART01x_LCRH_WLEN_7;
1573  break;
1574  default: // CS8
1575  lcr_h = UART01x_LCRH_WLEN_8;
1576  break;
1577  }
1578  if (termios->c_cflag & CSTOPB)
1579  lcr_h |= UART01x_LCRH_STP2;
1580  if (termios->c_cflag & PARENB) {
1581  lcr_h |= UART01x_LCRH_PEN;
1582  if (!(termios->c_cflag & PARODD))
1583  lcr_h |= UART01x_LCRH_EPS;
1584  }
1585  if (uap->fifosize > 1)
1586  lcr_h |= UART01x_LCRH_FEN;
1587 
1588  spin_lock_irqsave(&port->lock, flags);
1589 
1590  /*
1591  * Update the per-port timeout.
1592  */
1593  uart_update_timeout(port, termios->c_cflag, baud);
1594 
1595  port->read_status_mask = UART011_DR_OE | 255;
1596  if (termios->c_iflag & INPCK)
1597  port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1598  if (termios->c_iflag & (BRKINT | PARMRK))
1600 
1601  /*
1602  * Characters to ignore
1603  */
1604  port->ignore_status_mask = 0;
1605  if (termios->c_iflag & IGNPAR)
1606  port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1607  if (termios->c_iflag & IGNBRK) {
1609  /*
1610  * If we're ignoring parity and break indicators,
1611  * ignore overruns too (for real raw support).
1612  */
1613  if (termios->c_iflag & IGNPAR)
1615  }
1616 
1617  /*
1618  * Ignore all characters if CREAD is not set.
1619  */
1620  if ((termios->c_cflag & CREAD) == 0)
1622 
1623  if (UART_ENABLE_MS(port, termios->c_cflag))
1624  pl011_enable_ms(port);
1625 
1626  /* first, disable everything */
1627  old_cr = readw(port->membase + UART011_CR);
1628  writew(0, port->membase + UART011_CR);
1629 
1630  if (termios->c_cflag & CRTSCTS) {
1631  if (old_cr & UART011_CR_RTS)
1632  old_cr |= UART011_CR_RTSEN;
1633 
1634  old_cr |= UART011_CR_CTSEN;
1635  uap->autorts = true;
1636  } else {
1637  old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1638  uap->autorts = false;
1639  }
1640 
1641  if (uap->vendor->oversampling) {
1642  if (baud > port->uartclk / 16)
1643  old_cr |= ST_UART011_CR_OVSFACT;
1644  else
1645  old_cr &= ~ST_UART011_CR_OVSFACT;
1646  }
1647 
1648  /*
1649  * Workaround for the ST Micro oversampling variants to
1650  * increase the bitrate slightly, by lowering the divisor,
1651  * to avoid delayed sampling of start bit at high speeds,
1652  * else we see data corruption.
1653  */
1654  if (uap->vendor->oversampling) {
1655  if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1656  quot -= 1;
1657  else if ((baud > 3250000) && (quot > 2))
1658  quot -= 2;
1659  }
1660  /* Set baud rate */
1661  writew(quot & 0x3f, port->membase + UART011_FBRD);
1662  writew(quot >> 6, port->membase + UART011_IBRD);
1663 
1664  /*
1665  * ----------v----------v----------v----------v-----
1666  * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1667  * UART011_FBRD & UART011_IBRD.
1668  * ----------^----------^----------^----------^-----
1669  */
1670  writew(lcr_h, port->membase + uap->lcrh_rx);
1671  if (uap->lcrh_rx != uap->lcrh_tx) {
1672  int i;
1673  /*
1674  * Wait 10 PCLKs before writing LCRH_TX register,
1675  * to get this delay write read only register 10 times
1676  */
1677  for (i = 0; i < 10; ++i)
1678  writew(0xff, uap->port.membase + UART011_MIS);
1679  writew(lcr_h, port->membase + uap->lcrh_tx);
1680  }
1681  writew(old_cr, port->membase + UART011_CR);
1682 
1683  spin_unlock_irqrestore(&port->lock, flags);
1684 }
1685 
1686 static const char *pl011_type(struct uart_port *port)
1687 {
1688  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1689  return uap->port.type == PORT_AMBA ? uap->type : NULL;
1690 }
1691 
1692 /*
1693  * Release the memory region(s) being used by 'port'
1694  */
1695 static void pl011_release_port(struct uart_port *port)
1696 {
1698 }
1699 
1700 /*
1701  * Request the memory region(s) being used by 'port'
1702  */
1703 static int pl011_request_port(struct uart_port *port)
1704 {
1705  return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1706  != NULL ? 0 : -EBUSY;
1707 }
1708 
1709 /*
1710  * Configure/autoconfigure the port.
1711  */
1712 static void pl011_config_port(struct uart_port *port, int flags)
1713 {
1714  if (flags & UART_CONFIG_TYPE) {
1715  port->type = PORT_AMBA;
1716  pl011_request_port(port);
1717  }
1718 }
1719 
1720 /*
1721  * verify the new serial_struct (for TIOCSSERIAL).
1722  */
1723 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1724 {
1725  int ret = 0;
1726  if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1727  ret = -EINVAL;
1728  if (ser->irq < 0 || ser->irq >= nr_irqs)
1729  ret = -EINVAL;
1730  if (ser->baud_base < 9600)
1731  ret = -EINVAL;
1732  return ret;
1733 }
1734 
1735 static struct uart_ops amba_pl011_pops = {
1736  .tx_empty = pl011_tx_empty,
1737  .set_mctrl = pl011_set_mctrl,
1738  .get_mctrl = pl011_get_mctrl,
1739  .stop_tx = pl011_stop_tx,
1740  .start_tx = pl011_start_tx,
1741  .stop_rx = pl011_stop_rx,
1742  .enable_ms = pl011_enable_ms,
1743  .break_ctl = pl011_break_ctl,
1744  .startup = pl011_startup,
1745  .shutdown = pl011_shutdown,
1746  .flush_buffer = pl011_dma_flush_buffer,
1747  .set_termios = pl011_set_termios,
1748  .type = pl011_type,
1749  .release_port = pl011_release_port,
1750  .request_port = pl011_request_port,
1751  .config_port = pl011_config_port,
1752  .verify_port = pl011_verify_port,
1753 #ifdef CONFIG_CONSOLE_POLL
1754  .poll_init = pl011_hwinit,
1755  .poll_get_char = pl011_get_poll_char,
1756  .poll_put_char = pl011_put_poll_char,
1757 #endif
1758 };
1759 
1760 static struct uart_amba_port *amba_ports[UART_NR];
1761 
1762 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1763 
1764 static void pl011_console_putchar(struct uart_port *port, int ch)
1765 {
1766  struct uart_amba_port *uap = (struct uart_amba_port *)port;
1767 
1768  while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1769  barrier();
1770  writew(ch, uap->port.membase + UART01x_DR);
1771 }
1772 
1773 static void
1774 pl011_console_write(struct console *co, const char *s, unsigned int count)
1775 {
1776  struct uart_amba_port *uap = amba_ports[co->index];
1777  unsigned int status, old_cr, new_cr;
1778  unsigned long flags;
1779  int locked = 1;
1780 
1781  clk_enable(uap->clk);
1782 
1783  local_irq_save(flags);
1784  if (uap->port.sysrq)
1785  locked = 0;
1786  else if (oops_in_progress)
1787  locked = spin_trylock(&uap->port.lock);
1788  else
1789  spin_lock(&uap->port.lock);
1790 
1791  /*
1792  * First save the CR then disable the interrupts
1793  */
1794  old_cr = readw(uap->port.membase + UART011_CR);
1795  new_cr = old_cr & ~UART011_CR_CTSEN;
1796  new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1797  writew(new_cr, uap->port.membase + UART011_CR);
1798 
1799  uart_console_write(&uap->port, s, count, pl011_console_putchar);
1800 
1801  /*
1802  * Finally, wait for transmitter to become empty
1803  * and restore the TCR
1804  */
1805  do {
1806  status = readw(uap->port.membase + UART01x_FR);
1807  } while (status & UART01x_FR_BUSY);
1808  writew(old_cr, uap->port.membase + UART011_CR);
1809 
1810  if (locked)
1811  spin_unlock(&uap->port.lock);
1812  local_irq_restore(flags);
1813 
1814  clk_disable(uap->clk);
1815 }
1816 
1817 static void __init
1818 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1819  int *parity, int *bits)
1820 {
1821  if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1822  unsigned int lcr_h, ibrd, fbrd;
1823 
1824  lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1825 
1826  *parity = 'n';
1827  if (lcr_h & UART01x_LCRH_PEN) {
1828  if (lcr_h & UART01x_LCRH_EPS)
1829  *parity = 'e';
1830  else
1831  *parity = 'o';
1832  }
1833 
1834  if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1835  *bits = 7;
1836  else
1837  *bits = 8;
1838 
1839  ibrd = readw(uap->port.membase + UART011_IBRD);
1840  fbrd = readw(uap->port.membase + UART011_FBRD);
1841 
1842  *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1843 
1844  if (uap->vendor->oversampling) {
1845  if (readw(uap->port.membase + UART011_CR)
1847  *baud *= 2;
1848  }
1849  }
1850 }
1851 
1852 static int __init pl011_console_setup(struct console *co, char *options)
1853 {
1854  struct uart_amba_port *uap;
1855  int baud = 38400;
1856  int bits = 8;
1857  int parity = 'n';
1858  int flow = 'n';
1859  int ret;
1860 
1861  /*
1862  * Check whether an invalid uart number has been specified, and
1863  * if so, search for the first available port that does have
1864  * console support.
1865  */
1866  if (co->index >= UART_NR)
1867  co->index = 0;
1868  uap = amba_ports[co->index];
1869  if (!uap)
1870  return -ENODEV;
1871 
1872  /* Allow pins to be muxed in and configured */
1873  if (!IS_ERR(uap->pins_default)) {
1874  ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1875  if (ret)
1876  dev_err(uap->port.dev,
1877  "could not set default pins\n");
1878  }
1879 
1880  ret = clk_prepare(uap->clk);
1881  if (ret)
1882  return ret;
1883 
1884  if (uap->port.dev->platform_data) {
1885  struct amba_pl011_data *plat;
1886 
1887  plat = uap->port.dev->platform_data;
1888  if (plat->init)
1889  plat->init();
1890  }
1891 
1892  uap->port.uartclk = clk_get_rate(uap->clk);
1893 
1894  if (options)
1895  uart_parse_options(options, &baud, &parity, &bits, &flow);
1896  else
1897  pl011_console_get_options(uap, &baud, &parity, &bits);
1898 
1899  return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1900 }
1901 
1902 static struct uart_driver amba_reg;
1903 static struct console amba_console = {
1904  .name = "ttyAMA",
1905  .write = pl011_console_write,
1906  .device = uart_console_device,
1907  .setup = pl011_console_setup,
1908  .flags = CON_PRINTBUFFER,
1909  .index = -1,
1910  .data = &amba_reg,
1911 };
1912 
1913 #define AMBA_CONSOLE (&amba_console)
1914 #else
1915 #define AMBA_CONSOLE NULL
1916 #endif
1917 
1918 static struct uart_driver amba_reg = {
1919  .owner = THIS_MODULE,
1920  .driver_name = "ttyAMA",
1921  .dev_name = "ttyAMA",
1922  .major = SERIAL_AMBA_MAJOR,
1923  .minor = SERIAL_AMBA_MINOR,
1924  .nr = UART_NR,
1925  .cons = AMBA_CONSOLE,
1926 };
1927 
1928 static int pl011_probe_dt_alias(int index, struct device *dev)
1929 {
1930  struct device_node *np;
1931  static bool seen_dev_with_alias = false;
1932  static bool seen_dev_without_alias = false;
1933  int ret = index;
1934 
1935  if (!IS_ENABLED(CONFIG_OF))
1936  return ret;
1937 
1938  np = dev->of_node;
1939  if (!np)
1940  return ret;
1941 
1942  ret = of_alias_get_id(np, "serial");
1943  if (IS_ERR_VALUE(ret)) {
1944  seen_dev_without_alias = true;
1945  ret = index;
1946  } else {
1947  seen_dev_with_alias = true;
1948  if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
1949  dev_warn(dev, "requested serial port %d not available.\n", ret);
1950  ret = index;
1951  }
1952  }
1953 
1954  if (seen_dev_with_alias && seen_dev_without_alias)
1955  dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
1956 
1957  return ret;
1958 }
1959 
1960 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1961 {
1962  struct uart_amba_port *uap;
1963  struct vendor_data *vendor = id->data;
1964  void __iomem *base;
1965  int i, ret;
1966 
1967  for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1968  if (amba_ports[i] == NULL)
1969  break;
1970 
1971  if (i == ARRAY_SIZE(amba_ports)) {
1972  ret = -EBUSY;
1973  goto out;
1974  }
1975 
1976  uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1977  if (uap == NULL) {
1978  ret = -ENOMEM;
1979  goto out;
1980  }
1981 
1982  i = pl011_probe_dt_alias(i, &dev->dev);
1983 
1984  base = ioremap(dev->res.start, resource_size(&dev->res));
1985  if (!base) {
1986  ret = -ENOMEM;
1987  goto free;
1988  }
1989 
1990  uap->pinctrl = devm_pinctrl_get(&dev->dev);
1991  if (IS_ERR(uap->pinctrl)) {
1992  ret = PTR_ERR(uap->pinctrl);
1993  goto unmap;
1994  }
1997  if (IS_ERR(uap->pins_default))
1998  dev_err(&dev->dev, "could not get default pinstate\n");
1999 
2002  if (IS_ERR(uap->pins_sleep))
2003  dev_dbg(&dev->dev, "could not get sleep pinstate\n");
2004 
2005  uap->clk = clk_get(&dev->dev, NULL);
2006  if (IS_ERR(uap->clk)) {
2007  ret = PTR_ERR(uap->clk);
2008  goto unmap;
2009  }
2010 
2011  uap->vendor = vendor;
2012  uap->lcrh_rx = vendor->lcrh_rx;
2013  uap->lcrh_tx = vendor->lcrh_tx;
2014  uap->old_cr = 0;
2015  uap->fifosize = vendor->fifosize;
2016  uap->port.dev = &dev->dev;
2017  uap->port.mapbase = dev->res.start;
2018  uap->port.membase = base;
2019  uap->port.iotype = UPIO_MEM;
2020  uap->port.irq = dev->irq[0];
2021  uap->port.fifosize = uap->fifosize;
2022  uap->port.ops = &amba_pl011_pops;
2023  uap->port.flags = UPF_BOOT_AUTOCONF;
2024  uap->port.line = i;
2025  pl011_dma_probe(uap);
2026 
2027  /* Ensure interrupts from this UART are masked and cleared */
2028  writew(0, uap->port.membase + UART011_IMSC);
2029  writew(0xffff, uap->port.membase + UART011_ICR);
2030 
2031  snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2032 
2033  amba_ports[i] = uap;
2034 
2035  amba_set_drvdata(dev, uap);
2036  ret = uart_add_one_port(&amba_reg, &uap->port);
2037  if (ret) {
2038  amba_set_drvdata(dev, NULL);
2039  amba_ports[i] = NULL;
2040  pl011_dma_remove(uap);
2041  clk_put(uap->clk);
2042  unmap:
2043  iounmap(base);
2044  free:
2045  kfree(uap);
2046  }
2047  out:
2048  return ret;
2049 }
2050 
2051 static int pl011_remove(struct amba_device *dev)
2052 {
2053  struct uart_amba_port *uap = amba_get_drvdata(dev);
2054  int i;
2055 
2056  amba_set_drvdata(dev, NULL);
2057 
2058  uart_remove_one_port(&amba_reg, &uap->port);
2059 
2060  for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2061  if (amba_ports[i] == uap)
2062  amba_ports[i] = NULL;
2063 
2064  pl011_dma_remove(uap);
2065  iounmap(uap->port.membase);
2066  clk_put(uap->clk);
2067  kfree(uap);
2068  return 0;
2069 }
2070 
2071 #ifdef CONFIG_PM
2072 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2073 {
2074  struct uart_amba_port *uap = amba_get_drvdata(dev);
2075 
2076  if (!uap)
2077  return -EINVAL;
2078 
2079  return uart_suspend_port(&amba_reg, &uap->port);
2080 }
2081 
2082 static int pl011_resume(struct amba_device *dev)
2083 {
2084  struct uart_amba_port *uap = amba_get_drvdata(dev);
2085 
2086  if (!uap)
2087  return -EINVAL;
2088 
2089  return uart_resume_port(&amba_reg, &uap->port);
2090 }
2091 #endif
2092 
2093 static struct amba_id pl011_ids[] = {
2094  {
2095  .id = 0x00041011,
2096  .mask = 0x000fffff,
2097  .data = &vendor_arm,
2098  },
2099  {
2100  .id = 0x00380802,
2101  .mask = 0x00ffffff,
2102  .data = &vendor_st,
2103  },
2104  { 0, 0 },
2105 };
2106 
2107 MODULE_DEVICE_TABLE(amba, pl011_ids);
2108 
2109 static struct amba_driver pl011_driver = {
2110  .drv = {
2111  .name = "uart-pl011",
2112  },
2113  .id_table = pl011_ids,
2114  .probe = pl011_probe,
2115  .remove = pl011_remove,
2116 #ifdef CONFIG_PM
2117  .suspend = pl011_suspend,
2118  .resume = pl011_resume,
2119 #endif
2120 };
2121 
2122 static int __init pl011_init(void)
2123 {
2124  int ret;
2125  printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2126 
2127  ret = uart_register_driver(&amba_reg);
2128  if (ret == 0) {
2129  ret = amba_driver_register(&pl011_driver);
2130  if (ret)
2131  uart_unregister_driver(&amba_reg);
2132  }
2133  return ret;
2134 }
2135 
2136 static void __exit pl011_exit(void)
2137 {
2138  amba_driver_unregister(&pl011_driver);
2139  uart_unregister_driver(&amba_reg);
2140 }
2141 
2142 /*
2143  * While this can be a module, if builtin it's most likely the console
2144  * So let's leave module_exit but move module_init to an earlier place
2145  */
2146 arch_initcall(pl011_init);
2147 module_exit(pl011_exit);
2148 
2149 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2150 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2151 MODULE_LICENSE("GPL");