Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan ([email protected]) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek ([email protected]).
7  * Converted for 64-bit by Mike Corrigan ([email protected])
8  *
9  * First round of bugfixes by Gabriel Paubert ([email protected])
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). ([email protected])
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26  * "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  * This program is free software; you can redistribute it and/or
29  * modify it under the terms of the GNU General Public License
30  * as published by the Free Software Foundation; either version
31  * 2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/init.h>
46 #include <linux/profile.h>
47 #include <linux/cpu.h>
48 #include <linux/security.h>
49 #include <linux/percpu.h>
50 #include <linux/rtc.h>
51 #include <linux/jiffies.h>
52 #include <linux/posix-timers.h>
53 #include <linux/irq.h>
54 #include <linux/delay.h>
55 #include <linux/irq_work.h>
56 #include <asm/trace.h>
57 
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 
73 /* powerpc clocksource/clockevent code */
74 
75 #include <linux/clockchips.h>
77 
78 static cycle_t rtc_read(struct clocksource *);
79 static struct clocksource clocksource_rtc = {
80  .name = "rtc",
81  .rating = 400,
83  .mask = CLOCKSOURCE_MASK(64),
84  .read = rtc_read,
85 };
86 
87 static cycle_t timebase_read(struct clocksource *);
88 static struct clocksource clocksource_timebase = {
89  .name = "timebase",
90  .rating = 400,
92  .mask = CLOCKSOURCE_MASK(64),
93  .read = timebase_read,
94 };
95 
96 #define DECREMENTER_MAX 0x7fffffff
97 
98 static int decrementer_set_next_event(unsigned long evt,
99  struct clock_event_device *dev);
100 static void decrementer_set_mode(enum clock_event_mode mode,
101  struct clock_event_device *dev);
102 
103 struct clock_event_device decrementer_clockevent = {
104  .name = "decrementer",
105  .rating = 200,
106  .irq = 0,
107  .set_next_event = decrementer_set_next_event,
108  .set_mode = decrementer_set_mode,
109  .features = CLOCK_EVT_FEAT_ONESHOT,
110 };
112 
113 DEFINE_PER_CPU(u64, decrementers_next_tb);
114 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
115 
116 #define XSEC_PER_SEC (1024*1024)
117 
118 #ifdef CONFIG_PPC64
119 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
120 #else
121 /* compute ((xsec << 12) * max) >> 32 */
122 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
123 #endif
124 
125 unsigned long tb_ticks_per_jiffy;
126 unsigned long tb_ticks_per_usec = 100; /* sane default */
128 unsigned long tb_ticks_per_sec;
129 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
130 
131 DEFINE_SPINLOCK(rtc_lock);
132 EXPORT_SYMBOL_GPL(rtc_lock);
133 
134 static u64 tb_to_ns_scale __read_mostly;
135 static unsigned tb_to_ns_shift __read_mostly;
136 static u64 boot_tb __read_mostly;
137 
138 extern struct timezone sys_tz;
139 static long timezone_offset;
140 
141 unsigned long ppc_proc_freq;
143 unsigned long ppc_tb_freq;
145 
146 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
147 /*
148  * Factors for converting from cputime_t (timebase ticks) to
149  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
150  * These are all stored as 0.64 fixed-point binary fractions.
151  */
152 u64 __cputime_jiffies_factor;
153 EXPORT_SYMBOL(__cputime_jiffies_factor);
154 u64 __cputime_usec_factor;
155 EXPORT_SYMBOL(__cputime_usec_factor);
156 u64 __cputime_sec_factor;
157 EXPORT_SYMBOL(__cputime_sec_factor);
158 u64 __cputime_clockt_factor;
159 EXPORT_SYMBOL(__cputime_clockt_factor);
160 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
161 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
162 
164 
165 void (*dtl_consumer)(struct dtl_entry *, u64);
166 
167 static void calc_cputime_factors(void)
168 {
169  struct div_result res;
170 
172  __cputime_jiffies_factor = res.result_low;
173  div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
174  __cputime_usec_factor = res.result_low;
176  __cputime_sec_factor = res.result_low;
178  __cputime_clockt_factor = res.result_low;
179 }
180 
181 /*
182  * Read the SPURR on systems that have it, otherwise the PURR,
183  * or if that doesn't exist return the timebase value passed in.
184  */
185 static u64 read_spurr(u64 tb)
186 {
188  return mfspr(SPRN_SPURR);
190  return mfspr(SPRN_PURR);
191  return tb;
192 }
193 
194 #ifdef CONFIG_PPC_SPLPAR
195 
196 /*
197  * Scan the dispatch trace log and count up the stolen time.
198  * Should be called with interrupts disabled.
199  */
200 static u64 scan_dispatch_log(u64 stop_tb)
201 {
202  u64 i = local_paca->dtl_ridx;
203  struct dtl_entry *dtl = local_paca->dtl_curr;
204  struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
205  struct lppaca *vpa = local_paca->lppaca_ptr;
206  u64 tb_delta;
207  u64 stolen = 0;
208  u64 dtb;
209 
210  if (!dtl)
211  return 0;
212 
213  if (i == vpa->dtl_idx)
214  return 0;
215  while (i < vpa->dtl_idx) {
216  if (dtl_consumer)
217  dtl_consumer(dtl, i);
218  dtb = dtl->timebase;
219  tb_delta = dtl->enqueue_to_dispatch_time +
220  dtl->ready_to_enqueue_time;
221  barrier();
222  if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
223  /* buffer has overflowed */
224  i = vpa->dtl_idx - N_DISPATCH_LOG;
225  dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226  continue;
227  }
228  if (dtb > stop_tb)
229  break;
230  stolen += tb_delta;
231  ++i;
232  ++dtl;
233  if (dtl == dtl_end)
234  dtl = local_paca->dispatch_log;
235  }
236  local_paca->dtl_ridx = i;
237  local_paca->dtl_curr = dtl;
238  return stolen;
239 }
240 
241 /*
242  * Accumulate stolen time by scanning the dispatch trace log.
243  * Called on entry from user mode.
244  */
245 void accumulate_stolen_time(void)
246 {
247  u64 sst, ust;
248 
249  u8 save_soft_enabled = local_paca->soft_enabled;
250 
251  /* We are called early in the exception entry, before
252  * soft/hard_enabled are sync'ed to the expected state
253  * for the exception. We are hard disabled but the PACA
254  * needs to reflect that so various debug stuff doesn't
255  * complain
256  */
257  local_paca->soft_enabled = 0;
258 
259  sst = scan_dispatch_log(local_paca->starttime_user);
260  ust = scan_dispatch_log(local_paca->starttime);
261  local_paca->system_time -= sst;
262  local_paca->user_time -= ust;
263  local_paca->stolen_time += ust + sst;
264 
265  local_paca->soft_enabled = save_soft_enabled;
266 }
267 
268 static inline u64 calculate_stolen_time(u64 stop_tb)
269 {
270  u64 stolen = 0;
271 
272  if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
273  stolen = scan_dispatch_log(stop_tb);
274  get_paca()->system_time -= stolen;
275  }
276 
277  stolen += get_paca()->stolen_time;
278  get_paca()->stolen_time = 0;
279  return stolen;
280 }
281 
282 #else /* CONFIG_PPC_SPLPAR */
283 static inline u64 calculate_stolen_time(u64 stop_tb)
284 {
285  return 0;
286 }
287 
288 #endif /* CONFIG_PPC_SPLPAR */
289 
290 /*
291  * Account time for a transition between system, hard irq
292  * or soft irq state.
293  */
294 static u64 vtime_delta(struct task_struct *tsk,
295  u64 *sys_scaled, u64 *stolen)
296 {
297  u64 now, nowscaled, deltascaled;
298  u64 udelta, delta, user_scaled;
299 
300  now = mftb();
301  nowscaled = read_spurr(now);
302  get_paca()->system_time += now - get_paca()->starttime;
303  get_paca()->starttime = now;
304  deltascaled = nowscaled - get_paca()->startspurr;
305  get_paca()->startspurr = nowscaled;
306 
307  *stolen = calculate_stolen_time(now);
308 
309  delta = get_paca()->system_time;
310  get_paca()->system_time = 0;
311  udelta = get_paca()->user_time - get_paca()->utime_sspurr;
312  get_paca()->utime_sspurr = get_paca()->user_time;
313 
314  /*
315  * Because we don't read the SPURR on every kernel entry/exit,
316  * deltascaled includes both user and system SPURR ticks.
317  * Apportion these ticks to system SPURR ticks and user
318  * SPURR ticks in the same ratio as the system time (delta)
319  * and user time (udelta) values obtained from the timebase
320  * over the same interval. The system ticks get accounted here;
321  * the user ticks get saved up in paca->user_time_scaled to be
322  * used by account_process_tick.
323  */
324  *sys_scaled = delta;
325  user_scaled = udelta;
326  if (deltascaled != delta + udelta) {
327  if (udelta) {
328  *sys_scaled = deltascaled * delta / (delta + udelta);
329  user_scaled = deltascaled - *sys_scaled;
330  } else {
331  *sys_scaled = deltascaled;
332  }
333  }
334  get_paca()->user_time_scaled += user_scaled;
335 
336  return delta;
337 }
338 
339 void vtime_account_system(struct task_struct *tsk)
340 {
341  u64 delta, sys_scaled, stolen;
342 
343  delta = vtime_delta(tsk, &sys_scaled, &stolen);
344  account_system_time(tsk, 0, delta, sys_scaled);
345  if (stolen)
346  account_steal_time(stolen);
347 }
348 
349 void vtime_account_idle(struct task_struct *tsk)
350 {
351  u64 delta, sys_scaled, stolen;
352 
353  delta = vtime_delta(tsk, &sys_scaled, &stolen);
354  account_idle_time(delta + stolen);
355 }
356 
357 /*
358  * Transfer the user and system times accumulated in the paca
359  * by the exception entry and exit code to the generic process
360  * user and system time records.
361  * Must be called with interrupts disabled.
362  * Assumes that vtime_account() has been called recently
363  * (i.e. since the last entry from usermode) so that
364  * get_paca()->user_time_scaled is up to date.
365  */
366 void account_process_tick(struct task_struct *tsk, int user_tick)
367 {
368  cputime_t utime, utimescaled;
369 
370  utime = get_paca()->user_time;
371  utimescaled = get_paca()->user_time_scaled;
372  get_paca()->user_time = 0;
373  get_paca()->user_time_scaled = 0;
374  get_paca()->utime_sspurr = 0;
375  account_user_time(tsk, utime, utimescaled);
376 }
377 
378 void vtime_task_switch(struct task_struct *prev)
379 {
380  vtime_account(prev);
381  account_process_tick(prev, 0);
382 }
383 
384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
385 #define calc_cputime_factors()
386 #endif
387 
388 void __delay(unsigned long loops)
389 {
390  unsigned long start;
391  int diff;
392 
393  if (__USE_RTC()) {
394  start = get_rtcl();
395  do {
396  /* the RTCL register wraps at 1000000000 */
397  diff = get_rtcl() - start;
398  if (diff < 0)
399  diff += 1000000000;
400  } while (diff < loops);
401  } else {
402  start = get_tbl();
403  while (get_tbl() - start < loops)
404  HMT_low();
405  HMT_medium();
406  }
407 }
409 
410 void udelay(unsigned long usecs)
411 {
412  __delay(tb_ticks_per_usec * usecs);
413 }
415 
416 #ifdef CONFIG_SMP
417 unsigned long profile_pc(struct pt_regs *regs)
418 {
419  unsigned long pc = instruction_pointer(regs);
420 
421  if (in_lock_functions(pc))
422  return regs->link;
423 
424  return pc;
425 }
427 #endif
428 
429 #ifdef CONFIG_IRQ_WORK
430 
431 /*
432  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
433  */
434 #ifdef CONFIG_PPC64
435 static inline unsigned long test_irq_work_pending(void)
436 {
437  unsigned long x;
438 
439  asm volatile("lbz %0,%1(13)"
440  : "=r" (x)
441  : "i" (offsetof(struct paca_struct, irq_work_pending)));
442  return x;
443 }
444 
445 static inline void set_irq_work_pending_flag(void)
446 {
447  asm volatile("stb %0,%1(13)" : :
448  "r" (1),
449  "i" (offsetof(struct paca_struct, irq_work_pending)));
450 }
451 
452 static inline void clear_irq_work_pending(void)
453 {
454  asm volatile("stb %0,%1(13)" : :
455  "r" (0),
456  "i" (offsetof(struct paca_struct, irq_work_pending)));
457 }
458 
459 #else /* 32-bit */
460 
461 DEFINE_PER_CPU(u8, irq_work_pending);
462 
463 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
464 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
465 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
466 
467 #endif /* 32 vs 64 bit */
468 
469 void arch_irq_work_raise(void)
470 {
471  preempt_disable();
472  set_irq_work_pending_flag();
473  set_dec(1);
474  preempt_enable();
475 }
476 
477 #else /* CONFIG_IRQ_WORK */
478 
479 #define test_irq_work_pending() 0
480 #define clear_irq_work_pending()
481 
482 #endif /* CONFIG_IRQ_WORK */
483 
484 /*
485  * timer_interrupt - gets called when the decrementer overflows,
486  * with interrupts disabled.
487  */
488 void timer_interrupt(struct pt_regs * regs)
489 {
490  struct pt_regs *old_regs;
491  u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
492  struct clock_event_device *evt = &__get_cpu_var(decrementers);
493  u64 now;
494 
495  /* Ensure a positive value is written to the decrementer, or else
496  * some CPUs will continue to take decrementer exceptions.
497  */
498  set_dec(DECREMENTER_MAX);
499 
500  /* Some implementations of hotplug will get timer interrupts while
501  * offline, just ignore these
502  */
504  return;
505 
506  /* Conditionally hard-enable interrupts now that the DEC has been
507  * bumped to its maximum value
508  */
509  may_hard_irq_enable();
510 
511  __get_cpu_var(irq_stat).timer_irqs++;
512 
513 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
514  if (atomic_read(&ppc_n_lost_interrupts) != 0)
515  do_IRQ(regs);
516 #endif
517 
518  old_regs = set_irq_regs(regs);
519  irq_enter();
520 
521  trace_timer_interrupt_entry(regs);
522 
523  if (test_irq_work_pending()) {
525  irq_work_run();
526  }
527 
528  now = get_tb_or_rtc();
529  if (now >= *next_tb) {
530  *next_tb = ~(u64)0;
531  if (evt->event_handler)
532  evt->event_handler(evt);
533  } else {
534  now = *next_tb - now;
535  if (now <= DECREMENTER_MAX)
536  set_dec((int)now);
537  }
538 
539 #ifdef CONFIG_PPC64
540  /* collect purr register values often, for accurate calculations */
541  if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
542  struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
543  cu->current_tb = mfspr(SPRN_PURR);
544  }
545 #endif
546 
547  trace_timer_interrupt_exit(regs);
548 
549  irq_exit();
550  set_irq_regs(old_regs);
551 }
552 
553 /*
554  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
555  * left pending on exit from a KVM guest. We don't need to do anything
556  * to clear them, as they are edge-triggered.
557  */
558 void hdec_interrupt(struct pt_regs *regs)
559 {
560 }
561 
562 #ifdef CONFIG_SUSPEND
563 static void generic_suspend_disable_irqs(void)
564 {
565  /* Disable the decrementer, so that it doesn't interfere
566  * with suspending.
567  */
568 
569  set_dec(DECREMENTER_MAX);
571  set_dec(DECREMENTER_MAX);
572 }
573 
574 static void generic_suspend_enable_irqs(void)
575 {
577 }
578 
579 /* Overrides the weak version in kernel/power/main.c */
580 void arch_suspend_disable_irqs(void)
581 {
582  if (ppc_md.suspend_disable_irqs)
583  ppc_md.suspend_disable_irqs();
584  generic_suspend_disable_irqs();
585 }
586 
587 /* Overrides the weak version in kernel/power/main.c */
588 void arch_suspend_enable_irqs(void)
589 {
590  generic_suspend_enable_irqs();
591  if (ppc_md.suspend_enable_irqs)
592  ppc_md.suspend_enable_irqs();
593 }
594 #endif
595 
596 /*
597  * Scheduler clock - returns current time in nanosec units.
598  *
599  * Note: mulhdu(a, b) (multiply high double unsigned) returns
600  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
601  * are 64-bit unsigned numbers.
602  */
603 unsigned long long sched_clock(void)
604 {
605  if (__USE_RTC())
606  return get_rtc();
607  return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
608 }
609 
610 static int __init get_freq(char *name, int cells, unsigned long *val)
611 {
612  struct device_node *cpu;
613  const unsigned int *fp;
614  int found = 0;
615 
616  /* The cpu node should have timebase and clock frequency properties */
617  cpu = of_find_node_by_type(NULL, "cpu");
618 
619  if (cpu) {
620  fp = of_get_property(cpu, name, NULL);
621  if (fp) {
622  found = 1;
623  *val = of_read_ulong(fp, cells);
624  }
625 
626  of_node_put(cpu);
627  }
628 
629  return found;
630 }
631 
632 /* should become __cpuinit when secondary_cpu_time_init also is */
634 {
635 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
636  /* Clear any pending timer interrupts */
637  mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
638 
639  /* Enable decrementer interrupt */
640  mtspr(SPRN_TCR, TCR_DIE);
641 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
642 }
643 
645 {
646  ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
647 
648  if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
649  !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
650 
651  printk(KERN_ERR "WARNING: Estimating decrementer frequency "
652  "(not found)\n");
653  }
654 
655  ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
656 
657  if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
658  !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
659 
660  printk(KERN_ERR "WARNING: Estimating processor frequency "
661  "(not found)\n");
662  }
663 }
664 
666 {
667  struct rtc_time tm;
668 
669  if (!ppc_md.set_rtc_time)
670  return 0;
671 
672  to_tm(now.tv_sec + 1 + timezone_offset, &tm);
673  tm.tm_year -= 1900;
674  tm.tm_mon -= 1;
675 
676  return ppc_md.set_rtc_time(&tm);
677 }
678 
679 static void __read_persistent_clock(struct timespec *ts)
680 {
681  struct rtc_time tm;
682  static int first = 1;
683 
684  ts->tv_nsec = 0;
685  /* XXX this is a litle fragile but will work okay in the short term */
686  if (first) {
687  first = 0;
688  if (ppc_md.time_init)
689  timezone_offset = ppc_md.time_init();
690 
691  /* get_boot_time() isn't guaranteed to be safe to call late */
692  if (ppc_md.get_boot_time) {
693  ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
694  return;
695  }
696  }
697  if (!ppc_md.get_rtc_time) {
698  ts->tv_sec = 0;
699  return;
700  }
701  ppc_md.get_rtc_time(&tm);
702 
703  ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
705 }
706 
708 {
709  __read_persistent_clock(ts);
710 
711  /* Sanitize it in case real time clock is set below EPOCH */
712  if (ts->tv_sec < 0) {
713  ts->tv_sec = 0;
714  ts->tv_nsec = 0;
715  }
716 
717 }
718 
719 /* clocksource code */
720 static cycle_t rtc_read(struct clocksource *cs)
721 {
722  return (cycle_t)get_rtc();
723 }
724 
725 static cycle_t timebase_read(struct clocksource *cs)
726 {
727  return (cycle_t)get_tb();
728 }
729 
730 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
731  struct clocksource *clock, u32 mult)
732 {
733  u64 new_tb_to_xs, new_stamp_xsec;
734  u32 frac_sec;
735 
736  if (clock != &clocksource_timebase)
737  return;
738 
739  /* Make userspace gettimeofday spin until we're done. */
741  smp_mb();
742 
743  /* 19342813113834067 ~= 2^(20+64) / 1e9 */
744  new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
745  new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
746  do_div(new_stamp_xsec, 1000000000);
747  new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
748 
749  BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
750  /* this is tv_nsec / 1e9 as a 0.32 fraction */
751  frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
752 
753  /*
754  * tb_update_count is used to allow the userspace gettimeofday code
755  * to assure itself that it sees a consistent view of the tb_to_xs and
756  * stamp_xsec variables. It reads the tb_update_count, then reads
757  * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
758  * the two values of tb_update_count match and are even then the
759  * tb_to_xs and stamp_xsec values are consistent. If not, then it
760  * loops back and reads them again until this criteria is met.
761  * We expect the caller to have done the first increment of
762  * vdso_data->tb_update_count already.
763  */
764  vdso_data->tb_orig_stamp = clock->cycle_last;
765  vdso_data->stamp_xsec = new_stamp_xsec;
766  vdso_data->tb_to_xs = new_tb_to_xs;
769  vdso_data->stamp_xtime = *wall_time;
770  vdso_data->stamp_sec_fraction = frac_sec;
771  smp_wmb();
773 }
774 
776 {
777  /* Make userspace gettimeofday spin until we're done. */
779  smp_mb();
780  vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
781  vdso_data->tz_dsttime = sys_tz.tz_dsttime;
782  smp_mb();
784 }
785 
786 static void __init clocksource_init(void)
787 {
788  struct clocksource *clock;
789 
790  if (__USE_RTC())
791  clock = &clocksource_rtc;
792  else
793  clock = &clocksource_timebase;
794 
795  if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
796  printk(KERN_ERR "clocksource: %s is already registered\n",
797  clock->name);
798  return;
799  }
800 
801  printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
802  clock->name, clock->mult, clock->shift);
803 }
804 
805 static int decrementer_set_next_event(unsigned long evt,
806  struct clock_event_device *dev)
807 {
808  __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
809  set_dec(evt);
810  return 0;
811 }
812 
813 static void decrementer_set_mode(enum clock_event_mode mode,
814  struct clock_event_device *dev)
815 {
816  if (mode != CLOCK_EVT_MODE_ONESHOT)
817  decrementer_set_next_event(DECREMENTER_MAX, dev);
818 }
819 
820 static void register_decrementer_clockevent(int cpu)
821 {
822  struct clock_event_device *dec = &per_cpu(decrementers, cpu);
823 
824  *dec = decrementer_clockevent;
825  dec->cpumask = cpumask_of(cpu);
826 
827  printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
828  dec->name, dec->mult, dec->shift, cpu);
829 
831 }
832 
833 static void __init init_decrementer_clockevent(void)
834 {
835  int cpu = smp_processor_id();
836 
837  clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
838 
839  decrementer_clockevent.max_delta_ns =
841  decrementer_clockevent.min_delta_ns =
843 
844  register_decrementer_clockevent(cpu);
845 }
846 
848 {
849  /* Start the decrementer on CPUs that have manual control
850  * such as BookE
851  */
853 
854  /* FIME: Should make unrelatred change to move snapshot_timebase
855  * call here ! */
856  register_decrementer_clockevent(smp_processor_id());
857 }
858 
859 /* This function is only called on the boot processor */
860 void __init time_init(void)
861 {
862  struct div_result res;
863  u64 scale;
864  unsigned shift;
865 
866  if (__USE_RTC()) {
867  /* 601 processor: dec counts down by 128 every 128ns */
868  ppc_tb_freq = 1000000000;
869  } else {
870  /* Normal PowerPC with timebase register */
871  ppc_md.calibrate_decr();
872  printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
873  ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
874  printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
875  ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
876  }
877 
880  tb_ticks_per_usec = ppc_tb_freq / 1000000;
882  setup_cputime_one_jiffy();
883 
884  /*
885  * Compute scale factor for sched_clock.
886  * The calibrate_decr() function has set tb_ticks_per_sec,
887  * which is the timebase frequency.
888  * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
889  * the 128-bit result as a 64.64 fixed-point number.
890  * We then shift that number right until it is less than 1.0,
891  * giving us the scale factor and shift count to use in
892  * sched_clock().
893  */
894  div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
895  scale = res.result_low;
896  for (shift = 0; res.result_high != 0; ++shift) {
897  scale = (scale >> 1) | (res.result_high << 63);
898  res.result_high >>= 1;
899  }
900  tb_to_ns_scale = scale;
901  tb_to_ns_shift = shift;
902  /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
903  boot_tb = get_tb_or_rtc();
904 
905  /* If platform provided a timezone (pmac), we correct the time */
906  if (timezone_offset) {
907  sys_tz.tz_minuteswest = -timezone_offset / 60;
908  sys_tz.tz_dsttime = 0;
909  }
910 
912  vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
913 
914  /* Start the decrementer on CPUs that have manual control
915  * such as BookE
916  */
918 
919  /* Register the clocksource */
920  clocksource_init();
921 
922  init_decrementer_clockevent();
923 }
924 
925 
926 #define FEBRUARY 2
927 #define STARTOFTIME 1970
928 #define SECDAY 86400L
929 #define SECYR (SECDAY * 365)
930 #define leapyear(year) ((year) % 4 == 0 && \
931  ((year) % 100 != 0 || (year) % 400 == 0))
932 #define days_in_year(a) (leapyear(a) ? 366 : 365)
933 #define days_in_month(a) (month_days[(a) - 1])
934 
935 static int month_days[12] = {
936  31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
937 };
938 
939 /*
940  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
941  */
942 void GregorianDay(struct rtc_time * tm)
943 {
944  int leapsToDate;
945  int lastYear;
946  int day;
947  int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
948 
949  lastYear = tm->tm_year - 1;
950 
951  /*
952  * Number of leap corrections to apply up to end of last year
953  */
954  leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
955 
956  /*
957  * This year is a leap year if it is divisible by 4 except when it is
958  * divisible by 100 unless it is divisible by 400
959  *
960  * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
961  */
962  day = tm->tm_mon > 2 && leapyear(tm->tm_year);
963 
964  day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
965  tm->tm_mday;
966 
967  tm->tm_wday = day % 7;
968 }
969 
970 void to_tm(int tim, struct rtc_time * tm)
971 {
972  register int i;
973  register long hms, day;
974 
975  day = tim / SECDAY;
976  hms = tim % SECDAY;
977 
978  /* Hours, minutes, seconds are easy */
979  tm->tm_hour = hms / 3600;
980  tm->tm_min = (hms % 3600) / 60;
981  tm->tm_sec = (hms % 3600) % 60;
982 
983  /* Number of years in days */
984  for (i = STARTOFTIME; day >= days_in_year(i); i++)
985  day -= days_in_year(i);
986  tm->tm_year = i;
987 
988  /* Number of months in days left */
989  if (leapyear(tm->tm_year))
990  days_in_month(FEBRUARY) = 29;
991  for (i = 1; day >= days_in_month(i); i++)
992  day -= days_in_month(i);
993  days_in_month(FEBRUARY) = 28;
994  tm->tm_mon = i;
995 
996  /* Days are what is left over (+1) from all that. */
997  tm->tm_mday = day + 1;
998 
999  /*
1000  * Determine the day of week
1001  */
1002  GregorianDay(tm);
1003 }
1004 
1005 /*
1006  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1007  * result.
1008  */
1009 void div128_by_32(u64 dividend_high, u64 dividend_low,
1010  unsigned divisor, struct div_result *dr)
1011 {
1012  unsigned long a, b, c, d;
1013  unsigned long w, x, y, z;
1014  u64 ra, rb, rc;
1015 
1016  a = dividend_high >> 32;
1017  b = dividend_high & 0xffffffff;
1018  c = dividend_low >> 32;
1019  d = dividend_low & 0xffffffff;
1020 
1021  w = a / divisor;
1022  ra = ((u64)(a - (w * divisor)) << 32) + b;
1023 
1024  rb = ((u64) do_div(ra, divisor) << 32) + c;
1025  x = ra;
1026 
1027  rc = ((u64) do_div(rb, divisor) << 32) + d;
1028  y = rb;
1029 
1030  do_div(rc, divisor);
1031  z = rc;
1032 
1033  dr->result_high = ((u64)w << 32) + x;
1034  dr->result_low = ((u64)y << 32) + z;
1035 
1036 }
1037 
1038 /* We don't need to calibrate delay, we use the CPU timebase for that */
1040 {
1041  /* Some generic code (such as spinlock debug) use loops_per_jiffy
1042  * as the number of __delay(1) in a jiffy, so make it so
1043  */
1045 }
1046 
1047 static int __init rtc_init(void)
1048 {
1049  struct platform_device *pdev;
1050 
1051  if (!ppc_md.get_rtc_time)
1052  return -ENODEV;
1053 
1054  pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1055  if (IS_ERR(pdev))
1056  return PTR_ERR(pdev);
1057 
1058  return 0;
1059 }
1060 
1061 module_init(rtc_init);