Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
carma-fpga-program.c
Go to the documentation of this file.
1 /*
2  * CARMA Board DATA-FPGA Programmer
3  *
4  * Copyright (c) 2009-2011 Ira W. Snyder <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  */
11 
12 #include <linux/dma-mapping.h>
13 #include <linux/of_platform.h>
14 #include <linux/completion.h>
15 #include <linux/miscdevice.h>
16 #include <linux/dmaengine.h>
17 #include <linux/interrupt.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/leds.h>
25 #include <linux/slab.h>
26 #include <linux/kref.h>
27 #include <linux/fs.h>
28 #include <linux/io.h>
29 
30 #include <media/videobuf-dma-sg.h>
31 
32 /* MPC8349EMDS specific get_immrbase() */
33 #include <sysdev/fsl_soc.h>
34 
35 static const char drv_name[] = "carma-fpga-program";
36 
37 /*
38  * Firmware images are always this exact size
39  *
40  * 12849552 bytes for a CARMA Digitizer Board (EP2S90 FPGAs)
41  * 18662880 bytes for a CARMA Correlator Board (EP2S130 FPGAs)
42  */
43 #define FW_SIZE_EP2S90 12849552
44 #define FW_SIZE_EP2S130 18662880
45 
46 struct fpga_dev {
48 
49  /* Reference count */
50  struct kref ref;
51 
52  /* Device Registers */
53  struct device *dev;
54  void __iomem *regs;
55  void __iomem *immr;
56 
57  /* Freescale DMA Device */
58  struct dma_chan *chan;
59 
60  /* Interrupts */
61  int irq, status;
63 
64  /* FPGA Bitfile */
65  struct mutex lock;
66 
69 
70  /* max size and written bytes */
71  size_t fw_size;
72  size_t bytes;
73 };
74 
75 /*
76  * FPGA Bitfile Helpers
77  */
78 
85 static void fpga_drop_firmware_data(struct fpga_dev *priv)
86 {
87  videobuf_dma_free(&priv->vb);
88  priv->vb_allocated = false;
89  priv->bytes = 0;
90 }
91 
92 /*
93  * Private Data Reference Count
94  */
95 
96 static void fpga_dev_remove(struct kref *ref)
97 {
98  struct fpga_dev *priv = container_of(ref, struct fpga_dev, ref);
99 
100  /* free any firmware image that was not programmed */
101  fpga_drop_firmware_data(priv);
102 
103  mutex_destroy(&priv->lock);
104  kfree(priv);
105 }
106 
107 /*
108  * LED Trigger (could be a seperate module)
109  */
110 
111 /*
112  * NOTE: this whole thing does have the problem that whenever the led's are
113  * NOTE: first set to use the fpga trigger, they could be in the wrong state
114  */
115 
116 DEFINE_LED_TRIGGER(ledtrig_fpga);
117 
118 static void ledtrig_fpga_programmed(bool enabled)
119 {
120  if (enabled)
121  led_trigger_event(ledtrig_fpga, LED_FULL);
122  else
123  led_trigger_event(ledtrig_fpga, LED_OFF);
124 }
125 
126 /*
127  * FPGA Register Helpers
128  */
129 
130 /* Register Definitions */
131 #define FPGA_CONFIG_CONTROL 0x40
132 #define FPGA_CONFIG_STATUS 0x44
133 #define FPGA_CONFIG_FIFO_SIZE 0x48
134 #define FPGA_CONFIG_FIFO_USED 0x4C
135 #define FPGA_CONFIG_TOTAL_BYTE_COUNT 0x50
136 #define FPGA_CONFIG_CUR_BYTE_COUNT 0x54
137 
138 #define FPGA_FIFO_ADDRESS 0x3000
139 
140 static int fpga_fifo_size(void __iomem *regs)
141 {
142  return ioread32be(regs + FPGA_CONFIG_FIFO_SIZE);
143 }
144 
145 #define CFG_STATUS_ERR_MASK 0xfffe
146 
147 static int fpga_config_error(void __iomem *regs)
148 {
150 }
151 
152 static int fpga_fifo_empty(void __iomem *regs)
153 {
154  return ioread32be(regs + FPGA_CONFIG_FIFO_USED) == 0;
155 }
156 
157 static void fpga_fifo_write(void __iomem *regs, u32 val)
158 {
159  iowrite32be(val, regs + FPGA_FIFO_ADDRESS);
160 }
161 
162 static void fpga_set_byte_count(void __iomem *regs, u32 count)
163 {
165 }
166 
167 #define CFG_CTL_ENABLE (1 << 0)
168 #define CFG_CTL_RESET (1 << 1)
169 #define CFG_CTL_DMA (1 << 2)
170 
171 static void fpga_programmer_enable(struct fpga_dev *priv, bool dma)
172 {
173  u32 val;
174 
176  iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL);
177 }
178 
179 static void fpga_programmer_disable(struct fpga_dev *priv)
180 {
181  iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL);
182 }
183 
184 static void fpga_dump_registers(struct fpga_dev *priv)
185 {
186  u32 control, status, size, used, total, curr;
187 
188  /* good status: do nothing */
189  if (priv->status == 0)
190  return;
191 
192  /* Dump all status registers */
193  control = ioread32be(priv->regs + FPGA_CONFIG_CONTROL);
194  status = ioread32be(priv->regs + FPGA_CONFIG_STATUS);
195  size = ioread32be(priv->regs + FPGA_CONFIG_FIFO_SIZE);
196  used = ioread32be(priv->regs + FPGA_CONFIG_FIFO_USED);
199 
200  dev_err(priv->dev, "Configuration failed, dumping status registers\n");
201  dev_err(priv->dev, "Control: 0x%.8x\n", control);
202  dev_err(priv->dev, "Status: 0x%.8x\n", status);
203  dev_err(priv->dev, "FIFO Size: 0x%.8x\n", size);
204  dev_err(priv->dev, "FIFO Used: 0x%.8x\n", used);
205  dev_err(priv->dev, "FIFO Total: 0x%.8x\n", total);
206  dev_err(priv->dev, "FIFO Curr: 0x%.8x\n", curr);
207 }
208 
209 /*
210  * FPGA Power Supply Code
211  */
212 
213 #define CTL_PWR_CONTROL 0x2006
214 #define CTL_PWR_STATUS 0x200A
215 #define CTL_PWR_FAIL 0x200B
216 
217 #define PWR_CONTROL_ENABLE 0x01
218 
219 #define PWR_STATUS_ERROR_MASK 0x10
220 #define PWR_STATUS_GOOD 0x0f
221 
222 /*
223  * Determine if the FPGA power is good for all supplies
224  */
225 static bool fpga_power_good(struct fpga_dev *priv)
226 {
227  u8 val;
228 
229  val = ioread8(priv->regs + CTL_PWR_STATUS);
230  if (val & PWR_STATUS_ERROR_MASK)
231  return false;
232 
233  return val == PWR_STATUS_GOOD;
234 }
235 
236 /*
237  * Disable the FPGA power supplies
238  */
239 static void fpga_disable_power_supplies(struct fpga_dev *priv)
240 {
241  unsigned long start;
242  u8 val;
243 
244  iowrite8(0x0, priv->regs + CTL_PWR_CONTROL);
245 
246  /*
247  * Wait 500ms for the power rails to discharge
248  *
249  * Without this delay, the CTL-CPLD state machine can get into a
250  * state where it is waiting for the power-goods to assert, but they
251  * never do. This only happens when enabling and disabling the
252  * power sequencer very rapidly.
253  *
254  * The loop below will also wait for the power goods to de-assert,
255  * but testing has shown that they are always disabled by the time
256  * the sleep completes. However, omitting the sleep and only waiting
257  * for the power-goods to de-assert was not sufficient to ensure
258  * that the power sequencer would not wedge itself.
259  */
260  msleep(500);
261 
262  start = jiffies;
263  while (time_before(jiffies, start + HZ)) {
264  val = ioread8(priv->regs + CTL_PWR_STATUS);
265  if (!(val & PWR_STATUS_GOOD))
266  break;
267 
268  usleep_range(5000, 10000);
269  }
270 
271  val = ioread8(priv->regs + CTL_PWR_STATUS);
272  if (val & PWR_STATUS_GOOD) {
273  dev_err(priv->dev, "power disable failed: "
274  "power goods: status 0x%.2x\n", val);
275  }
276 
277  if (val & PWR_STATUS_ERROR_MASK) {
278  dev_err(priv->dev, "power disable failed: "
279  "alarm bit set: status 0x%.2x\n", val);
280  }
281 }
282 
292 static int fpga_enable_power_supplies(struct fpga_dev *priv)
293 {
294  unsigned long start = jiffies;
295 
296  if (fpga_power_good(priv)) {
297  dev_dbg(priv->dev, "power was already good\n");
298  return 0;
299  }
300 
302  while (time_before(jiffies, start + HZ)) {
303  if (fpga_power_good(priv))
304  return 0;
305 
306  usleep_range(5000, 10000);
307  }
308 
309  return fpga_power_good(priv) ? 0 : -ETIMEDOUT;
310 }
311 
312 /*
313  * Determine if the FPGA power supplies are all enabled
314  */
315 static bool fpga_power_enabled(struct fpga_dev *priv)
316 {
317  u8 val;
318 
319  val = ioread8(priv->regs + CTL_PWR_CONTROL);
320  if (val & PWR_CONTROL_ENABLE)
321  return true;
322 
323  return false;
324 }
325 
326 /*
327  * Determine if the FPGA's are programmed and running correctly
328  */
329 static bool fpga_running(struct fpga_dev *priv)
330 {
331  if (!fpga_power_good(priv))
332  return false;
333 
334  /* Check the config done bit */
335  return ioread32be(priv->regs + FPGA_CONFIG_STATUS) & (1 << 18);
336 }
337 
338 /*
339  * FPGA Programming Code
340  */
341 
350 static int fpga_program_block(struct fpga_dev *priv, void *buf, size_t count)
351 {
352  u32 *data = buf;
353  int size = fpga_fifo_size(priv->regs);
354  int i, len;
355  unsigned long timeout;
356 
357  /* enforce correct data length for the FIFO */
358  BUG_ON(count % 4 != 0);
359 
360  while (count > 0) {
361 
362  /* Get the size of the block to write (maximum is FIFO_SIZE) */
363  len = min_t(size_t, count, size);
364  timeout = jiffies + HZ / 4;
365 
366  /* Write the block */
367  for (i = 0; i < len / 4; i++)
368  fpga_fifo_write(priv->regs, data[i]);
369 
370  /* Update the amounts left */
371  count -= len;
372  data += len / 4;
373 
374  /* Wait for the fifo to empty */
375  while (true) {
376 
377  if (fpga_fifo_empty(priv->regs)) {
378  break;
379  } else {
380  dev_dbg(priv->dev, "Fifo not empty\n");
381  cpu_relax();
382  }
383 
384  if (fpga_config_error(priv->regs)) {
385  dev_err(priv->dev, "Error detected\n");
386  return -EIO;
387  }
388 
389  if (time_after(jiffies, timeout)) {
390  dev_err(priv->dev, "Fifo drain timeout\n");
391  return -ETIMEDOUT;
392  }
393 
394  usleep_range(5000, 10000);
395  }
396  }
397 
398  return 0;
399 }
400 
411 static noinline int fpga_program_cpu(struct fpga_dev *priv)
412 {
413  int ret;
414 
415  /* Disable the programmer */
416  fpga_programmer_disable(priv);
417 
418  /* Set the total byte count */
419  fpga_set_byte_count(priv->regs, priv->bytes);
420  dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes);
421 
422  /* Enable the controller for programming */
423  fpga_programmer_enable(priv, false);
424  dev_dbg(priv->dev, "enabled the controller\n");
425 
426  /* Write each chunk of the FPGA bitfile to FPGA programmer */
427  ret = fpga_program_block(priv, priv->vb.vaddr, priv->bytes);
428  if (ret)
429  goto out_disable_controller;
430 
431  /* Wait for the interrupt handler to signal that programming finished */
432  ret = wait_for_completion_timeout(&priv->completion, 2 * HZ);
433  if (!ret) {
434  dev_err(priv->dev, "Timed out waiting for completion\n");
435  ret = -ETIMEDOUT;
436  goto out_disable_controller;
437  }
438 
439  /* Retrieve the status from the interrupt handler */
440  ret = priv->status;
441 
442 out_disable_controller:
443  fpga_programmer_disable(priv);
444  return ret;
445 }
446 
447 #define FIFO_DMA_ADDRESS 0xf0003000
448 #define FIFO_MAX_LEN 4096
449 
461 static noinline int fpga_program_dma(struct fpga_dev *priv)
462 {
463  struct videobuf_dmabuf *vb = &priv->vb;
464  struct dma_chan *chan = priv->chan;
465  struct dma_async_tx_descriptor *tx;
466  size_t num_pages, len, avail = 0;
467  struct dma_slave_config config;
468  struct scatterlist *sg;
469  struct sg_table table;
471  int ret, i;
472 
473  /* Disable the programmer */
474  fpga_programmer_disable(priv);
475 
476  /* Allocate a scatterlist for the DMA destination */
477  num_pages = DIV_ROUND_UP(priv->bytes, FIFO_MAX_LEN);
478  ret = sg_alloc_table(&table, num_pages, GFP_KERNEL);
479  if (ret) {
480  dev_err(priv->dev, "Unable to allocate dst scatterlist\n");
481  ret = -ENOMEM;
482  goto out_return;
483  }
484 
485  /*
486  * This is an ugly hack
487  *
488  * We fill in a scatterlist as if it were mapped for DMA. This is
489  * necessary because there exists no better structure for this
490  * inside the kernel code.
491  *
492  * As an added bonus, we can use the DMAEngine API for all of this,
493  * rather than inventing another extremely similar API.
494  */
495  avail = priv->bytes;
496  for_each_sg(table.sgl, sg, num_pages, i) {
497  len = min_t(size_t, avail, FIFO_MAX_LEN);
499  sg_dma_len(sg) = len;
500 
501  avail -= len;
502  }
503 
504  /* Map the buffer for DMA */
505  ret = videobuf_dma_map(priv->dev, &priv->vb);
506  if (ret) {
507  dev_err(priv->dev, "Unable to map buffer for DMA\n");
508  goto out_free_table;
509  }
510 
511  /*
512  * Configure the DMA channel to transfer FIFO_SIZE / 2 bytes per
513  * transaction, and then put it under external control
514  */
515  memset(&config, 0, sizeof(config));
516  config.direction = DMA_MEM_TO_DEV;
518  config.dst_maxburst = fpga_fifo_size(priv->regs) / 2 / 4;
519  ret = chan->device->device_control(chan, DMA_SLAVE_CONFIG,
520  (unsigned long)&config);
521  if (ret) {
522  dev_err(priv->dev, "DMA slave configuration failed\n");
523  goto out_dma_unmap;
524  }
525 
526  ret = chan->device->device_control(chan, FSLDMA_EXTERNAL_START, 1);
527  if (ret) {
528  dev_err(priv->dev, "DMA external control setup failed\n");
529  goto out_dma_unmap;
530  }
531 
532  /* setup and submit the DMA transaction */
533  tx = chan->device->device_prep_dma_sg(chan,
534  table.sgl, num_pages,
535  vb->sglist, vb->sglen, 0);
536  if (!tx) {
537  dev_err(priv->dev, "Unable to prep DMA transaction\n");
538  ret = -ENOMEM;
539  goto out_dma_unmap;
540  }
541 
542  cookie = tx->tx_submit(tx);
543  if (dma_submit_error(cookie)) {
544  dev_err(priv->dev, "Unable to submit DMA transaction\n");
545  ret = -ENOMEM;
546  goto out_dma_unmap;
547  }
548 
550 
551  /* Set the total byte count */
552  fpga_set_byte_count(priv->regs, priv->bytes);
553  dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes);
554 
555  /* Enable the controller for DMA programming */
556  fpga_programmer_enable(priv, true);
557  dev_dbg(priv->dev, "enabled the controller\n");
558 
559  /* Wait for the interrupt handler to signal that programming finished */
560  ret = wait_for_completion_timeout(&priv->completion, 2 * HZ);
561  if (!ret) {
562  dev_err(priv->dev, "Timed out waiting for completion\n");
563  ret = -ETIMEDOUT;
564  goto out_disable_controller;
565  }
566 
567  /* Retrieve the status from the interrupt handler */
568  ret = priv->status;
569 
570 out_disable_controller:
571  fpga_programmer_disable(priv);
572 out_dma_unmap:
573  videobuf_dma_unmap(priv->dev, vb);
574 out_free_table:
575  sg_free_table(&table);
576 out_return:
577  return ret;
578 }
579 
580 /*
581  * Interrupt Handling
582  */
583 
584 static irqreturn_t fpga_irq(int irq, void *dev_id)
585 {
586  struct fpga_dev *priv = dev_id;
587 
588  /* Save the status */
589  priv->status = fpga_config_error(priv->regs) ? -EIO : 0;
590  dev_dbg(priv->dev, "INTERRUPT status %d\n", priv->status);
591  fpga_dump_registers(priv);
592 
593  /* Disabling the programmer clears the interrupt */
594  fpga_programmer_disable(priv);
595 
596  /* Notify any waiters */
597  complete(&priv->completion);
598 
599  return IRQ_HANDLED;
600 }
601 
602 /*
603  * SYSFS Helpers
604  */
605 
612 static int fpga_do_stop(struct fpga_dev *priv)
613 {
614  u32 val;
615 
616  /* Set the led to unprogrammed */
617  ledtrig_fpga_programmed(false);
618 
619  /* Pulse the config line to reset the FPGA's */
621  iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL);
622  iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL);
623 
624  return 0;
625 }
626 
627 static noinline int fpga_do_program(struct fpga_dev *priv)
628 {
629  int ret;
630 
631  if (priv->bytes != priv->fw_size) {
632  dev_err(priv->dev, "Incorrect bitfile size: got %zu bytes, "
633  "should be %zu bytes\n",
634  priv->bytes, priv->fw_size);
635  return -EINVAL;
636  }
637 
638  if (!fpga_power_enabled(priv)) {
639  dev_err(priv->dev, "Power not enabled\n");
640  return -EINVAL;
641  }
642 
643  if (!fpga_power_good(priv)) {
644  dev_err(priv->dev, "Power not good\n");
645  return -EINVAL;
646  }
647 
648  /* Set the LED to unprogrammed */
649  ledtrig_fpga_programmed(false);
650 
651  /* Try to program the FPGA's using DMA */
652  ret = fpga_program_dma(priv);
653 
654  /* If DMA failed or doesn't exist, try with CPU */
655  if (ret) {
656  dev_warn(priv->dev, "Falling back to CPU programming\n");
657  ret = fpga_program_cpu(priv);
658  }
659 
660  if (ret) {
661  dev_err(priv->dev, "Unable to program FPGA's\n");
662  return ret;
663  }
664 
665  /* Drop the firmware bitfile from memory */
666  fpga_drop_firmware_data(priv);
667 
668  dev_dbg(priv->dev, "FPGA programming successful\n");
669  ledtrig_fpga_programmed(true);
670 
671  return 0;
672 }
673 
674 /*
675  * File Operations
676  */
677 
678 static int fpga_open(struct inode *inode, struct file *filp)
679 {
680  /*
681  * The miscdevice layer puts our struct miscdevice into the
682  * filp->private_data field. We use this to find our private
683  * data and then overwrite it with our own private structure.
684  */
685  struct fpga_dev *priv = container_of(filp->private_data,
686  struct fpga_dev, miscdev);
687  unsigned int nr_pages;
688  int ret;
689 
690  /* We only allow one process at a time */
691  ret = mutex_lock_interruptible(&priv->lock);
692  if (ret)
693  return ret;
694 
695  filp->private_data = priv;
696  kref_get(&priv->ref);
697 
698  /* Truncation: drop any existing data */
699  if (filp->f_flags & O_TRUNC)
700  priv->bytes = 0;
701 
702  /* Check if we have already allocated a buffer */
703  if (priv->vb_allocated)
704  return 0;
705 
706  /* Allocate a buffer to hold enough data for the bitfile */
707  nr_pages = DIV_ROUND_UP(priv->fw_size, PAGE_SIZE);
708  ret = videobuf_dma_init_kernel(&priv->vb, DMA_TO_DEVICE, nr_pages);
709  if (ret) {
710  dev_err(priv->dev, "unable to allocate data buffer\n");
711  mutex_unlock(&priv->lock);
712  kref_put(&priv->ref, fpga_dev_remove);
713  return ret;
714  }
715 
716  priv->vb_allocated = true;
717  return 0;
718 }
719 
720 static int fpga_release(struct inode *inode, struct file *filp)
721 {
722  struct fpga_dev *priv = filp->private_data;
723 
724  mutex_unlock(&priv->lock);
725  kref_put(&priv->ref, fpga_dev_remove);
726  return 0;
727 }
728 
729 static ssize_t fpga_write(struct file *filp, const char __user *buf,
730  size_t count, loff_t *f_pos)
731 {
732  struct fpga_dev *priv = filp->private_data;
733 
734  /* FPGA bitfiles have an exact size: disallow anything else */
735  if (priv->bytes >= priv->fw_size)
736  return -ENOSPC;
737 
738  count = min_t(size_t, priv->fw_size - priv->bytes, count);
739  if (copy_from_user(priv->vb.vaddr + priv->bytes, buf, count))
740  return -EFAULT;
741 
742  priv->bytes += count;
743  return count;
744 }
745 
746 static ssize_t fpga_read(struct file *filp, char __user *buf, size_t count,
747  loff_t *f_pos)
748 {
749  struct fpga_dev *priv = filp->private_data;
750 
751  count = min_t(size_t, priv->bytes - *f_pos, count);
752  if (copy_to_user(buf, priv->vb.vaddr + *f_pos, count))
753  return -EFAULT;
754 
755  *f_pos += count;
756  return count;
757 }
758 
759 static loff_t fpga_llseek(struct file *filp, loff_t offset, int origin)
760 {
761  struct fpga_dev *priv = filp->private_data;
762  loff_t newpos;
763 
764  /* only read-only opens are allowed to seek */
765  if ((filp->f_flags & O_ACCMODE) != O_RDONLY)
766  return -EINVAL;
767 
768  switch (origin) {
769  case SEEK_SET: /* seek relative to the beginning of the file */
770  newpos = offset;
771  break;
772  case SEEK_CUR: /* seek relative to current position in the file */
773  newpos = filp->f_pos + offset;
774  break;
775  case SEEK_END: /* seek relative to the end of the file */
776  newpos = priv->fw_size - offset;
777  break;
778  default:
779  return -EINVAL;
780  }
781 
782  /* check for sanity */
783  if (newpos > priv->fw_size)
784  return -EINVAL;
785 
786  filp->f_pos = newpos;
787  return newpos;
788 }
789 
790 static const struct file_operations fpga_fops = {
791  .open = fpga_open,
792  .release = fpga_release,
793  .write = fpga_write,
794  .read = fpga_read,
795  .llseek = fpga_llseek,
796 };
797 
798 /*
799  * Device Attributes
800  */
801 
802 static ssize_t pfail_show(struct device *dev, struct device_attribute *attr,
803  char *buf)
804 {
805  struct fpga_dev *priv = dev_get_drvdata(dev);
806  u8 val;
807 
808  val = ioread8(priv->regs + CTL_PWR_FAIL);
809  return snprintf(buf, PAGE_SIZE, "0x%.2x\n", val);
810 }
811 
812 static ssize_t pgood_show(struct device *dev, struct device_attribute *attr,
813  char *buf)
814 {
815  struct fpga_dev *priv = dev_get_drvdata(dev);
816  return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_good(priv));
817 }
818 
819 static ssize_t penable_show(struct device *dev, struct device_attribute *attr,
820  char *buf)
821 {
822  struct fpga_dev *priv = dev_get_drvdata(dev);
823  return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_enabled(priv));
824 }
825 
826 static ssize_t penable_store(struct device *dev, struct device_attribute *attr,
827  const char *buf, size_t count)
828 {
829  struct fpga_dev *priv = dev_get_drvdata(dev);
830  unsigned long val;
831  int ret;
832 
833  if (strict_strtoul(buf, 0, &val))
834  return -EINVAL;
835 
836  if (val) {
837  ret = fpga_enable_power_supplies(priv);
838  if (ret)
839  return ret;
840  } else {
841  fpga_do_stop(priv);
842  fpga_disable_power_supplies(priv);
843  }
844 
845  return count;
846 }
847 
848 static ssize_t program_show(struct device *dev, struct device_attribute *attr,
849  char *buf)
850 {
851  struct fpga_dev *priv = dev_get_drvdata(dev);
852  return snprintf(buf, PAGE_SIZE, "%d\n", fpga_running(priv));
853 }
854 
855 static ssize_t program_store(struct device *dev, struct device_attribute *attr,
856  const char *buf, size_t count)
857 {
858  struct fpga_dev *priv = dev_get_drvdata(dev);
859  unsigned long val;
860  int ret;
861 
862  if (strict_strtoul(buf, 0, &val))
863  return -EINVAL;
864 
865  /* We can't have an image writer and be programming simultaneously */
866  if (mutex_lock_interruptible(&priv->lock))
867  return -ERESTARTSYS;
868 
869  /* Program or Reset the FPGA's */
870  ret = val ? fpga_do_program(priv) : fpga_do_stop(priv);
871  if (ret)
872  goto out_unlock;
873 
874  /* Success */
875  ret = count;
876 
877 out_unlock:
878  mutex_unlock(&priv->lock);
879  return ret;
880 }
881 
882 static DEVICE_ATTR(power_fail, S_IRUGO, pfail_show, NULL);
883 static DEVICE_ATTR(power_good, S_IRUGO, pgood_show, NULL);
884 static DEVICE_ATTR(power_enable, S_IRUGO | S_IWUSR,
885  penable_show, penable_store);
886 
887 static DEVICE_ATTR(program, S_IRUGO | S_IWUSR,
888  program_show, program_store);
889 
890 static struct attribute *fpga_attributes[] = {
891  &dev_attr_power_fail.attr,
892  &dev_attr_power_good.attr,
893  &dev_attr_power_enable.attr,
894  &dev_attr_program.attr,
895  NULL,
896 };
897 
898 static const struct attribute_group fpga_attr_group = {
899  .attrs = fpga_attributes,
900 };
901 
902 /*
903  * OpenFirmware Device Subsystem
904  */
905 
906 #define SYS_REG_VERSION 0x00
907 #define SYS_REG_GEOGRAPHIC 0x10
908 
909 static bool dma_filter(struct dma_chan *chan, void *data)
910 {
911  /*
912  * DMA Channel #0 is the only acceptable device
913  *
914  * This probably won't survive an unload/load cycle of the Freescale
915  * DMAEngine driver, but that won't be a problem
916  */
917  return chan->chan_id == 0 && chan->device->dev_id == 0;
918 }
919 
920 static int fpga_of_remove(struct platform_device *op)
921 {
922  struct fpga_dev *priv = dev_get_drvdata(&op->dev);
923  struct device *this_device = priv->miscdev.this_device;
924 
925  sysfs_remove_group(&this_device->kobj, &fpga_attr_group);
926  misc_deregister(&priv->miscdev);
927 
928  free_irq(priv->irq, priv);
929  irq_dispose_mapping(priv->irq);
930 
931  /* make sure the power supplies are off */
932  fpga_disable_power_supplies(priv);
933 
934  /* unmap registers */
935  iounmap(priv->immr);
936  iounmap(priv->regs);
937 
938  dma_release_channel(priv->chan);
939 
940  /* drop our reference to the private data structure */
941  kref_put(&priv->ref, fpga_dev_remove);
942  return 0;
943 }
944 
945 /* CTL-CPLD Version Register */
946 #define CTL_CPLD_VERSION 0x2000
947 
948 static int fpga_of_probe(struct platform_device *op)
949 {
950  struct device_node *of_node = op->dev.of_node;
951  struct device *this_device;
952  struct fpga_dev *priv;
954  u32 ver;
955  int ret;
956 
957  /* Allocate private data */
958  priv = kzalloc(sizeof(*priv), GFP_KERNEL);
959  if (!priv) {
960  dev_err(&op->dev, "Unable to allocate private data\n");
961  ret = -ENOMEM;
962  goto out_return;
963  }
964 
965  /* Setup the miscdevice */
966  priv->miscdev.minor = MISC_DYNAMIC_MINOR;
967  priv->miscdev.name = drv_name;
968  priv->miscdev.fops = &fpga_fops;
969 
970  kref_init(&priv->ref);
971 
972  dev_set_drvdata(&op->dev, priv);
973  priv->dev = &op->dev;
974  mutex_init(&priv->lock);
975  init_completion(&priv->completion);
976  videobuf_dma_init(&priv->vb);
977 
978  dev_set_drvdata(priv->dev, priv);
979  dma_cap_zero(mask);
980  dma_cap_set(DMA_MEMCPY, mask);
981  dma_cap_set(DMA_SLAVE, mask);
982  dma_cap_set(DMA_SG, mask);
983 
984  /* Get control of DMA channel #0 */
985  priv->chan = dma_request_channel(mask, dma_filter, NULL);
986  if (!priv->chan) {
987  dev_err(&op->dev, "Unable to acquire DMA channel #0\n");
988  ret = -ENODEV;
989  goto out_free_priv;
990  }
991 
992  /* Remap the registers for use */
993  priv->regs = of_iomap(of_node, 0);
994  if (!priv->regs) {
995  dev_err(&op->dev, "Unable to ioremap registers\n");
996  ret = -ENOMEM;
997  goto out_dma_release_channel;
998  }
999 
1000  /* Remap the IMMR for use */
1001  priv->immr = ioremap(get_immrbase(), 0x100000);
1002  if (!priv->immr) {
1003  dev_err(&op->dev, "Unable to ioremap IMMR\n");
1004  ret = -ENOMEM;
1005  goto out_unmap_regs;
1006  }
1007 
1008  /*
1009  * Check that external DMA is configured
1010  *
1011  * U-Boot does this for us, but we should check it and bail out if
1012  * there is a problem. Failing to have this register setup correctly
1013  * will cause the DMA controller to transfer a single cacheline
1014  * worth of data, then wedge itself.
1015  */
1016  if ((ioread32be(priv->immr + 0x114) & 0xE00) != 0xE00) {
1017  dev_err(&op->dev, "External DMA control not configured\n");
1018  ret = -ENODEV;
1019  goto out_unmap_immr;
1020  }
1021 
1022  /*
1023  * Check the CTL-CPLD version
1024  *
1025  * This driver uses the CTL-CPLD DATA-FPGA power sequencer, and we
1026  * don't want to run on any version of the CTL-CPLD that does not use
1027  * a compatible register layout.
1028  *
1029  * v2: changed register layout, added power sequencer
1030  * v3: added glitch filter on the i2c overcurrent/overtemp outputs
1031  */
1032  ver = ioread8(priv->regs + CTL_CPLD_VERSION);
1033  if (ver != 0x02 && ver != 0x03) {
1034  dev_err(&op->dev, "CTL-CPLD is not version 0x02 or 0x03!\n");
1035  ret = -ENODEV;
1036  goto out_unmap_immr;
1037  }
1038 
1039  /* Set the exact size that the firmware image should be */
1040  ver = ioread32be(priv->regs + SYS_REG_VERSION);
1041  priv->fw_size = (ver & (1 << 18)) ? FW_SIZE_EP2S130 : FW_SIZE_EP2S90;
1042 
1043  /* Find the correct IRQ number */
1044  priv->irq = irq_of_parse_and_map(of_node, 0);
1045  if (priv->irq == NO_IRQ) {
1046  dev_err(&op->dev, "Unable to find IRQ line\n");
1047  ret = -ENODEV;
1048  goto out_unmap_immr;
1049  }
1050 
1051  /* Request the IRQ */
1052  ret = request_irq(priv->irq, fpga_irq, IRQF_SHARED, drv_name, priv);
1053  if (ret) {
1054  dev_err(&op->dev, "Unable to request IRQ %d\n", priv->irq);
1055  ret = -ENODEV;
1056  goto out_irq_dispose_mapping;
1057  }
1058 
1059  /* Reset and stop the FPGA's, just in case */
1060  fpga_do_stop(priv);
1061 
1062  /* Register the miscdevice */
1063  ret = misc_register(&priv->miscdev);
1064  if (ret) {
1065  dev_err(&op->dev, "Unable to register miscdevice\n");
1066  goto out_free_irq;
1067  }
1068 
1069  /* Create the sysfs files */
1070  this_device = priv->miscdev.this_device;
1071  dev_set_drvdata(this_device, priv);
1072  ret = sysfs_create_group(&this_device->kobj, &fpga_attr_group);
1073  if (ret) {
1074  dev_err(&op->dev, "Unable to create sysfs files\n");
1075  goto out_misc_deregister;
1076  }
1077 
1078  dev_info(priv->dev, "CARMA FPGA Programmer: %s rev%s with %s FPGAs\n",
1079  (ver & (1 << 17)) ? "Correlator" : "Digitizer",
1080  (ver & (1 << 16)) ? "B" : "A",
1081  (ver & (1 << 18)) ? "EP2S130" : "EP2S90");
1082 
1083  return 0;
1084 
1085 out_misc_deregister:
1086  misc_deregister(&priv->miscdev);
1087 out_free_irq:
1088  free_irq(priv->irq, priv);
1089 out_irq_dispose_mapping:
1090  irq_dispose_mapping(priv->irq);
1091 out_unmap_immr:
1092  iounmap(priv->immr);
1093 out_unmap_regs:
1094  iounmap(priv->regs);
1095 out_dma_release_channel:
1096  dma_release_channel(priv->chan);
1097 out_free_priv:
1098  kref_put(&priv->ref, fpga_dev_remove);
1099 out_return:
1100  return ret;
1101 }
1102 
1103 static struct of_device_id fpga_of_match[] = {
1104  { .compatible = "carma,fpga-programmer", },
1105  {},
1106 };
1107 
1108 static struct platform_driver fpga_of_driver = {
1109  .probe = fpga_of_probe,
1110  .remove = fpga_of_remove,
1111  .driver = {
1112  .name = drv_name,
1113  .of_match_table = fpga_of_match,
1114  .owner = THIS_MODULE,
1115  },
1116 };
1117 
1118 /*
1119  * Module Init / Exit
1120  */
1121 
1122 static int __init fpga_init(void)
1123 {
1124  led_trigger_register_simple("fpga", &ledtrig_fpga);
1125  return platform_driver_register(&fpga_of_driver);
1126 }
1127 
1128 static void __exit fpga_exit(void)
1129 {
1130  platform_driver_unregister(&fpga_of_driver);
1131  led_trigger_unregister_simple(ledtrig_fpga);
1132 }
1133 
1134 MODULE_AUTHOR("Ira W. Snyder <[email protected]>");
1135 MODULE_DESCRIPTION("CARMA Board DATA-FPGA Programmer");
1136 MODULE_LICENSE("GPL");
1137 
1138 module_init(fpga_init);
1139 module_exit(fpga_exit);