Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dbri.c
Go to the documentation of this file.
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets ([email protected])
4  *
5  * Converted to ring buffered version by Krzysztof Helt ([email protected])
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig ([email protected])
9  * Copyright (C) 1998, 1999 Brent Baccala ([email protected])
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  * data time multiplexer with ISDN support (aka T7259)
16  * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  * Documentation:
19  * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  * Sparc Technology Business (courtesy of Sun Support)
21  * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  * available from the Lucent (formerly AT&T microelectronics) home
23  * page.
24  * - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  * Interfaces: CHI, Audio In & Out, 2 bits parallel
27  * Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_* ALSA stuff
51  * cs4215_* CS4215 codec specific stuff
52  * dbri_* DBRI high-level stuff
53  * other DBRI low-level stuff
54  */
55 
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
62 
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
69 
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/atomic.h>
73 #include <linux/module.h>
74 
75 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
76 MODULE_DESCRIPTION("Sun DBRI");
77 MODULE_LICENSE("GPL");
78 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
79 
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
82 /* Enable this card */
84 
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91 
92 #undef DBRI_DEBUG
93 
94 #define D_INT (1<<0)
95 #define D_GEN (1<<1)
96 #define D_CMD (1<<2)
97 #define D_MM (1<<3)
98 #define D_USR (1<<4)
99 #define D_DESC (1<<5)
100 
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104 
105 #ifdef DBRI_DEBUG
106 static char *cmds[] = {
107  "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108  "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110 
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112 
113 #else
114 #define dprintk(a, x...) do { } while (0)
115 
116 #endif /* DBRI_DEBUG */
117 
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
119  (intr << 27) | \
120  value)
121 
122 /***************************************************************************
123  CS4215 specific definitions and structures
124 ****************************************************************************/
125 
126 struct cs4215 {
127  __u8 data[4]; /* Data mode: Time slots 5-8 */
128  __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
130  __u8 offset; /* Bit offset from frame sync to time slot 1 */
131  volatile __u32 status;
132  volatile __u32 version;
133  __u8 precision; /* In bits, either 8 or 16 */
134  __u8 channels; /* 1 or 2 */
135 };
136 
137 /*
138  * Control mode first
139  */
140 
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB (1<<2) /* Control Latch Bit */
143 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
144  /* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1 (1<<5)
147 
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16 0
150 #define CS4215_DFR_ULAW 1
151 #define CS4215_DFR_ALAW 2
152 #define CS4215_DFR_LINEAR8 3
153 #define CS4215_DFR_STEREO (1<<2)
154 static struct {
155  unsigned short freq;
156  unsigned char xtal;
157  unsigned char csval;
158 } CS4215_FREQ[] = {
159  { 8000, (1 << 4), (0 << 3) },
160  { 16000, (1 << 4), (1 << 3) },
161  { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
162  { 32000, (1 << 4), (3 << 3) },
163  /* { NA, (1 << 4), (4 << 3) }, */
164  /* { NA, (1 << 4), (5 << 3) }, */
165  { 48000, (1 << 4), (6 << 3) },
166  { 9600, (1 << 4), (7 << 3) },
167  { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
168  { 11025, (2 << 4), (1 << 3) },
169  { 18900, (2 << 4), (2 << 3) },
170  { 22050, (2 << 4), (3 << 3) },
171  { 37800, (2 << 4), (4 << 3) },
172  { 44100, (2 << 4), (5 << 3) },
173  { 33075, (2 << 4), (6 << 3) },
174  { 6615, (2 << 4), (7 << 3) },
175  { 0, 0, 0}
176 };
177 
178 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
179 
180 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
181 
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
184 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128 (1<<2)
187 #define CS4215_BSEL_256 (2<<2)
188 #define CS4215_MCK_MAST (0<<4) /* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
193 
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
197 
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200 
201 /* Time Slot 6, Reserved */
202 
203 /* Time Slot 7, Version Register */
204 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
205 
206 /* Time Slot 8, Reserved */
207 
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
212 
213 /* Time Slot 5, Output Setting */
214 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE (1<<6) /* Line Out Enable */
216 #define CS4215_HE (1<<7) /* Headphone Enable */
217 
218 /* Time Slot 6, Output Setting */
219 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE (1<<6) /* Speaker Enable */
221 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
222 
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
227 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
228 #define CS4215_PIO1 (1<<7)
229 
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
233 
234 /***************************************************************************
235  DBRI specific definitions and structures
236 ****************************************************************************/
237 
238 /* DBRI main registers */
239 #define REG0 0x00 /* Status and Control */
240 #define REG1 0x04 /* Mode and Interrupt */
241 #define REG2 0x08 /* Parallel IO */
242 #define REG3 0x0c /* Test */
243 #define REG8 0x20 /* Command Queue Pointer */
244 #define REG9 0x24 /* Interrupt Queue Pointer */
245 
246 #define DBRI_NO_CMDS 64
247 #define DBRI_INT_BLK 64
248 #define DBRI_NO_DESCS 64
249 #define DBRI_NO_PIPES 32
250 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
251 
252 #define DBRI_REC 0
253 #define DBRI_PLAY 1
254 #define DBRI_NO_STREAMS 2
255 
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259  volatile __u32 word1;
260  __u32 ba; /* Transmit/Receive Buffer Address */
261  __u32 nda; /* Next Descriptor Address */
262  volatile __u32 word4;
263 };
264 
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269  s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
270  volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
271  struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
272 };
273 
274 #define dbri_dma_off(member, elem) \
275  ((u32)(unsigned long) \
276  (&(((struct dbri_dma *)0)->member[elem])))
277 
279 
280 struct dbri_pipe {
281  u32 sdp; /* SDP command word */
282  int nextpipe; /* Next pipe in linked list */
283  int length; /* Length of timeslot (bits) */
284  int first_desc; /* Index of first descriptor */
285  int desc; /* Index of active descriptor */
286  volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
287 };
288 
289 /* Per stream (playback or record) information */
292  u32 dvma_buffer; /* Device view of ALSA DMA buffer */
293  int size; /* Size of DMA buffer */
294  size_t offset; /* offset in user buffer */
295  int pipe; /* Data pipe used */
296  int left_gain; /* mixer elements */
298 };
299 
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302  int regs_size, irq; /* Needed for unload */
303  struct platform_device *op; /* OF device info */
305 
306  struct dbri_dma *dma; /* Pointer to our DMA block */
307  u32 dma_dvma; /* DBRI visible DMA address */
308 
309  void __iomem *regs; /* dbri HW regs */
310  int dbri_irqp; /* intr queue pointer */
311 
312  struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
313  int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
314  spinlock_t cmdlock; /* Protects cmd queue accesses */
315  s32 *cmdptr; /* Pointer to the last queued cmd */
316 
317  int chi_bpf;
318 
319  struct cs4215 mm; /* mmcodec special info */
320  /* per stream (playback/record) info */
322 };
323 
324 #define DBRI_MAX_VOLUME 63 /* Output volume */
325 #define DBRI_MAX_GAIN 15 /* Input gain */
326 
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P (1<<15) /* Program command & queue pointer valid */
329 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X (1<<7) /* Sanity Timer Disable */
333 #define D_T (1<<6) /* Permit activation of the TE interface */
334 #define D_N (1<<5) /* Permit activation of the NT interface */
335 #define D_C (1<<4) /* Permit activation of the CHI interface */
336 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
337 #define D_D (1<<2) /* Disable Master Mode */
338 #define D_H (1<<1) /* Halt for Analysis */
339 #define D_R (1<<0) /* Soft Reset */
340 
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END (1<<8) /* Byte Order */
343 #define D_BIG_END (0<<8) /* Byte Order */
344 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
345 #define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
346 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
347 #define D_MBE (1<<1) /* Burst Error on SBus (read only) */
348 #define D_IR (1<<0) /* Interrupt Indicator (read only) */
349 
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
352 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
353 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
354 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
355 #define D_ENPIO (0xf0) /* Enable all the pins */
356 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
359 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
360 
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT 0x0 /* Stop execution */
363 #define D_PAUSE 0x1 /* Flush long pipes */
364 #define D_JUMP 0x2 /* New command queue */
365 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
366 #define D_REX 0x4 /* Report command execution via interrupt */
367 #define D_SDP 0x5 /* Setup Data Pipe */
368 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS 0x7 /* Define Time Slot */
370 #define D_SSP 0x8 /* Set short Data Pipe */
371 #define D_CHI 0x9 /* Set CHI Global Mode */
372 #define D_NT 0xa /* NT Command */
373 #define D_TE 0xb /* TE Command */
374 #define D_CDEC 0xc /* Codec setup */
375 #define D_TEST 0xd /* No comment */
376 #define D_CDM 0xe /* CHI Data mode command */
377 
378 /* Special bits for some commands */
379 #define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
380 
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE (2<<18) /* Report any changes */
385 #define D_SDP_EVERY (3<<18) /* Report any changes */
386 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
388 
389 /* Pipe data MODE */
390 #define D_SDP_MEM (0<<13) /* To/from memory */
391 #define D_SDP_HDLC (2<<13)
392 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED (6<<13) /* Short only */
395 #define D_SDP_MODE(v) ((v)&(7<<13))
396 
397 #define D_SDP_TO_SER (1<<12) /* Direction */
398 #define D_SDP_FROM_SER (0<<12) /* Direction */
399 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
401 #define D_SDP_P (1<<10) /* Pointer Valid */
402 #define D_SDP_A (1<<8) /* Abort */
403 #define D_SDP_C (1<<7) /* Clear */
404 
405 /* Define Time Slot */
406 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
412 
413 /* Time Slot defines */
414 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
416 #define D_TS_DI (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
423 
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
426 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
432 
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT (1<<17) /* Frame Bit */
435 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT (1<<13) /* Configure interface as NT */
439 #define D_NT_FT (1<<12) /* Fixed Timing */
440 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT (1<<9) /* Activate Interface */
443 #define D_NT_MFE (1<<8) /* Multiframe Enable */
444 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
445 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
446 #define D_NT_FACT (1<<1) /* Force Activation */
447 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
448 
449 /* Codec Setup */
450 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
451 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
453 
454 /* Test */
455 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
456 #define D_TEST_SIZE(v) ((v)<<11) /* */
457 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC 0x6 /* Microprocessor test */
459 #define D_TEST_SER 0x7 /* Serial-Controller test */
460 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP 0xe /* ROM Dump */
465 
466 /* CHI Data Mode */
467 #define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
472 #define D_CDM_REN (1 << 0) /* Receive Highway Enable */
473 
474 /* The Interrupts */
475 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
476 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL 5 /* End of List */
480 #define D_INTR_CMDI 6 /* Command has bean read */
481 #define D_INTR_XCMP 8 /* Transmission of frame complete */
482 #define D_INTR_SBRI 9 /* BRI status change info */
483 #define D_INTR_FXDT 10 /* Fixed data change */
484 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT 12 /* Dropped by frame slip */
487 #define D_INTR_RBYT 13 /* Repeated by frame slip */
488 #define D_INTR_LINT 14 /* Lost Interrupt */
489 #define D_INTR_UNDR 15 /* DMA underrun */
490 
491 #define D_INTR_TE 32
492 #define D_INTR_NT 34
493 #define D_INTR_CHI 36
494 #define D_INTR_CMD 38
495 
496 #define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v) ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
501 
502 #define D_P_0 0 /* TE receive anchor */
503 #define D_P_1 1 /* TE transmit anchor */
504 #define D_P_2 2 /* NT transmit anchor */
505 #define D_P_3 3 /* NT receive anchor */
506 #define D_P_4 4 /* CHI send data */
507 #define D_P_5 5 /* CHI receive data */
508 #define D_P_6 6 /* */
509 #define D_P_7 7 /* */
510 #define D_P_8 8 /* */
511 #define D_P_9 9 /* */
512 #define D_P_10 10 /* */
513 #define D_P_11 11 /* */
514 #define D_P_12 12 /* */
515 #define D_P_13 13 /* */
516 #define D_P_14 14 /* */
517 #define D_P_15 15 /* */
518 #define D_P_16 16 /* CHI anchor pipe */
519 #define D_P_17 17 /* CHI send */
520 #define D_P_18 18 /* CHI receive */
521 #define D_P_19 19 /* CHI receive */
522 #define D_P_20 20 /* CHI receive */
523 #define D_P_21 21 /* */
524 #define D_P_22 22 /* */
525 #define D_P_23 23 /* */
526 #define D_P_24 24 /* */
527 #define D_P_25 25 /* */
528 #define D_P_26 26 /* */
529 #define D_P_27 27 /* */
530 #define D_P_28 28 /* */
531 #define D_P_29 29 /* */
532 #define D_P_30 30 /* */
533 #define D_P_31 31 /* */
534 
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F (1 << 31) /* End of Frame */
537 #define DBRI_TD_D (1 << 30) /* Do not append CRC */
538 #define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B (1 << 15) /* Final interrupt */
540 #define DBRI_TD_M (1 << 14) /* Marker interrupt */
541 #define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
543 #define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
545 #define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
547  /* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
549 
550 /* Receive descriptor defines */
551 #define DBRI_RD_F (1 << 31) /* End of Frame */
552 #define DBRI_RD_C (1 << 30) /* Completed buffer */
553 #define DBRI_RD_B (1 << 15) /* Final interrupt */
554 #define DBRI_RD_M (1 << 14) /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
556 #define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
557 #define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
558 #define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
559 #define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
562 
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream) \
566  (substream->stream == \
567  SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568 
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream) \
571  &dbri->stream_info[DBRI_STREAMNO(substream)]
572 
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579  switch (len) {
580  case 32:
581  b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582  case 16:
583  b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
584  case 8:
585  b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
586  case 4:
587  b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
588  case 2:
589  b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
590  case 1:
591  case 0:
592  break;
593  default:
594  printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
595  }
596 
597  return b;
598 }
599 
600 /*
601 ****************************************************************************
602 ************** DBRI initialization and command synchronization *************
603 ****************************************************************************
604 
605 Commands are sent to the DBRI by building a list of them in memory,
606 then writing the address of the first list item to DBRI register 8.
607 The list is terminated with a WAIT command, which generates a
608 CPU interrupt to signal completion.
609 
610 Since the DBRI can run in parallel with the CPU, several means of
611 synchronization present themselves. The method implemented here uses
612 the dbri_cmdwait() to wait for execution of batch of sent commands.
613 
614 A circular command buffer is used here. A new command is being added
615 while another can be executed. The scheme works by adding two WAIT commands
616 after each sent batch of commands. When the next batch is prepared it is
617 added after the WAIT commands then the WAITs are replaced with single JUMP
618 command to the new batch. The the DBRI is forced to reread the last WAIT
619 command (replaced by the JUMP by then). If the DBRI is still executing
620 previous commands the request to reread the WAIT command is ignored.
621 
622 Every time a routine wants to write commands to the DBRI, it must
623 first call dbri_cmdlock() and get pointer to a free space in
624 dbri->dma->cmd buffer. After this, the commands can be written to
625 the buffer, and dbri_cmdsend() is called with the final pointer value
626 to send them to the DBRI.
627 
628 */
629 
630 #define MAXLOOPS 20
631 /*
632  * Wait for the current command string to execute
633  */
634 static void dbri_cmdwait(struct snd_dbri *dbri)
635 {
636  int maxloops = MAXLOOPS;
637  unsigned long flags;
638 
639  /* Delay if previous commands are still being processed */
640  spin_lock_irqsave(&dbri->lock, flags);
641  while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
642  spin_unlock_irqrestore(&dbri->lock, flags);
644  spin_lock_irqsave(&dbri->lock, flags);
645  }
646  spin_unlock_irqrestore(&dbri->lock, flags);
647 
648  if (maxloops == 0)
649  printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
650  else
651  dprintk(D_CMD, "Chip completed command buffer (%d)\n",
652  MAXLOOPS - maxloops - 1);
653 }
654 /*
655  * Lock the command queue and return pointer to space for len cmd words
656  * It locks the cmdlock spinlock.
657  */
658 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
659 {
660  /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
661  len += 2;
662  spin_lock(&dbri->cmdlock);
663  if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
664  return dbri->cmdptr + 2;
665  else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
666  return dbri->dma->cmd;
667  else
668  printk(KERN_ERR "DBRI: no space for commands.");
669 
670  return NULL;
671 }
672 
673 /*
674  * Send prepared cmd string. It works by writing a JUMP cmd into
675  * the last WAIT cmd and force DBRI to reread the cmd.
676  * The JUMP cmd points to the new cmd string.
677  * It also releases the cmdlock spinlock.
678  *
679  * Lock must be held before calling this.
680  */
681 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
682 {
683  s32 tmp, addr;
684  static int wait_id = 0;
685 
686  wait_id++;
687  wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
688  *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
689  *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
690 
691  /* Replace the last command with JUMP */
692  addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
693  *(dbri->cmdptr+1) = addr;
694  *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
695 
696 #ifdef DBRI_DEBUG
697  if (cmd > dbri->cmdptr) {
698  s32 *ptr;
699 
700  for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
701  dprintk(D_CMD, "cmd: %lx:%08x\n",
702  (unsigned long)ptr, *ptr);
703  } else {
704  s32 *ptr = dbri->cmdptr;
705 
706  dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
707  ptr++;
708  dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
709  for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
710  dprintk(D_CMD, "cmd: %lx:%08x\n",
711  (unsigned long)ptr, *ptr);
712  }
713 #endif
714 
715  /* Reread the last command */
716  tmp = sbus_readl(dbri->regs + REG0);
717  tmp |= D_P;
718  sbus_writel(tmp, dbri->regs + REG0);
719 
720  dbri->cmdptr = cmd;
721  spin_unlock(&dbri->cmdlock);
722 }
723 
724 /* Lock must be held when calling this */
725 static void dbri_reset(struct snd_dbri *dbri)
726 {
727  int i;
728  u32 tmp;
729 
730  dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
731  sbus_readl(dbri->regs + REG0),
732  sbus_readl(dbri->regs + REG2),
733  sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
734 
735  sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
736  for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
737  udelay(10);
738 
739  /* A brute approach - DBRI falls back to working burst size by itself
740  * On SS20 D_S does not work, so do not try so high. */
741  tmp = sbus_readl(dbri->regs + REG0);
742  tmp |= D_G | D_E;
743  tmp &= ~D_S;
744  sbus_writel(tmp, dbri->regs + REG0);
745 }
746 
747 /* Lock must not be held before calling this */
748 static void __devinit dbri_initialize(struct snd_dbri *dbri)
749 {
750  s32 *cmd;
751  u32 dma_addr;
752  unsigned long flags;
753  int n;
754 
755  spin_lock_irqsave(&dbri->lock, flags);
756 
757  dbri_reset(dbri);
758 
759  /* Initialize pipes */
760  for (n = 0; n < DBRI_NO_PIPES; n++)
761  dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
762 
763  spin_lock_init(&dbri->cmdlock);
764  /*
765  * Initialize the interrupt ring buffer.
766  */
767  dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
768  dbri->dma->intr[0] = dma_addr;
769  dbri->dbri_irqp = 1;
770  /*
771  * Set up the interrupt queue
772  */
773  spin_lock(&dbri->cmdlock);
774  cmd = dbri->cmdptr = dbri->dma->cmd;
775  *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
776  *(cmd++) = dma_addr;
777  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
778  dbri->cmdptr = cmd;
779  *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780  *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
781  dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
782  sbus_writel(dma_addr, dbri->regs + REG8);
783  spin_unlock(&dbri->cmdlock);
784 
785  spin_unlock_irqrestore(&dbri->lock, flags);
786  dbri_cmdwait(dbri);
787 }
788 
789 /*
790 ****************************************************************************
791 ************************** DBRI data pipe management ***********************
792 ****************************************************************************
793 
794 While DBRI control functions use the command and interrupt buffers, the
795 main data path takes the form of data pipes, which can be short (command
796 and interrupt driven), or long (attached to DMA buffers). These functions
797 provide a rudimentary means of setting up and managing the DBRI's pipes,
798 but the calling functions have to make sure they respect the pipes' linked
799 list ordering, among other things. The transmit and receive functions
800 here interface closely with the transmit and receive interrupt code.
801 
802 */
803 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
804 {
805  return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
806 }
807 
808 /* reset_pipe(dbri, pipe)
809  *
810  * Called on an in-use pipe to clear anything being transmitted or received
811  * Lock must be held before calling this.
812  */
813 static void reset_pipe(struct snd_dbri *dbri, int pipe)
814 {
815  int sdp;
816  int desc;
817  s32 *cmd;
818 
820  printk(KERN_ERR "DBRI: reset_pipe called with "
821  "illegal pipe number\n");
822  return;
823  }
824 
825  sdp = dbri->pipes[pipe].sdp;
826  if (sdp == 0) {
827  printk(KERN_ERR "DBRI: reset_pipe called "
828  "on uninitialized pipe\n");
829  return;
830  }
831 
832  cmd = dbri_cmdlock(dbri, 3);
833  *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
834  *(cmd++) = 0;
835  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
836  dbri_cmdsend(dbri, cmd, 3);
837 
838  desc = dbri->pipes[pipe].first_desc;
839  if (desc >= 0)
840  do {
841  dbri->dma->desc[desc].ba = 0;
842  dbri->dma->desc[desc].nda = 0;
843  desc = dbri->next_desc[desc];
844  } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
845 
846  dbri->pipes[pipe].desc = -1;
847  dbri->pipes[pipe].first_desc = -1;
848 }
849 
850 /*
851  * Lock must be held before calling this.
852  */
853 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
854 {
855  if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
856  printk(KERN_ERR "DBRI: setup_pipe called "
857  "with illegal pipe number\n");
858  return;
859  }
860 
861  if ((sdp & 0xf800) != sdp) {
862  printk(KERN_ERR "DBRI: setup_pipe called "
863  "with strange SDP value\n");
864  /* sdp &= 0xf800; */
865  }
866 
867  /* If this is a fixed receive pipe, arrange for an interrupt
868  * every time its data changes
869  */
870  if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
871  sdp |= D_SDP_CHANGE;
872 
873  sdp |= D_PIPE(pipe);
874  dbri->pipes[pipe].sdp = sdp;
875  dbri->pipes[pipe].desc = -1;
876  dbri->pipes[pipe].first_desc = -1;
877 
878  reset_pipe(dbri, pipe);
879 }
880 
881 /*
882  * Lock must be held before calling this.
883  */
884 static void link_time_slot(struct snd_dbri *dbri, int pipe,
885  int prevpipe, int nextpipe,
886  int length, int cycle)
887 {
888  s32 *cmd;
889  int val;
890 
891  if (pipe < 0 || pipe > DBRI_MAX_PIPE
892  || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
893  || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
895  "DBRI: link_time_slot called with illegal pipe number\n");
896  return;
897  }
898 
899  if (dbri->pipes[pipe].sdp == 0
900  || dbri->pipes[prevpipe].sdp == 0
901  || dbri->pipes[nextpipe].sdp == 0) {
902  printk(KERN_ERR "DBRI: link_time_slot called "
903  "on uninitialized pipe\n");
904  return;
905  }
906 
907  dbri->pipes[prevpipe].nextpipe = pipe;
908  dbri->pipes[pipe].nextpipe = nextpipe;
909  dbri->pipes[pipe].length = length;
910 
911  cmd = dbri_cmdlock(dbri, 4);
912 
913  if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
914  /* Deal with CHI special case:
915  * "If transmission on edges 0 or 1 is desired, then cycle n
916  * (where n = # of bit times per frame...) must be used."
917  * - DBRI data sheet, page 11
918  */
919  if (prevpipe == 16 && cycle == 0)
920  cycle = dbri->chi_bpf;
921 
922  val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
923  *(cmd++) = DBRI_CMD(D_DTS, 0, val);
924  *(cmd++) = 0;
925  *(cmd++) =
926  D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
927  } else {
928  val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
929  *(cmd++) = DBRI_CMD(D_DTS, 0, val);
930  *(cmd++) =
931  D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
932  *(cmd++) = 0;
933  }
934  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
935 
936  dbri_cmdsend(dbri, cmd, 4);
937 }
938 
939 #if 0
940 /*
941  * Lock must be held before calling this.
942  */
943 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
944  enum in_or_out direction, int prevpipe,
945  int nextpipe)
946 {
947  s32 *cmd;
948  int val;
949 
950  if (pipe < 0 || pipe > DBRI_MAX_PIPE
951  || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
952  || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
954  "DBRI: unlink_time_slot called with illegal pipe number\n");
955  return;
956  }
957 
958  cmd = dbri_cmdlock(dbri, 4);
959 
960  if (direction == PIPEinput) {
961  val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
962  *(cmd++) = DBRI_CMD(D_DTS, 0, val);
963  *(cmd++) = D_TS_NEXT(nextpipe);
964  *(cmd++) = 0;
965  } else {
966  val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
967  *(cmd++) = DBRI_CMD(D_DTS, 0, val);
968  *(cmd++) = 0;
969  *(cmd++) = D_TS_NEXT(nextpipe);
970  }
971  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
972 
973  dbri_cmdsend(dbri, cmd, 4);
974 }
975 #endif
976 
977 /* xmit_fixed() / recv_fixed()
978  *
979  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
980  * expected to change much, and which we don't need to buffer.
981  * The DBRI only interrupts us when the data changes (receive pipes),
982  * or only changes the data when this function is called (transmit pipes).
983  * Only short pipes (numbers 16-31) can be used in fixed data mode.
984  *
985  * These function operate on a 32-bit field, no matter how large
986  * the actual time slot is. The interrupt handler takes care of bit
987  * ordering and alignment. An 8-bit time slot will always end up
988  * in the low-order 8 bits, filled either MSB-first or LSB-first,
989  * depending on the settings passed to setup_pipe().
990  *
991  * Lock must not be held before calling it.
992  */
993 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
994 {
995  s32 *cmd;
996  unsigned long flags;
997 
998  if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
999  printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1000  return;
1001  }
1002 
1003  if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1004  printk(KERN_ERR "DBRI: xmit_fixed: "
1005  "Uninitialized pipe %d\n", pipe);
1006  return;
1007  }
1008 
1009  if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1010  printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1011  return;
1012  }
1013 
1014  if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1015  printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1016  pipe);
1017  return;
1018  }
1019 
1020  /* DBRI short pipes always transmit LSB first */
1021 
1022  if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1023  data = reverse_bytes(data, dbri->pipes[pipe].length);
1024 
1025  cmd = dbri_cmdlock(dbri, 3);
1026 
1027  *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1028  *(cmd++) = data;
1029  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1030 
1031  spin_lock_irqsave(&dbri->lock, flags);
1032  dbri_cmdsend(dbri, cmd, 3);
1033  spin_unlock_irqrestore(&dbri->lock, flags);
1034  dbri_cmdwait(dbri);
1035 
1036 }
1037 
1038 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1039 {
1040  if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1041  printk(KERN_ERR "DBRI: recv_fixed called with "
1042  "illegal pipe number\n");
1043  return;
1044  }
1045 
1046  if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1047  printk(KERN_ERR "DBRI: recv_fixed called on "
1048  "non-fixed pipe %d\n", pipe);
1049  return;
1050  }
1051 
1052  if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1053  printk(KERN_ERR "DBRI: recv_fixed called on "
1054  "transmit pipe %d\n", pipe);
1055  return;
1056  }
1057 
1058  dbri->pipes[pipe].recv_fixed_ptr = ptr;
1059 }
1060 
1061 /* setup_descs()
1062  *
1063  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1064  * with a DMA buffer.
1065  *
1066  * Only pipe numbers 0-15 can be used in this mode.
1067  *
1068  * This function takes a stream number pointing to a data buffer,
1069  * and work by building chains of descriptors which identify the
1070  * data buffers. Buffers too large for a single descriptor will
1071  * be spread across multiple descriptors.
1072  *
1073  * All descriptors create a ring buffer.
1074  *
1075  * Lock must be held before calling this.
1076  */
1077 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1078 {
1079  struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1081  int desc;
1082  int len;
1083  int first_desc = -1;
1084  int last_desc = -1;
1085 
1086  if (info->pipe < 0 || info->pipe > 15) {
1087  printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1088  return -2;
1089  }
1090 
1091  if (dbri->pipes[info->pipe].sdp == 0) {
1092  printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1093  info->pipe);
1094  return -2;
1095  }
1096 
1097  dvma_buffer = info->dvma_buffer;
1098  len = info->size;
1099 
1100  if (streamno == DBRI_PLAY) {
1101  if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1102  printk(KERN_ERR "DBRI: setup_descs: "
1103  "Called on receive pipe %d\n", info->pipe);
1104  return -2;
1105  }
1106  } else {
1107  if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1109  "DBRI: setup_descs: Called on transmit pipe %d\n",
1110  info->pipe);
1111  return -2;
1112  }
1113  /* Should be able to queue multiple buffers
1114  * to receive on a pipe
1115  */
1116  if (pipe_active(dbri, info->pipe)) {
1117  printk(KERN_ERR "DBRI: recv_on_pipe: "
1118  "Called on active pipe %d\n", info->pipe);
1119  return -2;
1120  }
1121 
1122  /* Make sure buffer size is multiple of four */
1123  len &= ~3;
1124  }
1125 
1126  /* Free descriptors if pipe has any */
1127  desc = dbri->pipes[info->pipe].first_desc;
1128  if (desc >= 0)
1129  do {
1130  dbri->dma->desc[desc].ba = 0;
1131  dbri->dma->desc[desc].nda = 0;
1132  desc = dbri->next_desc[desc];
1133  } while (desc != -1 &&
1134  desc != dbri->pipes[info->pipe].first_desc);
1135 
1136  dbri->pipes[info->pipe].desc = -1;
1137  dbri->pipes[info->pipe].first_desc = -1;
1138 
1139  desc = 0;
1140  while (len > 0) {
1141  int mylen;
1142 
1143  for (; desc < DBRI_NO_DESCS; desc++) {
1144  if (!dbri->dma->desc[desc].ba)
1145  break;
1146  }
1147 
1148  if (desc == DBRI_NO_DESCS) {
1149  printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1150  return -1;
1151  }
1152 
1153  if (len > DBRI_TD_MAXCNT)
1154  mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1155  else
1156  mylen = len;
1157 
1158  if (mylen > period)
1159  mylen = period;
1160 
1161  dbri->next_desc[desc] = -1;
1162  dbri->dma->desc[desc].ba = dvma_buffer;
1163  dbri->dma->desc[desc].nda = 0;
1164 
1165  if (streamno == DBRI_PLAY) {
1166  dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1167  dbri->dma->desc[desc].word4 = 0;
1168  dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1169  } else {
1170  dbri->dma->desc[desc].word1 = 0;
1171  dbri->dma->desc[desc].word4 =
1172  DBRI_RD_B | DBRI_RD_BCNT(mylen);
1173  }
1174 
1175  if (first_desc == -1)
1176  first_desc = desc;
1177  else {
1178  dbri->next_desc[last_desc] = desc;
1179  dbri->dma->desc[last_desc].nda =
1180  dbri->dma_dvma + dbri_dma_off(desc, desc);
1181  }
1182 
1183  last_desc = desc;
1184  dvma_buffer += mylen;
1185  len -= mylen;
1186  }
1187 
1188  if (first_desc == -1 || last_desc == -1) {
1189  printk(KERN_ERR "DBRI: setup_descs: "
1190  " Not enough descriptors available\n");
1191  return -1;
1192  }
1193 
1194  dbri->dma->desc[last_desc].nda =
1195  dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1196  dbri->next_desc[last_desc] = first_desc;
1197  dbri->pipes[info->pipe].first_desc = first_desc;
1198  dbri->pipes[info->pipe].desc = first_desc;
1199 
1200 #ifdef DBRI_DEBUG
1201  for (desc = first_desc; desc != -1;) {
1202  dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1203  desc,
1204  dbri->dma->desc[desc].word1,
1205  dbri->dma->desc[desc].ba,
1206  dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1207  desc = dbri->next_desc[desc];
1208  if (desc == first_desc)
1209  break;
1210  }
1211 #endif
1212  return 0;
1213 }
1214 
1215 /*
1216 ****************************************************************************
1217 ************************** DBRI - CHI interface ****************************
1218 ****************************************************************************
1219 
1220 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1221 multiplexed serial interface which the DBRI can operate in either master
1222 (give clock/frame sync) or slave (take clock/frame sync) mode.
1223 
1224 */
1225 
1227 
1228 /*
1229  * Lock must not be held before calling it.
1230  */
1231 static void reset_chi(struct snd_dbri *dbri,
1233  int bits_per_frame)
1234 {
1235  s32 *cmd;
1236  int val;
1237 
1238  /* Set CHI Anchor: Pipe 16 */
1239 
1240  cmd = dbri_cmdlock(dbri, 4);
1241  val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1242  | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1243  *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1244  *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245  *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1246  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1247  dbri_cmdsend(dbri, cmd, 4);
1248 
1249  dbri->pipes[16].sdp = 1;
1250  dbri->pipes[16].nextpipe = 16;
1251 
1252  cmd = dbri_cmdlock(dbri, 4);
1253 
1254  if (master_or_slave == CHIslave) {
1255  /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256  *
1257  * CHICM = 0 (slave mode, 8 kHz frame rate)
1258  * IR = give immediate CHI status interrupt
1259  * EN = give CHI status interrupt upon change
1260  */
1261  *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262  } else {
1263  /* Setup DBRI for CHI Master - generate clock, FS
1264  *
1265  * BPF = bits per 8 kHz frame
1266  * 12.288 MHz / CHICM_divisor = clock rate
1267  * FD = 1 - drive CHIFS on rising edge of CHICK
1268  */
1269  int clockrate = bits_per_frame * 8;
1270  int divisor = 12288 / clockrate;
1271 
1272  if (divisor > 255 || divisor * clockrate != 12288)
1273  printk(KERN_ERR "DBRI: illegal bits_per_frame "
1274  "in setup_chi\n");
1275 
1276  *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1277  | D_CHI_BPF(bits_per_frame));
1278  }
1279 
1280  dbri->chi_bpf = bits_per_frame;
1281 
1282  /* CHI Data Mode
1283  *
1284  * RCE = 0 - receive on falling edge of CHICK
1285  * XCE = 1 - transmit on rising edge of CHICK
1286  * XEN = 1 - enable transmitter
1287  * REN = 1 - enable receiver
1288  */
1289 
1290  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291  *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1292  *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1293 
1294  dbri_cmdsend(dbri, cmd, 4);
1295 }
1296 
1297 /*
1298 ****************************************************************************
1299 *********************** CS4215 audio codec management **********************
1300 ****************************************************************************
1301 
1302 In the standard SPARC audio configuration, the CS4215 codec is attached
1303 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1304 
1305  * Lock must not be held before calling it.
1306 
1307 */
1308 static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1309 {
1310  unsigned long flags;
1311 
1312  spin_lock_irqsave(&dbri->lock, flags);
1313  /*
1314  * Data mode:
1315  * Pipe 4: Send timeslots 1-4 (audio data)
1316  * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1317  * Pipe 6: Receive timeslots 1-4 (audio data)
1318  * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1319  * interrupt, and the rest of the data (slot 5 and 8) is
1320  * not relevant for us (only for doublechecking).
1321  *
1322  * Control mode:
1323  * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1324  * Pipe 18: Receive timeslot 1 (clb).
1325  * Pipe 19: Receive timeslot 7 (version).
1326  */
1327 
1328  setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1329  setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1330  setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1331  setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332 
1333  setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1334  setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335  setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1336  spin_unlock_irqrestore(&dbri->lock, flags);
1337 
1338  dbri_cmdwait(dbri);
1339 }
1340 
1341 static __devinit int cs4215_init_data(struct cs4215 *mm)
1342 {
1343  /*
1344  * No action, memory resetting only.
1345  *
1346  * Data Time Slot 5-8
1347  * Speaker,Line and Headphone enable. Gain set to the half.
1348  * Input is mike.
1349  */
1350  mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1351  mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1352  mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1353  mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1354 
1355  /*
1356  * Control Time Slot 1-4
1357  * 0: Default I/O voltage scale
1358  * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1359  * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1360  * 3: Tests disabled
1361  */
1362  mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1363  mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1364  mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1365  mm->ctrl[3] = 0;
1366 
1367  mm->status = 0;
1368  mm->version = 0xff;
1369  mm->precision = 8; /* For ULAW */
1370  mm->channels = 1;
1371 
1372  return 0;
1373 }
1374 
1375 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1376 {
1377  if (muted) {
1378  dbri->mm.data[0] |= 63;
1379  dbri->mm.data[1] |= 63;
1380  dbri->mm.data[2] &= ~15;
1381  dbri->mm.data[3] &= ~15;
1382  } else {
1383  /* Start by setting the playback attenuation. */
1384  struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1385  int left_gain = info->left_gain & 0x3f;
1386  int right_gain = info->right_gain & 0x3f;
1387 
1388  dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1389  dbri->mm.data[1] &= ~0x3f;
1390  dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1391  dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1392 
1393  /* Now set the recording gain. */
1394  info = &dbri->stream_info[DBRI_REC];
1395  left_gain = info->left_gain & 0xf;
1396  right_gain = info->right_gain & 0xf;
1397  dbri->mm.data[2] |= CS4215_LG(left_gain);
1398  dbri->mm.data[3] |= CS4215_RG(right_gain);
1399  }
1400 
1401  xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1402 }
1403 
1404 /*
1405  * Set the CS4215 to data mode.
1406  */
1407 static void cs4215_open(struct snd_dbri *dbri)
1408 {
1409  int data_width;
1410  u32 tmp;
1411  unsigned long flags;
1412 
1413  dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1414  dbri->mm.channels, dbri->mm.precision);
1415 
1416  /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1417  * to make sure this takes. This avoids clicking noises.
1418  */
1419 
1420  cs4215_setdata(dbri, 1);
1421  udelay(125);
1422 
1423  /*
1424  * Data mode:
1425  * Pipe 4: Send timeslots 1-4 (audio data)
1426  * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1427  * Pipe 6: Receive timeslots 1-4 (audio data)
1428  * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1429  * interrupt, and the rest of the data (slot 5 and 8) is
1430  * not relevant for us (only for doublechecking).
1431  *
1432  * Just like in control mode, the time slots are all offset by eight
1433  * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1434  * even if it's the CHI master. Don't ask me...
1435  */
1436  spin_lock_irqsave(&dbri->lock, flags);
1437  tmp = sbus_readl(dbri->regs + REG0);
1438  tmp &= ~(D_C); /* Disable CHI */
1439  sbus_writel(tmp, dbri->regs + REG0);
1440 
1441  /* Switch CS4215 to data mode - set PIO3 to 1 */
1443  (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1444 
1445  reset_chi(dbri, CHIslave, 128);
1446 
1447  /* Note: this next doesn't work for 8-bit stereo, because the two
1448  * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1449  * (See CS4215 datasheet Fig 15)
1450  *
1451  * DBRI non-contiguous mode would be required to make this work.
1452  */
1453  data_width = dbri->mm.channels * dbri->mm.precision;
1454 
1455  link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1456  link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1457  link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1458  link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1459 
1460  /* FIXME: enable CHI after _setdata? */
1461  tmp = sbus_readl(dbri->regs + REG0);
1462  tmp |= D_C; /* Enable CHI */
1463  sbus_writel(tmp, dbri->regs + REG0);
1464  spin_unlock_irqrestore(&dbri->lock, flags);
1465 
1466  cs4215_setdata(dbri, 0);
1467 }
1468 
1469 /*
1470  * Send the control information (i.e. audio format)
1471  */
1472 static int cs4215_setctrl(struct snd_dbri *dbri)
1473 {
1474  int i, val;
1475  u32 tmp;
1476  unsigned long flags;
1477 
1478  /* FIXME - let the CPU do something useful during these delays */
1479 
1480  /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1481  * to make sure this takes. This avoids clicking noises.
1482  */
1483  cs4215_setdata(dbri, 1);
1484  udelay(125);
1485 
1486  /*
1487  * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1488  * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1489  */
1490  val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1491  sbus_writel(val, dbri->regs + REG2);
1492  dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1493  udelay(34);
1494 
1495  /* In Control mode, the CS4215 is a slave device, so the DBRI must
1496  * operate as CHI master, supplying clocking and frame synchronization.
1497  *
1498  * In Data mode, however, the CS4215 must be CHI master to insure
1499  * that its data stream is synchronous with its codec.
1500  *
1501  * The upshot of all this? We start by putting the DBRI into master
1502  * mode, program the CS4215 in Control mode, then switch the CS4215
1503  * into Data mode and put the DBRI into slave mode. Various timing
1504  * requirements must be observed along the way.
1505  *
1506  * Oh, and one more thing, on a SPARCStation 20 (and maybe
1507  * others?), the addressing of the CS4215's time slots is
1508  * offset by eight bits, so we add eight to all the "cycle"
1509  * values in the Define Time Slot (DTS) commands. This is
1510  * done in hardware by a TI 248 that delays the DBRI->4215
1511  * frame sync signal by eight clock cycles. Anybody know why?
1512  */
1513  spin_lock_irqsave(&dbri->lock, flags);
1514  tmp = sbus_readl(dbri->regs + REG0);
1515  tmp &= ~D_C; /* Disable CHI */
1516  sbus_writel(tmp, dbri->regs + REG0);
1517 
1518  reset_chi(dbri, CHImaster, 128);
1519 
1520  /*
1521  * Control mode:
1522  * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1523  * Pipe 18: Receive timeslot 1 (clb).
1524  * Pipe 19: Receive timeslot 7 (version).
1525  */
1526 
1527  link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1528  link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1529  link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1530  spin_unlock_irqrestore(&dbri->lock, flags);
1531 
1532  /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1533  dbri->mm.ctrl[0] &= ~CS4215_CLB;
1534  xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1535 
1536  spin_lock_irqsave(&dbri->lock, flags);
1537  tmp = sbus_readl(dbri->regs + REG0);
1538  tmp |= D_C; /* Enable CHI */
1539  sbus_writel(tmp, dbri->regs + REG0);
1540  spin_unlock_irqrestore(&dbri->lock, flags);
1541 
1542  for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1544 
1545  if (i == 0) {
1546  dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1547  dbri->mm.status);
1548  return -1;
1549  }
1550 
1551  /* Disable changes to our copy of the version number, as we are about
1552  * to leave control mode.
1553  */
1554  recv_fixed(dbri, 19, NULL);
1555 
1556  /* Terminate CS4215 control mode - data sheet says
1557  * "Set CLB=1 and send two more frames of valid control info"
1558  */
1559  dbri->mm.ctrl[0] |= CS4215_CLB;
1560  xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1561 
1562  /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1563  udelay(250);
1564 
1565  cs4215_setdata(dbri, 0);
1566 
1567  return 0;
1568 }
1569 
1570 /*
1571  * Setup the codec with the sampling rate, audio format and number of
1572  * channels.
1573  * As part of the process we resend the settings for the data
1574  * timeslots as well.
1575  */
1576 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1577  snd_pcm_format_t format, unsigned int channels)
1578 {
1579  int freq_idx;
1580  int ret = 0;
1581 
1582  /* Lookup index for this rate */
1583  for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1584  if (CS4215_FREQ[freq_idx].freq == rate)
1585  break;
1586  }
1587  if (CS4215_FREQ[freq_idx].freq != rate) {
1588  printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1589  return -1;
1590  }
1591 
1592  switch (format) {
1594  dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1595  dbri->mm.precision = 8;
1596  break;
1598  dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1599  dbri->mm.precision = 8;
1600  break;
1601  case SNDRV_PCM_FORMAT_U8:
1602  dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1603  dbri->mm.precision = 8;
1604  break;
1606  dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1607  dbri->mm.precision = 16;
1608  break;
1609  default:
1610  printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1611  return -1;
1612  }
1613 
1614  /* Add rate parameters */
1615  dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1616  dbri->mm.ctrl[2] = CS4215_XCLK |
1617  CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1618 
1619  dbri->mm.channels = channels;
1620  if (channels == 2)
1621  dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1622 
1623  ret = cs4215_setctrl(dbri);
1624  if (ret == 0)
1625  cs4215_open(dbri); /* set codec to data mode */
1626 
1627  return ret;
1628 }
1629 
1630 /*
1631  *
1632  */
1633 static __devinit int cs4215_init(struct snd_dbri *dbri)
1634 {
1635  u32 reg2 = sbus_readl(dbri->regs + REG2);
1636  dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1637 
1638  /* Look for the cs4215 chips */
1639  if (reg2 & D_PIO2) {
1640  dprintk(D_MM, "Onboard CS4215 detected\n");
1641  dbri->mm.onboard = 1;
1642  }
1643  if (reg2 & D_PIO0) {
1644  dprintk(D_MM, "Speakerbox detected\n");
1645  dbri->mm.onboard = 0;
1646 
1647  if (reg2 & D_PIO2) {
1648  printk(KERN_INFO "DBRI: Using speakerbox / "
1649  "ignoring onboard mmcodec.\n");
1650  sbus_writel(D_ENPIO2, dbri->regs + REG2);
1651  }
1652  }
1653 
1654  if (!(reg2 & (D_PIO0 | D_PIO2))) {
1655  printk(KERN_ERR "DBRI: no mmcodec found.\n");
1656  return -EIO;
1657  }
1658 
1659  cs4215_setup_pipes(dbri);
1660  cs4215_init_data(&dbri->mm);
1661 
1662  /* Enable capture of the status & version timeslots. */
1663  recv_fixed(dbri, 18, &dbri->mm.status);
1664  recv_fixed(dbri, 19, &dbri->mm.version);
1665 
1666  dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1667  if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1668  dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1669  dbri->mm.offset);
1670  return -EIO;
1671  }
1672  dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1673 
1674  return 0;
1675 }
1676 
1677 /*
1678 ****************************************************************************
1679 *************************** DBRI interrupt handler *************************
1680 ****************************************************************************
1681 
1682 The DBRI communicates with the CPU mainly via a circular interrupt
1683 buffer. When an interrupt is signaled, the CPU walks through the
1684 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1685 Complicated interrupts are handled by dedicated functions (which
1686 appear first in this file). Any pending interrupts can be serviced by
1687 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1688 interrupts are disabled.
1689 
1690 */
1691 
1692 /* xmit_descs()
1693  *
1694  * Starts transmitting the current TD's for recording/playing.
1695  * For playback, ALSA has filled the DMA memory with new data (we hope).
1696  */
1697 static void xmit_descs(struct snd_dbri *dbri)
1698 {
1699  struct dbri_streaminfo *info;
1700  s32 *cmd;
1701  unsigned long flags;
1702  int first_td;
1703 
1704  if (dbri == NULL)
1705  return; /* Disabled */
1706 
1707  info = &dbri->stream_info[DBRI_REC];
1708  spin_lock_irqsave(&dbri->lock, flags);
1709 
1710  if (info->pipe >= 0) {
1711  first_td = dbri->pipes[info->pipe].first_desc;
1712 
1713  dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1714 
1715  /* Stream could be closed by the time we run. */
1716  if (first_td >= 0) {
1717  cmd = dbri_cmdlock(dbri, 2);
1718  *(cmd++) = DBRI_CMD(D_SDP, 0,
1719  dbri->pipes[info->pipe].sdp
1720  | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721  *(cmd++) = dbri->dma_dvma +
1722  dbri_dma_off(desc, first_td);
1723  dbri_cmdsend(dbri, cmd, 2);
1724 
1725  /* Reset our admin of the pipe. */
1726  dbri->pipes[info->pipe].desc = first_td;
1727  }
1728  }
1729 
1730  info = &dbri->stream_info[DBRI_PLAY];
1731 
1732  if (info->pipe >= 0) {
1733  first_td = dbri->pipes[info->pipe].first_desc;
1734 
1735  dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1736 
1737  /* Stream could be closed by the time we run. */
1738  if (first_td >= 0) {
1739  cmd = dbri_cmdlock(dbri, 2);
1740  *(cmd++) = DBRI_CMD(D_SDP, 0,
1741  dbri->pipes[info->pipe].sdp
1742  | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1743  *(cmd++) = dbri->dma_dvma +
1744  dbri_dma_off(desc, first_td);
1745  dbri_cmdsend(dbri, cmd, 2);
1746 
1747  /* Reset our admin of the pipe. */
1748  dbri->pipes[info->pipe].desc = first_td;
1749  }
1750  }
1751 
1752  spin_unlock_irqrestore(&dbri->lock, flags);
1753 }
1754 
1755 /* transmission_complete_intr()
1756  *
1757  * Called by main interrupt handler when DBRI signals transmission complete
1758  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1759  *
1760  * Walks through the pipe's list of transmit buffer descriptors and marks
1761  * them as available. Stops when the first descriptor is found without
1762  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1763  *
1764  * The DMA buffers are not released. They form a ring buffer and
1765  * they are filled by ALSA while others are transmitted by DMA.
1766  *
1767  */
1768 
1769 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1770 {
1771  struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1772  int td = dbri->pipes[pipe].desc;
1773  int status;
1774 
1775  while (td >= 0) {
1776  if (td >= DBRI_NO_DESCS) {
1777  printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1778  return;
1779  }
1780 
1781  status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1782  if (!(status & DBRI_TD_TBC))
1783  break;
1784 
1785  dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1786 
1787  dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1788  info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1789 
1790  td = dbri->next_desc[td];
1791  dbri->pipes[pipe].desc = td;
1792  }
1793 
1794  /* Notify ALSA */
1795  spin_unlock(&dbri->lock);
1797  spin_lock(&dbri->lock);
1798 }
1799 
1800 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1801 {
1802  struct dbri_streaminfo *info;
1803  int rd = dbri->pipes[pipe].desc;
1804  s32 status;
1805 
1806  if (rd < 0 || rd >= DBRI_NO_DESCS) {
1807  printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1808  return;
1809  }
1810 
1811  dbri->pipes[pipe].desc = dbri->next_desc[rd];
1812  status = dbri->dma->desc[rd].word1;
1813  dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1814 
1815  info = &dbri->stream_info[DBRI_REC];
1816  info->offset += DBRI_RD_CNT(status);
1817 
1818  /* FIXME: Check status */
1819 
1820  dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1821  rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1822 
1823  /* Notify ALSA */
1824  spin_unlock(&dbri->lock);
1826  spin_lock(&dbri->lock);
1827 }
1828 
1829 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1830 {
1831  int val = D_INTR_GETVAL(x);
1832  int channel = D_INTR_GETCHAN(x);
1833  int command = D_INTR_GETCMD(x);
1834  int code = D_INTR_GETCODE(x);
1835 #ifdef DBRI_DEBUG
1836  int rval = D_INTR_GETRVAL(x);
1837 #endif
1838 
1839  if (channel == D_INTR_CMD) {
1840  dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1841  cmds[command], val);
1842  } else {
1843  dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1844  channel, code, rval);
1845  }
1846 
1847  switch (code) {
1848  case D_INTR_CMDI:
1849  if (command != D_WAIT)
1850  printk(KERN_ERR "DBRI: Command read interrupt\n");
1851  break;
1852  case D_INTR_BRDY:
1853  reception_complete_intr(dbri, channel);
1854  break;
1855  case D_INTR_XCMP:
1856  case D_INTR_MINT:
1857  transmission_complete_intr(dbri, channel);
1858  break;
1859  case D_INTR_UNDR:
1860  /* UNDR - Transmission underrun
1861  * resend SDP command with clear pipe bit (C) set
1862  */
1863  {
1864  /* FIXME: do something useful in case of underrun */
1865  printk(KERN_ERR "DBRI: Underrun error\n");
1866 #if 0
1867  s32 *cmd;
1868  int pipe = channel;
1869  int td = dbri->pipes[pipe].desc;
1870 
1871  dbri->dma->desc[td].word4 = 0;
1872  cmd = dbri_cmdlock(dbri, NoGetLock);
1873  *(cmd++) = DBRI_CMD(D_SDP, 0,
1874  dbri->pipes[pipe].sdp
1875  | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1876  *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1877  dbri_cmdsend(dbri, cmd);
1878 #endif
1879  }
1880  break;
1881  case D_INTR_FXDT:
1882  /* FXDT - Fixed data change */
1883  if (dbri->pipes[channel].sdp & D_SDP_MSB)
1884  val = reverse_bytes(val, dbri->pipes[channel].length);
1885 
1886  if (dbri->pipes[channel].recv_fixed_ptr)
1887  *(dbri->pipes[channel].recv_fixed_ptr) = val;
1888  break;
1889  default:
1890  if (channel != D_INTR_CMD)
1892  "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1893  }
1894 }
1895 
1896 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1897  * buffer until it finds a zero word (indicating nothing more to do
1898  * right now). Non-zero words require processing and are handed off
1899  * to dbri_process_one_interrupt AFTER advancing the pointer.
1900  */
1901 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1902 {
1903  s32 x;
1904 
1905  while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1906  dbri->dma->intr[dbri->dbri_irqp] = 0;
1907  dbri->dbri_irqp++;
1908  if (dbri->dbri_irqp == DBRI_INT_BLK)
1909  dbri->dbri_irqp = 1;
1910 
1911  dbri_process_one_interrupt(dbri, x);
1912  }
1913 }
1914 
1915 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1916 {
1917  struct snd_dbri *dbri = dev_id;
1918  static int errcnt = 0;
1919  int x;
1920 
1921  if (dbri == NULL)
1922  return IRQ_NONE;
1923  spin_lock(&dbri->lock);
1924 
1925  /*
1926  * Read it, so the interrupt goes away.
1927  */
1928  x = sbus_readl(dbri->regs + REG1);
1929 
1930  if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1931  u32 tmp;
1932 
1933  if (x & D_MRR)
1935  "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1936  x);
1937  if (x & D_MLE)
1939  "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1940  x);
1941  if (x & D_LBG)
1943  "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1944  if (x & D_MBE)
1946  "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1947 
1948  /* Some of these SBus errors cause the chip's SBus circuitry
1949  * to be disabled, so just re-enable and try to keep going.
1950  *
1951  * The only one I've seen is MRR, which will be triggered
1952  * if you let a transmit pipe underrun, then try to CDP it.
1953  *
1954  * If these things persist, we reset the chip.
1955  */
1956  if ((++errcnt) % 10 == 0) {
1957  dprintk(D_INT, "Interrupt errors exceeded.\n");
1958  dbri_reset(dbri);
1959  } else {
1960  tmp = sbus_readl(dbri->regs + REG0);
1961  tmp &= ~(D_D);
1962  sbus_writel(tmp, dbri->regs + REG0);
1963  }
1964  }
1965 
1966  dbri_process_interrupt_buffer(dbri);
1967 
1968  spin_unlock(&dbri->lock);
1969 
1970  return IRQ_HANDLED;
1971 }
1972 
1973 /****************************************************************************
1974  PCM Interface
1975 ****************************************************************************/
1976 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1977  .info = SNDRV_PCM_INFO_MMAP |
1982  .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1987  .rate_min = 5512,
1988  .rate_max = 48000,
1989  .channels_min = 1,
1990  .channels_max = 2,
1991  .buffer_bytes_max = 64 * 1024,
1992  .period_bytes_min = 1,
1993  .period_bytes_max = DBRI_TD_MAXCNT,
1994  .periods_min = 1,
1995  .periods_max = 1024,
1996 };
1997 
1998 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1999  struct snd_pcm_hw_rule *rule)
2000 {
2001  struct snd_interval *c = hw_param_interval(params,
2003  struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2004  struct snd_mask fmt;
2005 
2006  snd_mask_any(&fmt);
2007  if (c->min > 1) {
2008  fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2009  return snd_mask_refine(f, &fmt);
2010  }
2011  return 0;
2012 }
2013 
2014 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2015  struct snd_pcm_hw_rule *rule)
2016 {
2017  struct snd_interval *c = hw_param_interval(params,
2019  struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2020  struct snd_interval ch;
2021 
2022  snd_interval_any(&ch);
2023  if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2024  ch.min = 1;
2025  ch.max = 1;
2026  ch.integer = 1;
2027  return snd_interval_refine(c, &ch);
2028  }
2029  return 0;
2030 }
2031 
2032 static int snd_dbri_open(struct snd_pcm_substream *substream)
2033 {
2034  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2035  struct snd_pcm_runtime *runtime = substream->runtime;
2036  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2037  unsigned long flags;
2038 
2039  dprintk(D_USR, "open audio output.\n");
2040  runtime->hw = snd_dbri_pcm_hw;
2041 
2042  spin_lock_irqsave(&dbri->lock, flags);
2043  info->substream = substream;
2044  info->offset = 0;
2045  info->dvma_buffer = 0;
2046  info->pipe = -1;
2047  spin_unlock_irqrestore(&dbri->lock, flags);
2048 
2050  snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2051  -1);
2053  snd_hw_rule_channels, NULL,
2055  -1);
2056 
2057  cs4215_open(dbri);
2058 
2059  return 0;
2060 }
2061 
2062 static int snd_dbri_close(struct snd_pcm_substream *substream)
2063 {
2064  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2065  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066 
2067  dprintk(D_USR, "close audio output.\n");
2068  info->substream = NULL;
2069  info->offset = 0;
2070 
2071  return 0;
2072 }
2073 
2074 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2075  struct snd_pcm_hw_params *hw_params)
2076 {
2077  struct snd_pcm_runtime *runtime = substream->runtime;
2078  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2079  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2080  int direction;
2081  int ret;
2082 
2083  /* set sampling rate, audio format and number of channels */
2084  ret = cs4215_prepare(dbri, params_rate(hw_params),
2085  params_format(hw_params),
2086  params_channels(hw_params));
2087  if (ret != 0)
2088  return ret;
2089 
2090  if ((ret = snd_pcm_lib_malloc_pages(substream,
2091  params_buffer_bytes(hw_params))) < 0) {
2092  printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2093  return ret;
2094  }
2095 
2096  /* hw_params can get called multiple times. Only map the DMA once.
2097  */
2098  if (info->dvma_buffer == 0) {
2099  if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2100  direction = DMA_TO_DEVICE;
2101  else
2102  direction = DMA_FROM_DEVICE;
2103 
2104  info->dvma_buffer =
2105  dma_map_single(&dbri->op->dev,
2106  runtime->dma_area,
2107  params_buffer_bytes(hw_params),
2108  direction);
2109  }
2110 
2111  direction = params_buffer_bytes(hw_params);
2112  dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2113  direction, info->dvma_buffer);
2114  return 0;
2115 }
2116 
2117 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2118 {
2119  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2120  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2121  int direction;
2122 
2123  dprintk(D_USR, "hw_free.\n");
2124 
2125  /* hw_free can get called multiple times. Only unmap the DMA once.
2126  */
2127  if (info->dvma_buffer) {
2128  if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2129  direction = DMA_TO_DEVICE;
2130  else
2131  direction = DMA_FROM_DEVICE;
2132 
2133  dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2134  substream->runtime->buffer_size, direction);
2135  info->dvma_buffer = 0;
2136  }
2137  if (info->pipe != -1) {
2138  reset_pipe(dbri, info->pipe);
2139  info->pipe = -1;
2140  }
2141 
2142  return snd_pcm_lib_free_pages(substream);
2143 }
2144 
2145 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2146 {
2147  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2148  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2149  int ret;
2150 
2151  info->size = snd_pcm_lib_buffer_bytes(substream);
2152  if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2153  info->pipe = 4; /* Send pipe */
2154  else
2155  info->pipe = 6; /* Receive pipe */
2156 
2157  spin_lock_irq(&dbri->lock);
2158  info->offset = 0;
2159 
2160  /* Setup the all the transmit/receive descriptors to cover the
2161  * whole DMA buffer.
2162  */
2163  ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2164  snd_pcm_lib_period_bytes(substream));
2165 
2166  spin_unlock_irq(&dbri->lock);
2167 
2168  dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2169  return ret;
2170 }
2171 
2172 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2173 {
2174  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2175  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2176  int ret = 0;
2177 
2178  switch (cmd) {
2180  dprintk(D_USR, "start audio, period is %d bytes\n",
2181  (int)snd_pcm_lib_period_bytes(substream));
2182  /* Re-submit the TDs. */
2183  xmit_descs(dbri);
2184  break;
2186  dprintk(D_USR, "stop audio.\n");
2187  reset_pipe(dbri, info->pipe);
2188  break;
2189  default:
2190  ret = -EINVAL;
2191  }
2192 
2193  return ret;
2194 }
2195 
2196 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2197 {
2198  struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2199  struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2201 
2202  ret = bytes_to_frames(substream->runtime, info->offset)
2203  % substream->runtime->buffer_size;
2204  dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2205  ret, substream->runtime->buffer_size);
2206  return ret;
2207 }
2208 
2209 static struct snd_pcm_ops snd_dbri_ops = {
2210  .open = snd_dbri_open,
2211  .close = snd_dbri_close,
2212  .ioctl = snd_pcm_lib_ioctl,
2213  .hw_params = snd_dbri_hw_params,
2214  .hw_free = snd_dbri_hw_free,
2215  .prepare = snd_dbri_prepare,
2216  .trigger = snd_dbri_trigger,
2217  .pointer = snd_dbri_pointer,
2218 };
2219 
2220 static int __devinit snd_dbri_pcm(struct snd_card *card)
2221 {
2222  struct snd_pcm *pcm;
2223  int err;
2224 
2225  if ((err = snd_pcm_new(card,
2226  /* ID */ "sun_dbri",
2227  /* device */ 0,
2228  /* playback count */ 1,
2229  /* capture count */ 1, &pcm)) < 0)
2230  return err;
2231 
2232  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2233  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2234 
2235  pcm->private_data = card->private_data;
2236  pcm->info_flags = 0;
2237  strcpy(pcm->name, card->shortname);
2238 
2242  64 * 1024, 64 * 1024)) < 0)
2243  return err;
2244 
2245  return 0;
2246 }
2247 
2248 /*****************************************************************************
2249  Mixer interface
2250 *****************************************************************************/
2251 
2252 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2253  struct snd_ctl_elem_info *uinfo)
2254 {
2256  uinfo->count = 2;
2257  uinfo->value.integer.min = 0;
2258  if (kcontrol->private_value == DBRI_PLAY)
2259  uinfo->value.integer.max = DBRI_MAX_VOLUME;
2260  else
2261  uinfo->value.integer.max = DBRI_MAX_GAIN;
2262  return 0;
2263 }
2264 
2265 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2266  struct snd_ctl_elem_value *ucontrol)
2267 {
2268  struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2269  struct dbri_streaminfo *info;
2270 
2271  if (snd_BUG_ON(!dbri))
2272  return -EINVAL;
2273  info = &dbri->stream_info[kcontrol->private_value];
2274 
2275  ucontrol->value.integer.value[0] = info->left_gain;
2276  ucontrol->value.integer.value[1] = info->right_gain;
2277  return 0;
2278 }
2279 
2280 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2281  struct snd_ctl_elem_value *ucontrol)
2282 {
2283  struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2284  struct dbri_streaminfo *info =
2285  &dbri->stream_info[kcontrol->private_value];
2286  unsigned int vol[2];
2287  int changed = 0;
2288 
2289  vol[0] = ucontrol->value.integer.value[0];
2290  vol[1] = ucontrol->value.integer.value[1];
2291  if (kcontrol->private_value == DBRI_PLAY) {
2292  if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2293  return -EINVAL;
2294  } else {
2295  if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2296  return -EINVAL;
2297  }
2298 
2299  if (info->left_gain != vol[0]) {
2300  info->left_gain = vol[0];
2301  changed = 1;
2302  }
2303  if (info->right_gain != vol[1]) {
2304  info->right_gain = vol[1];
2305  changed = 1;
2306  }
2307  if (changed) {
2308  /* First mute outputs, and wait 1/8000 sec (125 us)
2309  * to make sure this takes. This avoids clicking noises.
2310  */
2311  cs4215_setdata(dbri, 1);
2312  udelay(125);
2313  cs4215_setdata(dbri, 0);
2314  }
2315  return changed;
2316 }
2317 
2318 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2319  struct snd_ctl_elem_info *uinfo)
2320 {
2321  int mask = (kcontrol->private_value >> 16) & 0xff;
2322 
2323  uinfo->type = (mask == 1) ?
2325  uinfo->count = 1;
2326  uinfo->value.integer.min = 0;
2327  uinfo->value.integer.max = mask;
2328  return 0;
2329 }
2330 
2331 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2332  struct snd_ctl_elem_value *ucontrol)
2333 {
2334  struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2335  int elem = kcontrol->private_value & 0xff;
2336  int shift = (kcontrol->private_value >> 8) & 0xff;
2337  int mask = (kcontrol->private_value >> 16) & 0xff;
2338  int invert = (kcontrol->private_value >> 24) & 1;
2339 
2340  if (snd_BUG_ON(!dbri))
2341  return -EINVAL;
2342 
2343  if (elem < 4)
2344  ucontrol->value.integer.value[0] =
2345  (dbri->mm.data[elem] >> shift) & mask;
2346  else
2347  ucontrol->value.integer.value[0] =
2348  (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2349 
2350  if (invert == 1)
2351  ucontrol->value.integer.value[0] =
2352  mask - ucontrol->value.integer.value[0];
2353  return 0;
2354 }
2355 
2356 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2357  struct snd_ctl_elem_value *ucontrol)
2358 {
2359  struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2360  int elem = kcontrol->private_value & 0xff;
2361  int shift = (kcontrol->private_value >> 8) & 0xff;
2362  int mask = (kcontrol->private_value >> 16) & 0xff;
2363  int invert = (kcontrol->private_value >> 24) & 1;
2364  int changed = 0;
2365  unsigned short val;
2366 
2367  if (snd_BUG_ON(!dbri))
2368  return -EINVAL;
2369 
2370  val = (ucontrol->value.integer.value[0] & mask);
2371  if (invert == 1)
2372  val = mask - val;
2373  val <<= shift;
2374 
2375  if (elem < 4) {
2376  dbri->mm.data[elem] = (dbri->mm.data[elem] &
2377  ~(mask << shift)) | val;
2378  changed = (val != dbri->mm.data[elem]);
2379  } else {
2380  dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2381  ~(mask << shift)) | val;
2382  changed = (val != dbri->mm.ctrl[elem - 4]);
2383  }
2384 
2385  dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2386  "mixer-value=%ld, mm-value=0x%x\n",
2387  mask, changed, ucontrol->value.integer.value[0],
2388  dbri->mm.data[elem & 3]);
2389 
2390  if (changed) {
2391  /* First mute outputs, and wait 1/8000 sec (125 us)
2392  * to make sure this takes. This avoids clicking noises.
2393  */
2394  cs4215_setdata(dbri, 1);
2395  udelay(125);
2396  cs4215_setdata(dbri, 0);
2397  }
2398  return changed;
2399 }
2400 
2401 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2402  timeslots. Shift is the bit offset in the timeslot, mask defines the
2403  number of bits. invert is a boolean for use with attenuation.
2404  */
2405 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2406 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2407  .info = snd_cs4215_info_single, \
2408  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2409  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2410  ((invert) << 24) },
2411 
2412 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2413  {
2414  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2415  .name = "Playback Volume",
2416  .info = snd_cs4215_info_volume,
2417  .get = snd_cs4215_get_volume,
2418  .put = snd_cs4215_put_volume,
2419  .private_value = DBRI_PLAY,
2420  },
2421  CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2422  CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2423  CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2424  {
2425  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2426  .name = "Capture Volume",
2427  .info = snd_cs4215_info_volume,
2428  .get = snd_cs4215_get_volume,
2429  .put = snd_cs4215_put_volume,
2430  .private_value = DBRI_REC,
2431  },
2432  /* FIXME: mic/line switch */
2433  CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2434  CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2435  CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2436  CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2437 };
2438 
2439 static int __devinit snd_dbri_mixer(struct snd_card *card)
2440 {
2441  int idx, err;
2442  struct snd_dbri *dbri;
2443 
2444  if (snd_BUG_ON(!card || !card->private_data))
2445  return -EINVAL;
2446  dbri = card->private_data;
2447 
2448  strcpy(card->mixername, card->shortname);
2449 
2450  for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2451  err = snd_ctl_add(card,
2452  snd_ctl_new1(&dbri_controls[idx], dbri));
2453  if (err < 0)
2454  return err;
2455  }
2456 
2457  for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2458  dbri->stream_info[idx].left_gain = 0;
2459  dbri->stream_info[idx].right_gain = 0;
2460  }
2461 
2462  return 0;
2463 }
2464 
2465 /****************************************************************************
2466  /proc interface
2467 ****************************************************************************/
2468 static void dbri_regs_read(struct snd_info_entry *entry,
2469  struct snd_info_buffer *buffer)
2470 {
2471  struct snd_dbri *dbri = entry->private_data;
2472 
2473  snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2474  snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2475  snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2476  snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2477 }
2478 
2479 #ifdef DBRI_DEBUG
2480 static void dbri_debug_read(struct snd_info_entry *entry,
2481  struct snd_info_buffer *buffer)
2482 {
2483  struct snd_dbri *dbri = entry->private_data;
2484  int pipe;
2485  snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2486 
2487  for (pipe = 0; pipe < 32; pipe++) {
2488  if (pipe_active(dbri, pipe)) {
2489  struct dbri_pipe *pptr = &dbri->pipes[pipe];
2490  snd_iprintf(buffer,
2491  "Pipe %d: %s SDP=0x%x desc=%d, "
2492  "len=%d next %d\n",
2493  pipe,
2494  (pptr->sdp & D_SDP_TO_SER) ? "output" :
2495  "input",
2496  pptr->sdp, pptr->desc,
2497  pptr->length, pptr->nextpipe);
2498  }
2499  }
2500 }
2501 #endif
2502 
2503 static void __devinit snd_dbri_proc(struct snd_card *card)
2504 {
2505  struct snd_dbri *dbri = card->private_data;
2506  struct snd_info_entry *entry;
2507 
2508  if (!snd_card_proc_new(card, "regs", &entry))
2509  snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2510 
2511 #ifdef DBRI_DEBUG
2512  if (!snd_card_proc_new(card, "debug", &entry)) {
2513  snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2514  entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2515  }
2516 #endif
2517 }
2518 
2519 /*
2520 ****************************************************************************
2521 **************************** Initialization ********************************
2522 ****************************************************************************
2523 */
2524 static void snd_dbri_free(struct snd_dbri *dbri);
2525 
2526 static int __devinit snd_dbri_create(struct snd_card *card,
2527  struct platform_device *op,
2528  int irq, int dev)
2529 {
2530  struct snd_dbri *dbri = card->private_data;
2531  int err;
2532 
2533  spin_lock_init(&dbri->lock);
2534  dbri->op = op;
2535  dbri->irq = irq;
2536 
2537  dbri->dma = dma_alloc_coherent(&op->dev,
2538  sizeof(struct dbri_dma),
2539  &dbri->dma_dvma, GFP_ATOMIC);
2540  if (!dbri->dma)
2541  return -ENOMEM;
2542  memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2543 
2544  dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2545  dbri->dma, dbri->dma_dvma);
2546 
2547  /* Map the registers into memory. */
2548  dbri->regs_size = resource_size(&op->resource[0]);
2549  dbri->regs = of_ioremap(&op->resource[0], 0,
2550  dbri->regs_size, "DBRI Registers");
2551  if (!dbri->regs) {
2552  printk(KERN_ERR "DBRI: could not allocate registers\n");
2553  dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2554  (void *)dbri->dma, dbri->dma_dvma);
2555  return -EIO;
2556  }
2557 
2558  err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2559  "DBRI audio", dbri);
2560  if (err) {
2561  printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2562  of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2563  dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2564  (void *)dbri->dma, dbri->dma_dvma);
2565  return err;
2566  }
2567 
2568  /* Do low level initialization of the DBRI and CS4215 chips */
2569  dbri_initialize(dbri);
2570  err = cs4215_init(dbri);
2571  if (err) {
2572  snd_dbri_free(dbri);
2573  return err;
2574  }
2575 
2576  return 0;
2577 }
2578 
2579 static void snd_dbri_free(struct snd_dbri *dbri)
2580 {
2581  dprintk(D_GEN, "snd_dbri_free\n");
2582  dbri_reset(dbri);
2583 
2584  if (dbri->irq)
2585  free_irq(dbri->irq, dbri);
2586 
2587  if (dbri->regs)
2588  of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2589 
2590  if (dbri->dma)
2591  dma_free_coherent(&dbri->op->dev,
2592  sizeof(struct dbri_dma),
2593  (void *)dbri->dma, dbri->dma_dvma);
2594 }
2595 
2596 static int __devinit dbri_probe(struct platform_device *op)
2597 {
2598  struct snd_dbri *dbri;
2599  struct resource *rp;
2600  struct snd_card *card;
2601  static int dev = 0;
2602  int irq;
2603  int err;
2604 
2605  if (dev >= SNDRV_CARDS)
2606  return -ENODEV;
2607  if (!enable[dev]) {
2608  dev++;
2609  return -ENOENT;
2610  }
2611 
2612  irq = op->archdata.irqs[0];
2613  if (irq <= 0) {
2614  printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2615  return -ENODEV;
2616  }
2617 
2618  err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2619  sizeof(struct snd_dbri), &card);
2620  if (err < 0)
2621  return err;
2622 
2623  strcpy(card->driver, "DBRI");
2624  strcpy(card->shortname, "Sun DBRI");
2625  rp = &op->resource[0];
2626  sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2627  card->shortname,
2628  rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2629 
2630  err = snd_dbri_create(card, op, irq, dev);
2631  if (err < 0) {
2632  snd_card_free(card);
2633  return err;
2634  }
2635 
2636  dbri = card->private_data;
2637  err = snd_dbri_pcm(card);
2638  if (err < 0)
2639  goto _err;
2640 
2641  err = snd_dbri_mixer(card);
2642  if (err < 0)
2643  goto _err;
2644 
2645  /* /proc file handling */
2646  snd_dbri_proc(card);
2647  dev_set_drvdata(&op->dev, card);
2648 
2649  err = snd_card_register(card);
2650  if (err < 0)
2651  goto _err;
2652 
2653  printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2654  dev, dbri->regs,
2655  dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2656  dev++;
2657 
2658  return 0;
2659 
2660 _err:
2661  snd_dbri_free(dbri);
2662  snd_card_free(card);
2663  return err;
2664 }
2665 
2666 static int __devexit dbri_remove(struct platform_device *op)
2667 {
2668  struct snd_card *card = dev_get_drvdata(&op->dev);
2669 
2670  snd_dbri_free(card->private_data);
2671  snd_card_free(card);
2672 
2673  dev_set_drvdata(&op->dev, NULL);
2674 
2675  return 0;
2676 }
2677 
2678 static const struct of_device_id dbri_match[] = {
2679  {
2680  .name = "SUNW,DBRIe",
2681  },
2682  {
2683  .name = "SUNW,DBRIf",
2684  },
2685  {},
2686 };
2687 
2688 MODULE_DEVICE_TABLE(of, dbri_match);
2689 
2690 static struct platform_driver dbri_sbus_driver = {
2691  .driver = {
2692  .name = "dbri",
2693  .owner = THIS_MODULE,
2694  .of_match_table = dbri_match,
2695  },
2696  .probe = dbri_probe,
2697  .remove = __devexit_p(dbri_remove),
2698 };
2699 
2700 module_platform_driver(dbri_sbus_driver);