Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
denali.c
Go to the documentation of this file.
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/wait.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/module.h>
29 
30 #include "denali.h"
31 
32 MODULE_LICENSE("GPL");
33 
34 /* We define a module parameter that allows the user to override
35  * the hardware and decide what timing mode should be used.
36  */
37 #define NAND_DEFAULT_TIMINGS -1
38 
39 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
40 module_param(onfi_timing_mode, int, S_IRUGO);
41 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
42  " -1 indicates use default timings");
43 
44 #define DENALI_NAND_NAME "denali-nand"
45 
46 /* We define a macro here that combines all interrupts this driver uses into
47  * a single constant value, for convenience. */
48 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
49  INTR_STATUS__ECC_TRANSACTION_DONE | \
50  INTR_STATUS__ECC_ERR | \
51  INTR_STATUS__PROGRAM_FAIL | \
52  INTR_STATUS__LOAD_COMP | \
53  INTR_STATUS__PROGRAM_COMP | \
54  INTR_STATUS__TIME_OUT | \
55  INTR_STATUS__ERASE_FAIL | \
56  INTR_STATUS__RST_COMP | \
57  INTR_STATUS__ERASE_COMP)
58 
59 /* indicates whether or not the internal value for the flash bank is
60  * valid or not */
61 #define CHIP_SELECT_INVALID -1
62 
63 #define SUPPORT_8BITECC 1
64 
65 /* This macro divides two integers and rounds fractional values up
66  * to the nearest integer value. */
67 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
68 
69 /* this macro allows us to convert from an MTD structure to our own
70  * device context (denali) structure.
71  */
72 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
73 
74 /* These constants are defined by the driver to enable common driver
75  * configuration options. */
76 #define SPARE_ACCESS 0x41
77 #define MAIN_ACCESS 0x42
78 #define MAIN_SPARE_ACCESS 0x43
79 
80 #define DENALI_READ 0
81 #define DENALI_WRITE 0x100
82 
83 /* types of device accesses. We can issue commands and get status */
84 #define COMMAND_CYCLE 0
85 #define ADDR_CYCLE 1
86 #define STATUS_CYCLE 2
87 
88 /* this is a helper macro that allows us to
89  * format the bank into the proper bits for the controller */
90 #define BANK(x) ((x) << 24)
91 
92 /* List of platforms this NAND controller has be integrated into */
93 static const struct pci_device_id denali_pci_ids[] = {
94  { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
95  { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
96  { /* end: all zeroes */ }
97 };
98 
99 /* forward declarations */
100 static void clear_interrupts(struct denali_nand_info *denali);
101 static uint32_t wait_for_irq(struct denali_nand_info *denali,
102  uint32_t irq_mask);
103 static void denali_irq_enable(struct denali_nand_info *denali,
105 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
106 
107 /* Certain operations for the denali NAND controller use
108  * an indexed mode to read/write data. The operation is
109  * performed by writing the address value of the command
110  * to the device memory followed by the data. This function
111  * abstracts this common operation.
112 */
113 static void index_addr(struct denali_nand_info *denali,
115 {
116  iowrite32(address, denali->flash_mem);
117  iowrite32(data, denali->flash_mem + 0x10);
118 }
119 
120 /* Perform an indexed read of the device */
121 static void index_addr_read_data(struct denali_nand_info *denali,
123 {
124  iowrite32(address, denali->flash_mem);
125  *pdata = ioread32(denali->flash_mem + 0x10);
126 }
127 
128 /* We need to buffer some data for some of the NAND core routines.
129  * The operations manage buffering that data. */
130 static void reset_buf(struct denali_nand_info *denali)
131 {
132  denali->buf.head = denali->buf.tail = 0;
133 }
134 
135 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
136 {
137  BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
138  denali->buf.buf[denali->buf.tail++] = byte;
139 }
140 
141 /* reads the status of the device */
142 static void read_status(struct denali_nand_info *denali)
143 {
144  uint32_t cmd = 0x0;
145 
146  /* initialize the data buffer to store status */
147  reset_buf(denali);
148 
149  cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
150  if (cmd)
151  write_byte_to_buf(denali, NAND_STATUS_WP);
152  else
153  write_byte_to_buf(denali, 0);
154 }
155 
156 /* resets a specific device connected to the core */
157 static void reset_bank(struct denali_nand_info *denali)
158 {
159  uint32_t irq_status = 0;
160  uint32_t irq_mask = INTR_STATUS__RST_COMP |
162 
163  clear_interrupts(denali);
164 
165  iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
166 
167  irq_status = wait_for_irq(denali, irq_mask);
168 
169  if (irq_status & INTR_STATUS__TIME_OUT)
170  dev_err(denali->dev, "reset bank failed.\n");
171 }
172 
173 /* Reset the flash controller */
174 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
175 {
176  uint32_t i;
177 
178  dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
179  __FILE__, __LINE__, __func__);
180 
181  for (i = 0 ; i < denali->max_banks; i++)
183  denali->flash_reg + INTR_STATUS(i));
184 
185  for (i = 0 ; i < denali->max_banks; i++) {
186  iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
187  while (!(ioread32(denali->flash_reg +
188  INTR_STATUS(i)) &
190  cpu_relax();
191  if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
193  dev_dbg(denali->dev,
194  "NAND Reset operation timed out on bank %d\n", i);
195  }
196 
197  for (i = 0; i < denali->max_banks; i++)
199  denali->flash_reg + INTR_STATUS(i));
200 
201  return PASS;
202 }
203 
204 /* this routine calculates the ONFI timing values for a given mode and
205  * programs the clocking register accordingly. The mode is determined by
206  * the get_onfi_nand_para routine.
207  */
208 static void nand_onfi_timing_set(struct denali_nand_info *denali,
209  uint16_t mode)
210 {
211  uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
212  uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
213  uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
214  uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
215  uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
216  uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
217  uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
218  uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
219  uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
220  uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
221  uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
222  uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
223 
224  uint16_t TclsRising = 1;
225  uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
226  uint16_t dv_window = 0;
227  uint16_t en_lo, en_hi;
228  uint16_t acc_clks;
229  uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
230 
231  dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
232  __FILE__, __LINE__, __func__);
233 
234  en_lo = CEIL_DIV(Trp[mode], CLK_X);
235  en_hi = CEIL_DIV(Treh[mode], CLK_X);
236 #if ONFI_BLOOM_TIME
237  if ((en_hi * CLK_X) < (Treh[mode] + 2))
238  en_hi++;
239 #endif
240 
241  if ((en_lo + en_hi) * CLK_X < Trc[mode])
242  en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
243 
244  if ((en_lo + en_hi) < CLK_MULTI)
245  en_lo += CLK_MULTI - en_lo - en_hi;
246 
247  while (dv_window < 8) {
248  data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
249 
250  data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
251 
252  data_invalid =
253  data_invalid_rhoh <
254  data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
255 
256  dv_window = data_invalid - Trea[mode];
257 
258  if (dv_window < 8)
259  en_lo++;
260  }
261 
262  acc_clks = CEIL_DIV(Trea[mode], CLK_X);
263 
264  while (((acc_clks * CLK_X) - Trea[mode]) < 3)
265  acc_clks++;
266 
267  if ((data_invalid - acc_clks * CLK_X) < 2)
268  dev_warn(denali->dev, "%s, Line %d: Warning!\n",
269  __FILE__, __LINE__);
270 
271  addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
272  re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
273  re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
274  we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
275  cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
276  if (!TclsRising)
277  cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
278  if (cs_cnt == 0)
279  cs_cnt = 1;
280 
281  if (Tcea[mode]) {
282  while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
283  cs_cnt++;
284  }
285 
286 #if MODE5_WORKAROUND
287  if (mode == 5)
288  acc_clks = 5;
289 #endif
290 
291  /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292  if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
293  (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
294  acc_clks = 6;
295 
296  iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
297  iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
298  iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
299  iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
300  iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
301  iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
302  iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
303  iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
304 }
305 
306 /* queries the NAND device to see what ONFI modes it supports. */
307 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
308 {
309  int i;
310  /* we needn't to do a reset here because driver has already
311  * reset all the banks before
312  * */
313  if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
315  return FAIL;
316 
317  for (i = 5; i > 0; i--) {
318  if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319  (0x01 << i))
320  break;
321  }
322 
323  nand_onfi_timing_set(denali, i);
324 
325  /* By now, all the ONFI devices we know support the page cache */
326  /* rw feature. So here we enable the pipeline_rw_ahead feature */
327  /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
328  /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
329 
330  return PASS;
331 }
332 
333 static void get_samsung_nand_para(struct denali_nand_info *denali,
335 {
336  if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
337  /* Set timing register values according to datasheet */
338  iowrite32(5, denali->flash_reg + ACC_CLKS);
339  iowrite32(20, denali->flash_reg + RE_2_WE);
340  iowrite32(12, denali->flash_reg + WE_2_RE);
341  iowrite32(14, denali->flash_reg + ADDR_2_DATA);
342  iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
343  iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
344  iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
345  }
346 }
347 
348 static void get_toshiba_nand_para(struct denali_nand_info *denali)
349 {
350  uint32_t tmp;
351 
352  /* Workaround to fix a controller bug which reports a wrong */
353  /* spare area size for some kind of Toshiba NAND device */
354  if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
355  (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
357  tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
359  iowrite32(tmp,
361 #if SUPPORT_15BITECC
362  iowrite32(15, denali->flash_reg + ECC_CORRECTION);
363 #elif SUPPORT_8BITECC
364  iowrite32(8, denali->flash_reg + ECC_CORRECTION);
365 #endif
366  }
367 }
368 
369 static void get_hynix_nand_para(struct denali_nand_info *denali,
370  uint8_t device_id)
371 {
372  uint32_t main_size, spare_size;
373 
374  switch (device_id) {
375  case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
376  case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
377  iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
378  iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
380  main_size = 4096 *
382  spare_size = 224 *
384  iowrite32(main_size,
386  iowrite32(spare_size,
388  iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
389 #if SUPPORT_15BITECC
390  iowrite32(15, denali->flash_reg + ECC_CORRECTION);
391 #elif SUPPORT_8BITECC
392  iowrite32(8, denali->flash_reg + ECC_CORRECTION);
393 #endif
394  break;
395  default:
396  dev_warn(denali->dev,
397  "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
398  "Will use default parameter values instead.\n",
399  device_id);
400  }
401 }
402 
403 /* determines how many NAND chips are connected to the controller. Note for
404  * Intel CE4100 devices we don't support more than one device.
405  */
406 static void find_valid_banks(struct denali_nand_info *denali)
407 {
408  uint32_t id[denali->max_banks];
409  int i;
410 
411  denali->total_used_banks = 1;
412  for (i = 0; i < denali->max_banks; i++) {
413  index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
414  index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
415  index_addr_read_data(denali,
416  (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
417 
418  dev_dbg(denali->dev,
419  "Return 1st ID for bank[%d]: %x\n", i, id[i]);
420 
421  if (i == 0) {
422  if (!(id[i] & 0x0ff))
423  break; /* WTF? */
424  } else {
425  if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
426  denali->total_used_banks++;
427  else
428  break;
429  }
430  }
431 
432  if (denali->platform == INTEL_CE4100) {
433  /* Platform limitations of the CE4100 device limit
434  * users to a single chip solution for NAND.
435  * Multichip support is not enabled.
436  */
437  if (denali->total_used_banks != 1) {
438  dev_err(denali->dev,
439  "Sorry, Intel CE4100 only supports "
440  "a single NAND device.\n");
441  BUG();
442  }
443  }
444  dev_dbg(denali->dev,
445  "denali->total_used_banks: %d\n", denali->total_used_banks);
446 }
447 
448 /*
449  * Use the configuration feature register to determine the maximum number of
450  * banks that the hardware supports.
451  */
452 static void detect_max_banks(struct denali_nand_info *denali)
453 {
455 
456  denali->max_banks = 2 << (features & FEATURES__N_BANKS);
457 }
458 
459 static void detect_partition_feature(struct denali_nand_info *denali)
460 {
461  /* For MRST platform, denali->fwblks represent the
462  * number of blocks firmware is taken,
463  * FW is in protect partition and MTD driver has no
464  * permission to access it. So let driver know how many
465  * blocks it can't touch.
466  * */
467  if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
468  if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
470  denali->fwblks =
471  ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
473  denali->blksperchip)
474  +
475  (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
477  } else
478  denali->fwblks = SPECTRA_START_BLOCK;
479  } else
480  denali->fwblks = SPECTRA_START_BLOCK;
481 }
482 
483 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
484 {
485  uint16_t status = PASS;
486  uint32_t id_bytes[5], addr;
487  uint8_t i, maf_id, device_id;
488 
489  dev_dbg(denali->dev,
490  "%s, Line %d, Function: %s\n",
491  __FILE__, __LINE__, __func__);
492 
493  /* Use read id method to get device ID and other
494  * params. For some NAND chips, controller can't
495  * report the correct device ID by reading from
496  * DEVICE_ID register
497  * */
498  addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
499  index_addr(denali, (uint32_t)addr | 0, 0x90);
500  index_addr(denali, (uint32_t)addr | 1, 0);
501  for (i = 0; i < 5; i++)
502  index_addr_read_data(denali, addr | 2, &id_bytes[i]);
503  maf_id = id_bytes[0];
504  device_id = id_bytes[1];
505 
506  if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
507  ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
508  if (FAIL == get_onfi_nand_para(denali))
509  return FAIL;
510  } else if (maf_id == 0xEC) { /* Samsung NAND */
511  get_samsung_nand_para(denali, device_id);
512  } else if (maf_id == 0x98) { /* Toshiba NAND */
513  get_toshiba_nand_para(denali);
514  } else if (maf_id == 0xAD) { /* Hynix NAND */
515  get_hynix_nand_para(denali, device_id);
516  }
517 
518  dev_info(denali->dev,
519  "Dump timing register values:"
520  "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
521  "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
522  "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
523  ioread32(denali->flash_reg + ACC_CLKS),
524  ioread32(denali->flash_reg + RE_2_WE),
525  ioread32(denali->flash_reg + RE_2_RE),
526  ioread32(denali->flash_reg + WE_2_RE),
527  ioread32(denali->flash_reg + ADDR_2_DATA),
528  ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
529  ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
530  ioread32(denali->flash_reg + CS_SETUP_CNT));
531 
532  find_valid_banks(denali);
533 
534  detect_partition_feature(denali);
535 
536  /* If the user specified to override the default timings
537  * with a specific ONFI mode, we apply those changes here.
538  */
539  if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
540  nand_onfi_timing_set(denali, onfi_timing_mode);
541 
542  return status;
543 }
544 
545 static void denali_set_intr_modes(struct denali_nand_info *denali,
547 {
548  dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
549  __FILE__, __LINE__, __func__);
550 
551  if (INT_ENABLE)
552  iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
553  else
554  iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
555 }
556 
557 /* validation function to verify that the controlling software is making
558  * a valid request
559  */
560 static inline bool is_flash_bank_valid(int flash_bank)
561 {
562  return (flash_bank >= 0 && flash_bank < 4);
563 }
564 
565 static void denali_irq_init(struct denali_nand_info *denali)
566 {
567  uint32_t int_mask = 0;
568  int i;
569 
570  /* Disable global interrupts */
571  denali_set_intr_modes(denali, false);
572 
573  int_mask = DENALI_IRQ_ALL;
574 
575  /* Clear all status bits */
576  for (i = 0; i < denali->max_banks; ++i)
577  iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
578 
579  denali_irq_enable(denali, int_mask);
580 }
581 
582 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
583 {
584  denali_set_intr_modes(denali, false);
585  free_irq(irqnum, denali);
586 }
587 
588 static void denali_irq_enable(struct denali_nand_info *denali,
589  uint32_t int_mask)
590 {
591  int i;
592 
593  for (i = 0; i < denali->max_banks; ++i)
594  iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
595 }
596 
597 /* This function only returns when an interrupt that this driver cares about
598  * occurs. This is to reduce the overhead of servicing interrupts
599  */
600 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
601 {
602  return read_interrupt_status(denali) & DENALI_IRQ_ALL;
603 }
604 
605 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
606 static inline void clear_interrupt(struct denali_nand_info *denali,
607  uint32_t irq_mask)
608 {
609  uint32_t intr_status_reg = 0;
610 
611  intr_status_reg = INTR_STATUS(denali->flash_bank);
612 
613  iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
614 }
615 
616 static void clear_interrupts(struct denali_nand_info *denali)
617 {
618  uint32_t status = 0x0;
619  spin_lock_irq(&denali->irq_lock);
620 
621  status = read_interrupt_status(denali);
622  clear_interrupt(denali, status);
623 
624  denali->irq_status = 0x0;
625  spin_unlock_irq(&denali->irq_lock);
626 }
627 
628 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
629 {
630  uint32_t intr_status_reg = 0;
631 
632  intr_status_reg = INTR_STATUS(denali->flash_bank);
633 
634  return ioread32(denali->flash_reg + intr_status_reg);
635 }
636 
637 /* This is the interrupt service routine. It handles all interrupts
638  * sent to this device. Note that on CE4100, this is a shared
639  * interrupt.
640  */
641 static irqreturn_t denali_isr(int irq, void *dev_id)
642 {
643  struct denali_nand_info *denali = dev_id;
644  uint32_t irq_status = 0x0;
646 
647  spin_lock(&denali->irq_lock);
648 
649  /* check to see if a valid NAND chip has
650  * been selected.
651  */
652  if (is_flash_bank_valid(denali->flash_bank)) {
653  /* check to see if controller generated
654  * the interrupt, since this is a shared interrupt */
655  irq_status = denali_irq_detected(denali);
656  if (irq_status != 0) {
657  /* handle interrupt */
658  /* first acknowledge it */
659  clear_interrupt(denali, irq_status);
660  /* store the status in the device context for someone
661  to read */
662  denali->irq_status |= irq_status;
663  /* notify anyone who cares that it happened */
664  complete(&denali->complete);
665  /* tell the OS that we've handled this */
666  result = IRQ_HANDLED;
667  }
668  }
669  spin_unlock(&denali->irq_lock);
670  return result;
671 }
672 #define BANK(x) ((x) << 24)
673 
674 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
675 {
676  unsigned long comp_res = 0;
677  uint32_t intr_status = 0;
678  bool retry = false;
679  unsigned long timeout = msecs_to_jiffies(1000);
680 
681  do {
682  comp_res =
683  wait_for_completion_timeout(&denali->complete, timeout);
684  spin_lock_irq(&denali->irq_lock);
685  intr_status = denali->irq_status;
686 
687  if (intr_status & irq_mask) {
688  denali->irq_status &= ~irq_mask;
689  spin_unlock_irq(&denali->irq_lock);
690  /* our interrupt was detected */
691  break;
692  } else {
693  /* these are not the interrupts you are looking for -
694  * need to wait again */
695  spin_unlock_irq(&denali->irq_lock);
696  retry = true;
697  }
698  } while (comp_res != 0);
699 
700  if (comp_res == 0) {
701  /* timeout */
702  printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
703  intr_status, irq_mask);
704 
705  intr_status = 0;
706  }
707  return intr_status;
708 }
709 
710 /* This helper function setups the registers for ECC and whether or not
711  * the spare area will be transferred. */
712 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
713  bool transfer_spare)
714 {
715  int ecc_en_flag = 0, transfer_spare_flag = 0;
716 
717  /* set ECC, transfer spare bits if needed */
718  ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
719  transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
720 
721  /* Enable spare area/ECC per user's request. */
722  iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
723  iowrite32(transfer_spare_flag,
724  denali->flash_reg + TRANSFER_SPARE_REG);
725 }
726 
727 /* sends a pipeline command operation to the controller. See the Denali NAND
728  * controller's user guide for more information (section 4.2.3.6).
729  */
730 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
731  bool ecc_en,
732  bool transfer_spare,
733  int access_type,
734  int op)
735 {
736  int status = PASS;
737  uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
738  irq_mask = 0;
739 
740  if (op == DENALI_READ)
741  irq_mask = INTR_STATUS__LOAD_COMP;
742  else if (op == DENALI_WRITE)
743  irq_mask = 0;
744  else
745  BUG();
746 
747  setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
748 
749  /* clear interrupts */
750  clear_interrupts(denali);
751 
752  addr = BANK(denali->flash_bank) | denali->page;
753 
754  if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
755  cmd = MODE_01 | addr;
756  iowrite32(cmd, denali->flash_mem);
757  } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
758  /* read spare area */
759  cmd = MODE_10 | addr;
760  index_addr(denali, (uint32_t)cmd, access_type);
761 
762  cmd = MODE_01 | addr;
763  iowrite32(cmd, denali->flash_mem);
764  } else if (op == DENALI_READ) {
765  /* setup page read request for access type */
766  cmd = MODE_10 | addr;
767  index_addr(denali, (uint32_t)cmd, access_type);
768 
769  /* page 33 of the NAND controller spec indicates we should not
770  use the pipeline commands in Spare area only mode. So we
771  don't.
772  */
773  if (access_type == SPARE_ACCESS) {
774  cmd = MODE_01 | addr;
775  iowrite32(cmd, denali->flash_mem);
776  } else {
777  index_addr(denali, (uint32_t)cmd,
778  0x2000 | op | page_count);
779 
780  /* wait for command to be accepted
781  * can always use status0 bit as the
782  * mask is identical for each
783  * bank. */
784  irq_status = wait_for_irq(denali, irq_mask);
785 
786  if (irq_status == 0) {
787  dev_err(denali->dev,
788  "cmd, page, addr on timeout "
789  "(0x%x, 0x%x, 0x%x)\n",
790  cmd, denali->page, addr);
791  status = FAIL;
792  } else {
793  cmd = MODE_01 | addr;
794  iowrite32(cmd, denali->flash_mem);
795  }
796  }
797  }
798  return status;
799 }
800 
801 /* helper function that simply writes a buffer to the flash */
802 static int write_data_to_flash_mem(struct denali_nand_info *denali,
803  const uint8_t *buf,
804  int len)
805 {
806  uint32_t i = 0, *buf32;
807 
808  /* verify that the len is a multiple of 4. see comment in
809  * read_data_from_flash_mem() */
810  BUG_ON((len % 4) != 0);
811 
812  /* write the data to the flash memory */
813  buf32 = (uint32_t *)buf;
814  for (i = 0; i < len / 4; i++)
815  iowrite32(*buf32++, denali->flash_mem + 0x10);
816  return i*4; /* intent is to return the number of bytes read */
817 }
818 
819 /* helper function that simply reads a buffer from the flash */
820 static int read_data_from_flash_mem(struct denali_nand_info *denali,
821  uint8_t *buf,
822  int len)
823 {
824  uint32_t i = 0, *buf32;
825 
826  /* we assume that len will be a multiple of 4, if not
827  * it would be nice to know about it ASAP rather than
828  * have random failures...
829  * This assumption is based on the fact that this
830  * function is designed to be used to read flash pages,
831  * which are typically multiples of 4...
832  */
833 
834  BUG_ON((len % 4) != 0);
835 
836  /* transfer the data from the flash */
837  buf32 = (uint32_t *)buf;
838  for (i = 0; i < len / 4; i++)
839  *buf32++ = ioread32(denali->flash_mem + 0x10);
840  return i*4; /* intent is to return the number of bytes read */
841 }
842 
843 /* writes OOB data to the device */
844 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
845 {
846  struct denali_nand_info *denali = mtd_to_denali(mtd);
847  uint32_t irq_status = 0;
850  int status = 0;
851 
852  denali->page = page;
853 
854  if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
855  DENALI_WRITE) == PASS) {
856  write_data_to_flash_mem(denali, buf, mtd->oobsize);
857 
858  /* wait for operation to complete */
859  irq_status = wait_for_irq(denali, irq_mask);
860 
861  if (irq_status == 0) {
862  dev_err(denali->dev, "OOB write failed\n");
863  status = -EIO;
864  }
865  } else {
866  dev_err(denali->dev, "unable to send pipeline command\n");
867  status = -EIO;
868  }
869  return status;
870 }
871 
872 /* reads OOB data from the device */
873 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
874 {
875  struct denali_nand_info *denali = mtd_to_denali(mtd);
876  uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
877  irq_status = 0, addr = 0x0, cmd = 0x0;
878 
879  denali->page = page;
880 
881  if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
882  DENALI_READ) == PASS) {
883  read_data_from_flash_mem(denali, buf, mtd->oobsize);
884 
885  /* wait for command to be accepted
886  * can always use status0 bit as the mask is identical for each
887  * bank. */
888  irq_status = wait_for_irq(denali, irq_mask);
889 
890  if (irq_status == 0)
891  dev_err(denali->dev, "page on OOB timeout %d\n",
892  denali->page);
893 
894  /* We set the device back to MAIN_ACCESS here as I observed
895  * instability with the controller if you do a block erase
896  * and the last transaction was a SPARE_ACCESS. Block erase
897  * is reliable (according to the MTD test infrastructure)
898  * if you are in MAIN_ACCESS.
899  */
900  addr = BANK(denali->flash_bank) | denali->page;
901  cmd = MODE_10 | addr;
902  index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
903  }
904 }
905 
906 /* this function examines buffers to see if they contain data that
907  * indicate that the buffer is part of an erased region of flash.
908  */
909 bool is_erased(uint8_t *buf, int len)
910 {
911  int i = 0;
912  for (i = 0; i < len; i++)
913  if (buf[i] != 0xFF)
914  return false;
915  return true;
916 }
917 #define ECC_SECTOR_SIZE 512
918 
919 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
920 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
921 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
922 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
923 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
924 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
925 
926 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
927  uint32_t irq_status, unsigned int *max_bitflips)
928 {
929  bool check_erased_page = false;
930  unsigned int bitflips = 0;
931 
932  if (irq_status & INTR_STATUS__ECC_ERR) {
933  /* read the ECC errors. we'll ignore them for now */
934  uint32_t err_address = 0, err_correction_info = 0;
935  uint32_t err_byte = 0, err_sector = 0, err_device = 0;
936  uint32_t err_correction_value = 0;
937  denali_set_intr_modes(denali, false);
938 
939  do {
940  err_address = ioread32(denali->flash_reg +
942  err_sector = ECC_SECTOR(err_address);
943  err_byte = ECC_BYTE(err_address);
944 
945  err_correction_info = ioread32(denali->flash_reg +
947  err_correction_value =
948  ECC_CORRECTION_VALUE(err_correction_info);
949  err_device = ECC_ERR_DEVICE(err_correction_info);
950 
951  if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
952  /* If err_byte is larger than ECC_SECTOR_SIZE,
953  * means error happened in OOB, so we ignore
954  * it. It's no need for us to correct it
955  * err_device is represented the NAND error
956  * bits are happened in if there are more
957  * than one NAND connected.
958  * */
959  if (err_byte < ECC_SECTOR_SIZE) {
960  int offset;
961  offset = (err_sector *
963  err_byte) *
964  denali->devnum +
965  err_device;
966  /* correct the ECC error */
967  buf[offset] ^= err_correction_value;
968  denali->mtd.ecc_stats.corrected++;
969  bitflips++;
970  }
971  } else {
972  /* if the error is not correctable, need to
973  * look at the page to see if it is an erased
974  * page. if so, then it's not a real ECC error
975  * */
976  check_erased_page = true;
977  }
978  } while (!ECC_LAST_ERR(err_correction_info));
979  /* Once handle all ecc errors, controller will triger
980  * a ECC_TRANSACTION_DONE interrupt, so here just wait
981  * for a while for this interrupt
982  * */
983  while (!(read_interrupt_status(denali) &
985  cpu_relax();
986  clear_interrupts(denali);
987  denali_set_intr_modes(denali, true);
988  }
989  *max_bitflips = bitflips;
990  return check_erased_page;
991 }
992 
993 /* programs the controller to either enable/disable DMA transfers */
994 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
995 {
996  uint32_t reg_val = 0x0;
997 
998  if (en)
999  reg_val = DMA_ENABLE__FLAG;
1000 
1001  iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1002  ioread32(denali->flash_reg + DMA_ENABLE);
1003 }
1004 
1005 /* setups the HW to perform the data DMA */
1006 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1007 {
1008  uint32_t mode = 0x0;
1009  const int page_count = 1;
1010  dma_addr_t addr = denali->buf.dma_buf;
1011 
1012  mode = MODE_10 | BANK(denali->flash_bank);
1013 
1014  /* DMA is a four step process */
1015 
1016  /* 1. setup transfer type and # of pages */
1017  index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1018 
1019  /* 2. set memory high address bits 23:8 */
1020  index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1021 
1022  /* 3. set memory low address bits 23:8 */
1023  index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1024 
1025  /* 4. interrupt when complete, burst len = 64 bytes*/
1026  index_addr(denali, mode | 0x14000, 0x2400);
1027 }
1028 
1029 /* writes a page. user specifies type, and this function handles the
1030  * configuration details. */
1031 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1032  const uint8_t *buf, bool raw_xfer)
1033 {
1034  struct denali_nand_info *denali = mtd_to_denali(mtd);
1035 
1036  dma_addr_t addr = denali->buf.dma_buf;
1037  size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1038 
1039  uint32_t irq_status = 0;
1040  uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1042 
1043  /* if it is a raw xfer, we want to disable ecc, and send
1044  * the spare area.
1045  * !raw_xfer - enable ecc
1046  * raw_xfer - transfer spare
1047  */
1048  setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1049 
1050  /* copy buffer into DMA buffer */
1051  memcpy(denali->buf.buf, buf, mtd->writesize);
1052 
1053  if (raw_xfer) {
1054  /* transfer the data to the spare area */
1055  memcpy(denali->buf.buf + mtd->writesize,
1056  chip->oob_poi,
1057  mtd->oobsize);
1058  }
1059 
1060  dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1061 
1062  clear_interrupts(denali);
1063  denali_enable_dma(denali, true);
1064 
1065  denali_setup_dma(denali, DENALI_WRITE);
1066 
1067  /* wait for operation to complete */
1068  irq_status = wait_for_irq(denali, irq_mask);
1069 
1070  if (irq_status == 0) {
1071  dev_err(denali->dev,
1072  "timeout on write_page (type = %d)\n",
1073  raw_xfer);
1074  denali->status =
1075  (irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1077  }
1078 
1079  denali_enable_dma(denali, false);
1080  dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1081 
1082  return 0;
1083 }
1084 
1085 /* NAND core entry points */
1086 
1087 /* this is the callback that the NAND core calls to write a page. Since
1088  * writing a page with ECC or without is similar, all the work is done
1089  * by write_page above.
1090  * */
1091 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1092  const uint8_t *buf, int oob_required)
1093 {
1094  /* for regular page writes, we let HW handle all the ECC
1095  * data written to the device. */
1096  return write_page(mtd, chip, buf, false);
1097 }
1098 
1099 /* This is the callback that the NAND core calls to write a page without ECC.
1100  * raw access is similar to ECC page writes, so all the work is done in the
1101  * write_page() function above.
1102  */
1103 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1104  const uint8_t *buf, int oob_required)
1105 {
1106  /* for raw page writes, we want to disable ECC and simply write
1107  whatever data is in the buffer. */
1108  return write_page(mtd, chip, buf, true);
1109 }
1110 
1111 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1112  int page)
1113 {
1114  return write_oob_data(mtd, chip->oob_poi, page);
1115 }
1116 
1117 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1118  int page)
1119 {
1120  read_oob_data(mtd, chip->oob_poi, page);
1121 
1122  return 0;
1123 }
1124 
1125 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1126  uint8_t *buf, int oob_required, int page)
1127 {
1128  unsigned int max_bitflips;
1129  struct denali_nand_info *denali = mtd_to_denali(mtd);
1130 
1131  dma_addr_t addr = denali->buf.dma_buf;
1132  size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1133 
1134  uint32_t irq_status = 0;
1137  bool check_erased_page = false;
1138 
1139  if (page != denali->page) {
1140  dev_err(denali->dev, "IN %s: page %d is not"
1141  " equal to denali->page %d, investigate!!",
1142  __func__, page, denali->page);
1143  BUG();
1144  }
1145 
1146  setup_ecc_for_xfer(denali, true, false);
1147 
1148  denali_enable_dma(denali, true);
1149  dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1150 
1151  clear_interrupts(denali);
1152  denali_setup_dma(denali, DENALI_READ);
1153 
1154  /* wait for operation to complete */
1155  irq_status = wait_for_irq(denali, irq_mask);
1156 
1157  dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1158 
1159  memcpy(buf, denali->buf.buf, mtd->writesize);
1160 
1161  check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1162  denali_enable_dma(denali, false);
1163 
1164  if (check_erased_page) {
1165  read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1166 
1167  /* check ECC failures that may have occurred on erased pages */
1168  if (check_erased_page) {
1169  if (!is_erased(buf, denali->mtd.writesize))
1170  denali->mtd.ecc_stats.failed++;
1171  if (!is_erased(buf, denali->mtd.oobsize))
1172  denali->mtd.ecc_stats.failed++;
1173  }
1174  }
1175  return max_bitflips;
1176 }
1177 
1178 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1179  uint8_t *buf, int oob_required, int page)
1180 {
1181  struct denali_nand_info *denali = mtd_to_denali(mtd);
1182 
1183  dma_addr_t addr = denali->buf.dma_buf;
1184  size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1185 
1186  uint32_t irq_status = 0;
1188 
1189  if (page != denali->page) {
1190  dev_err(denali->dev, "IN %s: page %d is not"
1191  " equal to denali->page %d, investigate!!",
1192  __func__, page, denali->page);
1193  BUG();
1194  }
1195 
1196  setup_ecc_for_xfer(denali, false, true);
1197  denali_enable_dma(denali, true);
1198 
1199  dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1200 
1201  clear_interrupts(denali);
1202  denali_setup_dma(denali, DENALI_READ);
1203 
1204  /* wait for operation to complete */
1205  irq_status = wait_for_irq(denali, irq_mask);
1206 
1207  dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1208 
1209  denali_enable_dma(denali, false);
1210 
1211  memcpy(buf, denali->buf.buf, mtd->writesize);
1212  memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1213 
1214  return 0;
1215 }
1216 
1217 static uint8_t denali_read_byte(struct mtd_info *mtd)
1218 {
1219  struct denali_nand_info *denali = mtd_to_denali(mtd);
1220  uint8_t result = 0xff;
1221 
1222  if (denali->buf.head < denali->buf.tail)
1223  result = denali->buf.buf[denali->buf.head++];
1224 
1225  return result;
1226 }
1227 
1228 static void denali_select_chip(struct mtd_info *mtd, int chip)
1229 {
1230  struct denali_nand_info *denali = mtd_to_denali(mtd);
1231 
1232  spin_lock_irq(&denali->irq_lock);
1233  denali->flash_bank = chip;
1234  spin_unlock_irq(&denali->irq_lock);
1235 }
1236 
1237 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1238 {
1239  struct denali_nand_info *denali = mtd_to_denali(mtd);
1240  int status = denali->status;
1241  denali->status = 0;
1242 
1243  return status;
1244 }
1245 
1246 static void denali_erase(struct mtd_info *mtd, int page)
1247 {
1248  struct denali_nand_info *denali = mtd_to_denali(mtd);
1249 
1250  uint32_t cmd = 0x0, irq_status = 0;
1251 
1252  /* clear interrupts */
1253  clear_interrupts(denali);
1254 
1255  /* setup page read request for access type */
1256  cmd = MODE_10 | BANK(denali->flash_bank) | page;
1257  index_addr(denali, (uint32_t)cmd, 0x1);
1258 
1259  /* wait for erase to complete or failure to occur */
1260  irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1262 
1263  denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1265 }
1266 
1267 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1268  int page)
1269 {
1270  struct denali_nand_info *denali = mtd_to_denali(mtd);
1271  uint32_t addr, id;
1272  int i;
1273 
1274  switch (cmd) {
1275  case NAND_CMD_PAGEPROG:
1276  break;
1277  case NAND_CMD_STATUS:
1278  read_status(denali);
1279  break;
1280  case NAND_CMD_READID:
1281  case NAND_CMD_PARAM:
1282  reset_buf(denali);
1283  /*sometimes ManufactureId read from register is not right
1284  * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1285  * So here we send READID cmd to NAND insteand
1286  * */
1287  addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1288  index_addr(denali, (uint32_t)addr | 0, 0x90);
1289  index_addr(denali, (uint32_t)addr | 1, 0);
1290  for (i = 0; i < 5; i++) {
1291  index_addr_read_data(denali,
1292  (uint32_t)addr | 2,
1293  &id);
1294  write_byte_to_buf(denali, id);
1295  }
1296  break;
1297  case NAND_CMD_READ0:
1298  case NAND_CMD_SEQIN:
1299  denali->page = page;
1300  break;
1301  case NAND_CMD_RESET:
1302  reset_bank(denali);
1303  break;
1304  case NAND_CMD_READOOB:
1305  /* TODO: Read OOB data */
1306  break;
1307  default:
1308  printk(KERN_ERR ": unsupported command"
1309  " received 0x%x\n", cmd);
1310  break;
1311  }
1312 }
1313 
1314 /* stubs for ECC functions not used by the NAND core */
1315 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1316  uint8_t *ecc_code)
1317 {
1318  struct denali_nand_info *denali = mtd_to_denali(mtd);
1319  dev_err(denali->dev,
1320  "denali_ecc_calculate called unexpectedly\n");
1321  BUG();
1322  return -EIO;
1323 }
1324 
1325 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1326  uint8_t *read_ecc, uint8_t *calc_ecc)
1327 {
1328  struct denali_nand_info *denali = mtd_to_denali(mtd);
1329  dev_err(denali->dev,
1330  "denali_ecc_correct called unexpectedly\n");
1331  BUG();
1332  return -EIO;
1333 }
1334 
1335 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1336 {
1337  struct denali_nand_info *denali = mtd_to_denali(mtd);
1338  dev_err(denali->dev,
1339  "denali_ecc_hwctl called unexpectedly\n");
1340  BUG();
1341 }
1342 /* end NAND core entry points */
1343 
1344 /* Initialization code to bring the device up to a known good state */
1345 static void denali_hw_init(struct denali_nand_info *denali)
1346 {
1347  /* tell driver how many bit controller will skip before
1348  * writing ECC code in OOB, this register may be already
1349  * set by firmware. So we read this value out.
1350  * if this value is 0, just let it be.
1351  * */
1352  denali->bbtskipbytes = ioread32(denali->flash_reg +
1354  detect_max_banks(denali);
1355  denali_nand_reset(denali);
1356  iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1358  denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1359 
1360  iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1361 
1362  /* Should set value for these registers when init */
1363  iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1364  iowrite32(1, denali->flash_reg + ECC_ENABLE);
1365  denali_nand_timing_set(denali);
1366  denali_irq_init(denali);
1367 }
1368 
1369 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1370  * but denali controller in MRST only support 15bit and 8bit ECC
1371  * correction
1372  * */
1373 #define ECC_8BITS 14
1374 static struct nand_ecclayout nand_8bit_oob = {
1375  .eccbytes = 14,
1376 };
1377 
1378 #define ECC_15BITS 26
1379 static struct nand_ecclayout nand_15bit_oob = {
1380  .eccbytes = 26,
1381 };
1382 
1383 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1384 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1385 
1386 static struct nand_bbt_descr bbt_main_descr = {
1389  .offs = 8,
1390  .len = 4,
1391  .veroffs = 12,
1392  .maxblocks = 4,
1393  .pattern = bbt_pattern,
1394 };
1395 
1396 static struct nand_bbt_descr bbt_mirror_descr = {
1399  .offs = 8,
1400  .len = 4,
1401  .veroffs = 12,
1402  .maxblocks = 4,
1403  .pattern = mirror_pattern,
1404 };
1405 
1406 /* initialize driver data structures */
1407 void denali_drv_init(struct denali_nand_info *denali)
1408 {
1409  denali->idx = 0;
1410 
1411  /* setup interrupt handler */
1412  /* the completion object will be used to notify
1413  * the callee that the interrupt is done */
1414  init_completion(&denali->complete);
1415 
1416  /* the spinlock will be used to synchronize the ISR
1417  * with any element that might be access shared
1418  * data (interrupt status) */
1419  spin_lock_init(&denali->irq_lock);
1420 
1421  /* indicate that MTD has not selected a valid bank yet */
1422  denali->flash_bank = CHIP_SELECT_INVALID;
1423 
1424  /* initialize our irq_status variable to indicate no interrupts */
1425  denali->irq_status = 0;
1426 }
1427 
1428 /* driver entry point */
1429 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1430 {
1431  int ret = -ENODEV;
1432  resource_size_t csr_base, mem_base;
1433  unsigned long csr_len, mem_len;
1434  struct denali_nand_info *denali;
1435 
1436  denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1437  if (!denali)
1438  return -ENOMEM;
1439 
1440  ret = pci_enable_device(dev);
1441  if (ret) {
1442  printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1443  goto failed_alloc_memery;
1444  }
1445 
1446  if (id->driver_data == INTEL_CE4100) {
1447  /* Due to a silicon limitation, we can only support
1448  * ONFI timing mode 1 and below.
1449  */
1450  if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1451  printk(KERN_ERR "Intel CE4100 only supports"
1452  " ONFI timing mode 1 or below\n");
1453  ret = -EINVAL;
1454  goto failed_enable_dev;
1455  }
1456  denali->platform = INTEL_CE4100;
1457  mem_base = pci_resource_start(dev, 0);
1458  mem_len = pci_resource_len(dev, 1);
1459  csr_base = pci_resource_start(dev, 1);
1460  csr_len = pci_resource_len(dev, 1);
1461  } else {
1462  denali->platform = INTEL_MRST;
1463  csr_base = pci_resource_start(dev, 0);
1464  csr_len = pci_resource_len(dev, 0);
1465  mem_base = pci_resource_start(dev, 1);
1466  mem_len = pci_resource_len(dev, 1);
1467  if (!mem_len) {
1468  mem_base = csr_base + csr_len;
1469  mem_len = csr_len;
1470  }
1471  }
1472 
1473  /* Is 32-bit DMA supported? */
1474  ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
1475  if (ret) {
1476  printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1477  goto failed_enable_dev;
1478  }
1479  denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
1482 
1483  if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
1484  dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1485  goto failed_enable_dev;
1486  }
1487 
1488  pci_set_master(dev);
1489  denali->dev = &dev->dev;
1490  denali->mtd.dev.parent = &dev->dev;
1491 
1493  if (ret) {
1494  printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1495  goto failed_dma_map;
1496  }
1497 
1498  denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1499  if (!denali->flash_reg) {
1500  printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1501  ret = -ENOMEM;
1502  goto failed_req_regions;
1503  }
1504 
1505  denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1506  if (!denali->flash_mem) {
1507  printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1508  ret = -ENOMEM;
1509  goto failed_remap_reg;
1510  }
1511 
1512  denali_hw_init(denali);
1513  denali_drv_init(denali);
1514 
1515  /* denali_isr register is done after all the hardware
1516  * initilization is finished*/
1517  if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1518  DENALI_NAND_NAME, denali)) {
1519  printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1520  ret = -ENODEV;
1521  goto failed_remap_mem;
1522  }
1523 
1524  /* now that our ISR is registered, we can enable interrupts */
1525  denali_set_intr_modes(denali, true);
1526 
1527  pci_set_drvdata(dev, denali);
1528 
1529  denali->mtd.name = "denali-nand";
1530  denali->mtd.owner = THIS_MODULE;
1531  denali->mtd.priv = &denali->nand;
1532 
1533  /* register the driver with the NAND core subsystem */
1534  denali->nand.select_chip = denali_select_chip;
1535  denali->nand.cmdfunc = denali_cmdfunc;
1536  denali->nand.read_byte = denali_read_byte;
1537  denali->nand.waitfunc = denali_waitfunc;
1538 
1539  /* scan for NAND devices attached to the controller
1540  * this is the first stage in a two step process to register
1541  * with the nand subsystem */
1542  if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1543  ret = -ENXIO;
1544  goto failed_req_irq;
1545  }
1546 
1547  /* MTD supported page sizes vary by kernel. We validate our
1548  * kernel supports the device here.
1549  */
1550  if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1551  ret = -ENODEV;
1552  printk(KERN_ERR "Spectra: device size not supported by this "
1553  "version of MTD.");
1554  goto failed_req_irq;
1555  }
1556 
1557  /* support for multi nand
1558  * MTD known nothing about multi nand,
1559  * so we should tell it the real pagesize
1560  * and anything necessery
1561  */
1562  denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1563  denali->nand.chipsize <<= (denali->devnum - 1);
1564  denali->nand.page_shift += (denali->devnum - 1);
1565  denali->nand.pagemask = (denali->nand.chipsize >>
1566  denali->nand.page_shift) - 1;
1567  denali->nand.bbt_erase_shift += (denali->devnum - 1);
1568  denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1569  denali->nand.chip_shift += (denali->devnum - 1);
1570  denali->mtd.writesize <<= (denali->devnum - 1);
1571  denali->mtd.oobsize <<= (denali->devnum - 1);
1572  denali->mtd.erasesize <<= (denali->devnum - 1);
1573  denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1574  denali->bbtskipbytes *= denali->devnum;
1575 
1576  /* second stage of the NAND scan
1577  * this stage requires information regarding ECC and
1578  * bad block management. */
1579 
1580  /* Bad block management */
1581  denali->nand.bbt_td = &bbt_main_descr;
1582  denali->nand.bbt_md = &bbt_mirror_descr;
1583 
1584  /* skip the scan for now until we have OOB read and write support */
1585  denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1586  denali->nand.options |= NAND_SKIP_BBTSCAN;
1587  denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1588 
1589  /* Denali Controller only support 15bit and 8bit ECC in MRST,
1590  * so just let controller do 15bit ECC for MLC and 8bit ECC for
1591  * SLC if possible.
1592  * */
1593  if (denali->nand.cellinfo & 0xc &&
1594  (denali->mtd.oobsize > (denali->bbtskipbytes +
1595  ECC_15BITS * (denali->mtd.writesize /
1596  ECC_SECTOR_SIZE)))) {
1597  /* if MLC OOB size is large enough, use 15bit ECC*/
1598  denali->nand.ecc.strength = 15;
1599  denali->nand.ecc.layout = &nand_15bit_oob;
1600  denali->nand.ecc.bytes = ECC_15BITS;
1601  iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1602  } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1603  ECC_8BITS * (denali->mtd.writesize /
1604  ECC_SECTOR_SIZE))) {
1605  printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1606  " contain 8bit ECC correction codes");
1607  goto failed_req_irq;
1608  } else {
1609  denali->nand.ecc.strength = 8;
1610  denali->nand.ecc.layout = &nand_8bit_oob;
1611  denali->nand.ecc.bytes = ECC_8BITS;
1612  iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1613  }
1614 
1615  denali->nand.ecc.bytes *= denali->devnum;
1616  denali->nand.ecc.strength *= denali->devnum;
1617  denali->nand.ecc.layout->eccbytes *=
1618  denali->mtd.writesize / ECC_SECTOR_SIZE;
1619  denali->nand.ecc.layout->oobfree[0].offset =
1620  denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1621  denali->nand.ecc.layout->oobfree[0].length =
1622  denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1623  denali->bbtskipbytes;
1624 
1625  /* Let driver know the total blocks number and
1626  * how many blocks contained by each nand chip.
1627  * blksperchip will help driver to know how many
1628  * blocks is taken by FW.
1629  * */
1630  denali->totalblks = denali->mtd.size >>
1631  denali->nand.phys_erase_shift;
1632  denali->blksperchip = denali->totalblks / denali->nand.numchips;
1633 
1634  /* These functions are required by the NAND core framework, otherwise,
1635  * the NAND core will assert. However, we don't need them, so we'll stub
1636  * them out. */
1637  denali->nand.ecc.calculate = denali_ecc_calculate;
1638  denali->nand.ecc.correct = denali_ecc_correct;
1639  denali->nand.ecc.hwctl = denali_ecc_hwctl;
1640 
1641  /* override the default read operations */
1642  denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1643  denali->nand.ecc.read_page = denali_read_page;
1644  denali->nand.ecc.read_page_raw = denali_read_page_raw;
1645  denali->nand.ecc.write_page = denali_write_page;
1646  denali->nand.ecc.write_page_raw = denali_write_page_raw;
1647  denali->nand.ecc.read_oob = denali_read_oob;
1648  denali->nand.ecc.write_oob = denali_write_oob;
1649  denali->nand.erase_cmd = denali_erase;
1650 
1651  if (nand_scan_tail(&denali->mtd)) {
1652  ret = -ENXIO;
1653  goto failed_req_irq;
1654  }
1655 
1656  ret = mtd_device_register(&denali->mtd, NULL, 0);
1657  if (ret) {
1658  dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
1659  ret);
1660  goto failed_req_irq;
1661  }
1662  return 0;
1663 
1664 failed_req_irq:
1665  denali_irq_cleanup(dev->irq, denali);
1666 failed_remap_mem:
1667  iounmap(denali->flash_mem);
1668 failed_remap_reg:
1669  iounmap(denali->flash_reg);
1670 failed_req_regions:
1671  pci_release_regions(dev);
1672 failed_dma_map:
1673  dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1675 failed_enable_dev:
1676  pci_disable_device(dev);
1677 failed_alloc_memery:
1678  kfree(denali);
1679  return ret;
1680 }
1681 
1682 /* driver exit point */
1683 static void denali_pci_remove(struct pci_dev *dev)
1684 {
1685  struct denali_nand_info *denali = pci_get_drvdata(dev);
1686 
1687  nand_release(&denali->mtd);
1688 
1689  denali_irq_cleanup(dev->irq, denali);
1690 
1691  iounmap(denali->flash_reg);
1692  iounmap(denali->flash_mem);
1693  pci_release_regions(dev);
1694  pci_disable_device(dev);
1695  dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1697  pci_set_drvdata(dev, NULL);
1698  kfree(denali);
1699 }
1700 
1701 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1702 
1703 static struct pci_driver denali_pci_driver = {
1704  .name = DENALI_NAND_NAME,
1705  .id_table = denali_pci_ids,
1706  .probe = denali_pci_probe,
1707  .remove = denali_pci_remove,
1708 };
1709 
1710 module_pci_driver(denali_pci_driver);