Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dmaengine.c
Go to the documentation of this file.
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel(). Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/dma-mapping.h>
51 #include <linux/init.h>
52 #include <linux/module.h>
53 #include <linux/mm.h>
54 #include <linux/device.h>
55 #include <linux/dmaengine.h>
56 #include <linux/hardirq.h>
57 #include <linux/spinlock.h>
58 #include <linux/percpu.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/jiffies.h>
62 #include <linux/rculist.h>
63 #include <linux/idr.h>
64 #include <linux/slab.h>
65 
66 static DEFINE_MUTEX(dma_list_mutex);
67 static DEFINE_IDR(dma_idr);
68 static LIST_HEAD(dma_device_list);
69 static long dmaengine_ref_count;
70 
71 /* --- sysfs implementation --- */
72 
79 static struct dma_chan *dev_to_dma_chan(struct device *dev)
80 {
81  struct dma_chan_dev *chan_dev;
82 
83  chan_dev = container_of(dev, typeof(*chan_dev), device);
84  return chan_dev->chan;
85 }
86 
87 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
88 {
89  struct dma_chan *chan;
90  unsigned long count = 0;
91  int i;
92  int err;
93 
94  mutex_lock(&dma_list_mutex);
95  chan = dev_to_dma_chan(dev);
96  if (chan) {
98  count += per_cpu_ptr(chan->local, i)->memcpy_count;
99  err = sprintf(buf, "%lu\n", count);
100  } else
101  err = -ENODEV;
102  mutex_unlock(&dma_list_mutex);
103 
104  return err;
105 }
106 
107 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
108  char *buf)
109 {
110  struct dma_chan *chan;
111  unsigned long count = 0;
112  int i;
113  int err;
114 
115  mutex_lock(&dma_list_mutex);
116  chan = dev_to_dma_chan(dev);
117  if (chan) {
119  count += per_cpu_ptr(chan->local, i)->bytes_transferred;
120  err = sprintf(buf, "%lu\n", count);
121  } else
122  err = -ENODEV;
123  mutex_unlock(&dma_list_mutex);
124 
125  return err;
126 }
127 
128 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
129 {
130  struct dma_chan *chan;
131  int err;
132 
133  mutex_lock(&dma_list_mutex);
134  chan = dev_to_dma_chan(dev);
135  if (chan)
136  err = sprintf(buf, "%d\n", chan->client_count);
137  else
138  err = -ENODEV;
139  mutex_unlock(&dma_list_mutex);
140 
141  return err;
142 }
143 
144 static struct device_attribute dma_attrs[] = {
145  __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
146  __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
147  __ATTR(in_use, S_IRUGO, show_in_use, NULL),
149 };
150 
151 static void chan_dev_release(struct device *dev)
152 {
153  struct dma_chan_dev *chan_dev;
154 
155  chan_dev = container_of(dev, typeof(*chan_dev), device);
156  if (atomic_dec_and_test(chan_dev->idr_ref)) {
157  mutex_lock(&dma_list_mutex);
158  idr_remove(&dma_idr, chan_dev->dev_id);
159  mutex_unlock(&dma_list_mutex);
160  kfree(chan_dev->idr_ref);
161  }
162  kfree(chan_dev);
163 }
164 
165 static struct class dma_devclass = {
166  .name = "dma",
167  .dev_attrs = dma_attrs,
168  .dev_release = chan_dev_release,
169 };
170 
171 /* --- client and device registration --- */
172 
173 #define dma_device_satisfies_mask(device, mask) \
174  __dma_device_satisfies_mask((device), &(mask))
175 static int
176 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
177 {
178  dma_cap_mask_t has;
179 
180  bitmap_and(has.bits, want->bits, device->cap_mask.bits,
182  return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
183 }
184 
185 static struct module *dma_chan_to_owner(struct dma_chan *chan)
186 {
187  return chan->device->dev->driver->owner;
188 }
189 
196 static void balance_ref_count(struct dma_chan *chan)
197 {
198  struct module *owner = dma_chan_to_owner(chan);
199 
200  while (chan->client_count < dmaengine_ref_count) {
201  __module_get(owner);
202  chan->client_count++;
203  }
204 }
205 
212 static int dma_chan_get(struct dma_chan *chan)
213 {
214  int err = -ENODEV;
215  struct module *owner = dma_chan_to_owner(chan);
216 
217  if (chan->client_count) {
218  __module_get(owner);
219  err = 0;
220  } else if (try_module_get(owner))
221  err = 0;
222 
223  if (err == 0)
224  chan->client_count++;
225 
226  /* allocate upon first client reference */
227  if (chan->client_count == 1 && err == 0) {
228  int desc_cnt = chan->device->device_alloc_chan_resources(chan);
229 
230  if (desc_cnt < 0) {
231  err = desc_cnt;
232  chan->client_count = 0;
233  module_put(owner);
234  } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
235  balance_ref_count(chan);
236  }
237 
238  return err;
239 }
240 
247 static void dma_chan_put(struct dma_chan *chan)
248 {
249  if (!chan->client_count)
250  return; /* this channel failed alloc_chan_resources */
251  chan->client_count--;
252  module_put(dma_chan_to_owner(chan));
253  if (chan->client_count == 0)
254  chan->device->device_free_chan_resources(chan);
255 }
256 
258 {
259  enum dma_status status;
260  unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
261 
262  dma_async_issue_pending(chan);
263  do {
264  status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
265  if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
266  pr_err("%s: timeout!\n", __func__);
267  return DMA_ERROR;
268  }
269  } while (status == DMA_IN_PROGRESS);
270 
271  return status;
272 }
274 
278 static dma_cap_mask_t dma_cap_mask_all;
279 
285  struct dma_chan *chan;
286 };
287 
291 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
292 
293 static int __init dma_channel_table_init(void)
294 {
296  int err = 0;
297 
298  bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
299 
300  /* 'interrupt', 'private', and 'slave' are channel capabilities,
301  * but are not associated with an operation so they do not need
302  * an entry in the channel_table
303  */
304  clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
305  clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
306  clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
307 
308  for_each_dma_cap_mask(cap, dma_cap_mask_all) {
309  channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
310  if (!channel_table[cap]) {
311  err = -ENOMEM;
312  break;
313  }
314  }
315 
316  if (err) {
317  pr_err("initialization failure\n");
318  for_each_dma_cap_mask(cap, dma_cap_mask_all)
319  if (channel_table[cap])
320  free_percpu(channel_table[cap]);
321  }
322 
323  return err;
324 }
325 arch_initcall(dma_channel_table_init);
326 
332 {
333  return this_cpu_read(channel_table[tx_type]->chan);
334 }
336 
337 /*
338  * net_dma_find_channel - find a channel for net_dma
339  * net_dma has alignment requirements
340  */
342 {
343  struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
344  if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
345  return NULL;
346 
347  return chan;
348 }
350 
355 {
356  struct dma_device *device;
357  struct dma_chan *chan;
358 
359  rcu_read_lock();
360  list_for_each_entry_rcu(device, &dma_device_list, global_node) {
361  if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
362  continue;
363  list_for_each_entry(chan, &device->channels, device_node)
364  if (chan->client_count)
365  device->device_issue_pending(chan);
366  }
367  rcu_read_unlock();
368 }
370 
380 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
381 {
382  struct dma_device *device;
383  struct dma_chan *chan;
384  struct dma_chan *ret = NULL;
385  struct dma_chan *min = NULL;
386 
387  list_for_each_entry(device, &dma_device_list, global_node) {
388  if (!dma_has_cap(cap, device->cap_mask) ||
389  dma_has_cap(DMA_PRIVATE, device->cap_mask))
390  continue;
391  list_for_each_entry(chan, &device->channels, device_node) {
392  if (!chan->client_count)
393  continue;
394  if (!min)
395  min = chan;
396  else if (chan->table_count < min->table_count)
397  min = chan;
398 
399  if (n-- == 0) {
400  ret = chan;
401  break; /* done */
402  }
403  }
404  if (ret)
405  break; /* done */
406  }
407 
408  if (!ret)
409  ret = min;
410 
411  if (ret)
412  ret->table_count++;
413 
414  return ret;
415 }
416 
425 static void dma_channel_rebalance(void)
426 {
427  struct dma_chan *chan;
428  struct dma_device *device;
429  int cpu;
430  int cap;
431  int n;
432 
433  /* undo the last distribution */
434  for_each_dma_cap_mask(cap, dma_cap_mask_all)
436  per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
437 
438  list_for_each_entry(device, &dma_device_list, global_node) {
439  if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
440  continue;
441  list_for_each_entry(chan, &device->channels, device_node)
442  chan->table_count = 0;
443  }
444 
445  /* don't populate the channel_table if no clients are available */
446  if (!dmaengine_ref_count)
447  return;
448 
449  /* redistribute available channels */
450  n = 0;
451  for_each_dma_cap_mask(cap, dma_cap_mask_all)
452  for_each_online_cpu(cpu) {
453  if (num_possible_cpus() > 1)
454  chan = nth_chan(cap, n++);
455  else
456  chan = nth_chan(cap, -1);
457 
458  per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
459  }
460 }
461 
462 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
463  dma_filter_fn fn, void *fn_param)
464 {
465  struct dma_chan *chan;
466 
467  if (!__dma_device_satisfies_mask(dev, mask)) {
468  pr_debug("%s: wrong capabilities\n", __func__);
469  return NULL;
470  }
471  /* devices with multiple channels need special handling as we need to
472  * ensure that all channels are either private or public.
473  */
474  if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
476  /* some channels are already publicly allocated */
477  if (chan->client_count)
478  return NULL;
479  }
480 
482  if (chan->client_count) {
483  pr_debug("%s: %s busy\n",
484  __func__, dma_chan_name(chan));
485  continue;
486  }
487  if (fn && !fn(chan, fn_param)) {
488  pr_debug("%s: %s filter said false\n",
489  __func__, dma_chan_name(chan));
490  continue;
491  }
492  return chan;
493  }
494 
495  return NULL;
496 }
497 
504 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
505 {
506  struct dma_device *device, *_d;
507  struct dma_chan *chan = NULL;
508  int err;
509 
510  /* Find a channel */
511  mutex_lock(&dma_list_mutex);
512  list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
513  chan = private_candidate(mask, device, fn, fn_param);
514  if (chan) {
515  /* Found a suitable channel, try to grab, prep, and
516  * return it. We first set DMA_PRIVATE to disable
517  * balance_ref_count as this channel will not be
518  * published in the general-purpose allocator
519  */
520  dma_cap_set(DMA_PRIVATE, device->cap_mask);
521  device->privatecnt++;
522  err = dma_chan_get(chan);
523 
524  if (err == -ENODEV) {
525  pr_debug("%s: %s module removed\n",
526  __func__, dma_chan_name(chan));
527  list_del_rcu(&device->global_node);
528  } else if (err)
529  pr_debug("%s: failed to get %s: (%d)\n",
530  __func__, dma_chan_name(chan), err);
531  else
532  break;
533  if (--device->privatecnt == 0)
535  chan = NULL;
536  }
537  }
538  mutex_unlock(&dma_list_mutex);
539 
540  pr_debug("%s: %s (%s)\n",
541  __func__,
542  chan ? "success" : "fail",
543  chan ? dma_chan_name(chan) : NULL);
544 
545  return chan;
546 }
548 
549 void dma_release_channel(struct dma_chan *chan)
550 {
551  mutex_lock(&dma_list_mutex);
552  WARN_ONCE(chan->client_count != 1,
553  "chan reference count %d != 1\n", chan->client_count);
554  dma_chan_put(chan);
555  /* drop PRIVATE cap enabled by __dma_request_channel() */
556  if (--chan->device->privatecnt == 0)
557  dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
558  mutex_unlock(&dma_list_mutex);
559 }
561 
565 void dmaengine_get(void)
566 {
567  struct dma_device *device, *_d;
568  struct dma_chan *chan;
569  int err;
570 
571  mutex_lock(&dma_list_mutex);
572  dmaengine_ref_count++;
573 
574  /* try to grab channels */
575  list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
576  if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
577  continue;
578  list_for_each_entry(chan, &device->channels, device_node) {
579  err = dma_chan_get(chan);
580  if (err == -ENODEV) {
581  /* module removed before we could use it */
582  list_del_rcu(&device->global_node);
583  break;
584  } else if (err)
585  pr_debug("%s: failed to get %s: (%d)\n",
586  __func__, dma_chan_name(chan), err);
587  }
588  }
589 
590  /* if this is the first reference and there were channels
591  * waiting we need to rebalance to get those channels
592  * incorporated into the channel table
593  */
594  if (dmaengine_ref_count == 1)
595  dma_channel_rebalance();
596  mutex_unlock(&dma_list_mutex);
597 }
599 
603 void dmaengine_put(void)
604 {
605  struct dma_device *device;
606  struct dma_chan *chan;
607 
608  mutex_lock(&dma_list_mutex);
609  dmaengine_ref_count--;
610  BUG_ON(dmaengine_ref_count < 0);
611  /* drop channel references */
612  list_for_each_entry(device, &dma_device_list, global_node) {
613  if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
614  continue;
615  list_for_each_entry(chan, &device->channels, device_node)
616  dma_chan_put(chan);
617  }
618  mutex_unlock(&dma_list_mutex);
619 }
621 
622 static bool device_has_all_tx_types(struct dma_device *device)
623 {
624  /* A device that satisfies this test has channels that will never cause
625  * an async_tx channel switch event as all possible operation types can
626  * be handled.
627  */
628  #ifdef CONFIG_ASYNC_TX_DMA
629  if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
630  return false;
631  #endif
632 
633  #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
634  if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
635  return false;
636  #endif
637 
638  #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
639  if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
640  return false;
641  #endif
642 
643  #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
644  if (!dma_has_cap(DMA_XOR, device->cap_mask))
645  return false;
646 
647  #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
648  if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
649  return false;
650  #endif
651  #endif
652 
653  #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
654  if (!dma_has_cap(DMA_PQ, device->cap_mask))
655  return false;
656 
657  #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
658  if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
659  return false;
660  #endif
661  #endif
662 
663  return true;
664 }
665 
666 static int get_dma_id(struct dma_device *device)
667 {
668  int rc;
669 
670  idr_retry:
671  if (!idr_pre_get(&dma_idr, GFP_KERNEL))
672  return -ENOMEM;
673  mutex_lock(&dma_list_mutex);
674  rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
675  mutex_unlock(&dma_list_mutex);
676  if (rc == -EAGAIN)
677  goto idr_retry;
678  else if (rc != 0)
679  return rc;
680 
681  return 0;
682 }
683 
689 {
690  int chancnt = 0, rc;
691  struct dma_chan* chan;
692  atomic_t *idr_ref;
693 
694  if (!device)
695  return -ENODEV;
696 
697  /* validate device routines */
699  !device->device_prep_dma_memcpy);
700  BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
701  !device->device_prep_dma_xor);
703  !device->device_prep_dma_xor_val);
704  BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
705  !device->device_prep_dma_pq);
707  !device->device_prep_dma_pq_val);
709  !device->device_prep_dma_memset);
711  !device->device_prep_dma_interrupt);
712  BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
713  !device->device_prep_dma_sg);
715  !device->device_prep_dma_cyclic);
716  BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
717  !device->device_control);
719  !device->device_prep_interleaved_dma);
720 
723  BUG_ON(!device->device_tx_status);
724  BUG_ON(!device->device_issue_pending);
725  BUG_ON(!device->dev);
726 
727  /* note: this only matters in the
728  * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
729  */
730  if (device_has_all_tx_types(device))
732 
733  idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
734  if (!idr_ref)
735  return -ENOMEM;
736  rc = get_dma_id(device);
737  if (rc != 0) {
738  kfree(idr_ref);
739  return rc;
740  }
741 
742  atomic_set(idr_ref, 0);
743 
744  /* represent channels in sysfs. Probably want devs too */
745  list_for_each_entry(chan, &device->channels, device_node) {
746  rc = -ENOMEM;
747  chan->local = alloc_percpu(typeof(*chan->local));
748  if (chan->local == NULL)
749  goto err_out;
750  chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
751  if (chan->dev == NULL) {
752  free_percpu(chan->local);
753  chan->local = NULL;
754  goto err_out;
755  }
756 
757  chan->chan_id = chancnt++;
758  chan->dev->device.class = &dma_devclass;
759  chan->dev->device.parent = device->dev;
760  chan->dev->chan = chan;
761  chan->dev->idr_ref = idr_ref;
762  chan->dev->dev_id = device->dev_id;
763  atomic_inc(idr_ref);
764  dev_set_name(&chan->dev->device, "dma%dchan%d",
765  device->dev_id, chan->chan_id);
766 
767  rc = device_register(&chan->dev->device);
768  if (rc) {
769  free_percpu(chan->local);
770  chan->local = NULL;
771  kfree(chan->dev);
772  atomic_dec(idr_ref);
773  goto err_out;
774  }
775  chan->client_count = 0;
776  }
777  device->chancnt = chancnt;
778 
779  mutex_lock(&dma_list_mutex);
780  /* take references on public channels */
781  if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
782  list_for_each_entry(chan, &device->channels, device_node) {
783  /* if clients are already waiting for channels we need
784  * to take references on their behalf
785  */
786  if (dma_chan_get(chan) == -ENODEV) {
787  /* note we can only get here for the first
788  * channel as the remaining channels are
789  * guaranteed to get a reference
790  */
791  rc = -ENODEV;
792  mutex_unlock(&dma_list_mutex);
793  goto err_out;
794  }
795  }
796  list_add_tail_rcu(&device->global_node, &dma_device_list);
797  if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
798  device->privatecnt++; /* Always private */
799  dma_channel_rebalance();
800  mutex_unlock(&dma_list_mutex);
801 
802  return 0;
803 
804 err_out:
805  /* if we never registered a channel just release the idr */
806  if (atomic_read(idr_ref) == 0) {
807  mutex_lock(&dma_list_mutex);
808  idr_remove(&dma_idr, device->dev_id);
809  mutex_unlock(&dma_list_mutex);
810  kfree(idr_ref);
811  return rc;
812  }
813 
814  list_for_each_entry(chan, &device->channels, device_node) {
815  if (chan->local == NULL)
816  continue;
817  mutex_lock(&dma_list_mutex);
818  chan->dev->chan = NULL;
819  mutex_unlock(&dma_list_mutex);
820  device_unregister(&chan->dev->device);
821  free_percpu(chan->local);
822  }
823  return rc;
824 }
826 
835 {
836  struct dma_chan *chan;
837 
838  mutex_lock(&dma_list_mutex);
839  list_del_rcu(&device->global_node);
840  dma_channel_rebalance();
841  mutex_unlock(&dma_list_mutex);
842 
843  list_for_each_entry(chan, &device->channels, device_node) {
844  WARN_ONCE(chan->client_count,
845  "%s called while %d clients hold a reference\n",
846  __func__, chan->client_count);
847  mutex_lock(&dma_list_mutex);
848  chan->dev->chan = NULL;
849  mutex_unlock(&dma_list_mutex);
850  device_unregister(&chan->dev->device);
851  free_percpu(chan->local);
852  }
853 }
855 
870  void *src, size_t len)
871 {
872  struct dma_device *dev = chan->device;
873  struct dma_async_tx_descriptor *tx;
874  dma_addr_t dma_dest, dma_src;
876  unsigned long flags;
877 
878  dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
879  dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
880  flags = DMA_CTRL_ACK |
883  tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
884 
885  if (!tx) {
886  dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
887  dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
888  return -ENOMEM;
889  }
890 
891  tx->callback = NULL;
892  cookie = tx->tx_submit(tx);
893 
894  preempt_disable();
895  __this_cpu_add(chan->local->bytes_transferred, len);
896  __this_cpu_inc(chan->local->memcpy_count);
897  preempt_enable();
898 
899  return cookie;
900 }
902 
918  unsigned int offset, void *kdata, size_t len)
919 {
920  struct dma_device *dev = chan->device;
921  struct dma_async_tx_descriptor *tx;
922  dma_addr_t dma_dest, dma_src;
924  unsigned long flags;
925 
926  dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
927  dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
929  tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
930 
931  if (!tx) {
932  dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
933  dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
934  return -ENOMEM;
935  }
936 
937  tx->callback = NULL;
938  cookie = tx->tx_submit(tx);
939 
940  preempt_disable();
941  __this_cpu_add(chan->local->bytes_transferred, len);
942  __this_cpu_inc(chan->local->memcpy_count);
943  preempt_enable();
944 
945  return cookie;
946 }
948 
964 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
965  unsigned int dest_off, struct page *src_pg, unsigned int src_off,
966  size_t len)
967 {
968  struct dma_device *dev = chan->device;
969  struct dma_async_tx_descriptor *tx;
970  dma_addr_t dma_dest, dma_src;
972  unsigned long flags;
973 
974  dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
975  dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
977  flags = DMA_CTRL_ACK;
978  tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
979 
980  if (!tx) {
981  dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
982  dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
983  return -ENOMEM;
984  }
985 
986  tx->callback = NULL;
987  cookie = tx->tx_submit(tx);
988 
989  preempt_disable();
990  __this_cpu_add(chan->local->bytes_transferred, len);
991  __this_cpu_inc(chan->local->memcpy_count);
992  preempt_enable();
993 
994  return cookie;
995 }
997 
999  struct dma_chan *chan)
1000 {
1001  tx->chan = chan;
1002  #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1003  spin_lock_init(&tx->lock);
1004  #endif
1005 }
1007 
1008 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1009  * @tx: in-flight transaction to wait on
1010  */
1011 enum dma_status
1013 {
1014  unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1015 
1016  if (!tx)
1017  return DMA_SUCCESS;
1018 
1019  while (tx->cookie == -EBUSY) {
1020  if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1021  pr_err("%s timeout waiting for descriptor submission\n",
1022  __func__);
1023  return DMA_ERROR;
1024  }
1025  cpu_relax();
1026  }
1027  return dma_sync_wait(tx->chan, tx->cookie);
1028 }
1030 
1031 /* dma_run_dependencies - helper routine for dma drivers to process
1032  * (start) dependent operations on their target channel
1033  * @tx: transaction with dependencies
1034  */
1036 {
1037  struct dma_async_tx_descriptor *dep = txd_next(tx);
1038  struct dma_async_tx_descriptor *dep_next;
1039  struct dma_chan *chan;
1040 
1041  if (!dep)
1042  return;
1043 
1044  /* we'll submit tx->next now, so clear the link */
1045  txd_clear_next(tx);
1046  chan = dep->chan;
1047 
1048  /* keep submitting up until a channel switch is detected
1049  * in that case we will be called again as a result of
1050  * processing the interrupt from async_tx_channel_switch
1051  */
1052  for (; dep; dep = dep_next) {
1053  txd_lock(dep);
1054  txd_clear_parent(dep);
1055  dep_next = txd_next(dep);
1056  if (dep_next && dep_next->chan == chan)
1057  txd_clear_next(dep); /* ->next will be submitted */
1058  else
1059  dep_next = NULL; /* submit current dep and terminate */
1060  txd_unlock(dep);
1061 
1062  dep->tx_submit(dep);
1063  }
1064 
1065  chan->device->device_issue_pending(chan);
1066 }
1068 
1069 static int __init dma_bus_init(void)
1070 {
1071  return class_register(&dma_devclass);
1072 }
1073 arch_initcall(dma_bus_init);
1074 
1075