Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fsldma.c
Go to the documentation of this file.
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  * Zhang Wei <[email protected]>, Jul 2007
8  * Ebony Zhu <[email protected]>, May 2007
9  *
10  * Description:
11  * DMA engine driver for Freescale MPC8540 DMA controller, which is
12  * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  * The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37 
38 #include "dmaengine.h"
39 #include "fsldma.h"
40 
41 #define chan_dbg(chan, fmt, arg...) \
42  dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
43 #define chan_err(chan, fmt, arg...) \
44  dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
45 
46 static const char msg_ld_oom[] = "No free memory for link descriptor";
47 
48 /*
49  * Register Helpers
50  */
51 
52 static void set_sr(struct fsldma_chan *chan, u32 val)
53 {
54  DMA_OUT(chan, &chan->regs->sr, val, 32);
55 }
56 
57 static u32 get_sr(struct fsldma_chan *chan)
58 {
59  return DMA_IN(chan, &chan->regs->sr, 32);
60 }
61 
62 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
63 {
64  DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
65 }
66 
67 static dma_addr_t get_cdar(struct fsldma_chan *chan)
68 {
69  return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
70 }
71 
72 static u32 get_bcr(struct fsldma_chan *chan)
73 {
74  return DMA_IN(chan, &chan->regs->bcr, 32);
75 }
76 
77 /*
78  * Descriptor Helpers
79  */
80 
81 static void set_desc_cnt(struct fsldma_chan *chan,
82  struct fsl_dma_ld_hw *hw, u32 count)
83 {
84  hw->count = CPU_TO_DMA(chan, count, 32);
85 }
86 
87 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
88 {
89  return DMA_TO_CPU(chan, desc->hw.count, 32);
90 }
91 
92 static void set_desc_src(struct fsldma_chan *chan,
93  struct fsl_dma_ld_hw *hw, dma_addr_t src)
94 {
95  u64 snoop_bits;
96 
97  snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
99  hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
100 }
101 
102 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
103  struct fsl_desc_sw *desc)
104 {
105  u64 snoop_bits;
106 
107  snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
108  ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
109  return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
110 }
111 
112 static void set_desc_dst(struct fsldma_chan *chan,
113  struct fsl_dma_ld_hw *hw, dma_addr_t dst)
114 {
115  u64 snoop_bits;
116 
117  snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
119  hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
120 }
121 
122 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
123  struct fsl_desc_sw *desc)
124 {
125  u64 snoop_bits;
126 
127  snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
129  return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
130 }
131 
132 static void set_desc_next(struct fsldma_chan *chan,
133  struct fsl_dma_ld_hw *hw, dma_addr_t next)
134 {
135  u64 snoop_bits;
136 
137  snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
138  ? FSL_DMA_SNEN : 0;
139  hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
140 }
141 
142 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
143 {
144  u64 snoop_bits;
145 
146  snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
147  ? FSL_DMA_SNEN : 0;
148 
149  desc->hw.next_ln_addr = CPU_TO_DMA(chan,
150  DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
151  | snoop_bits, 64);
152 }
153 
154 /*
155  * DMA Engine Hardware Control Helpers
156  */
157 
158 static void dma_init(struct fsldma_chan *chan)
159 {
160  /* Reset the channel */
161  DMA_OUT(chan, &chan->regs->mr, 0, 32);
162 
163  switch (chan->feature & FSL_DMA_IP_MASK) {
164  case FSL_DMA_IP_85XX:
165  /* Set the channel to below modes:
166  * EIE - Error interrupt enable
167  * EOLNIE - End of links interrupt enable
168  * BWC - Bandwidth sharing among channels
169  */
170  DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
172  break;
173  case FSL_DMA_IP_83XX:
174  /* Set the channel to below modes:
175  * EOTIE - End-of-transfer interrupt enable
176  * PRC_RM - PCI read multiple
177  */
178  DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
179  | FSL_DMA_MR_PRC_RM, 32);
180  break;
181  }
182 }
183 
184 static int dma_is_idle(struct fsldma_chan *chan)
185 {
186  u32 sr = get_sr(chan);
187  return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
188 }
189 
190 /*
191  * Start the DMA controller
192  *
193  * Preconditions:
194  * - the CDAR register must point to the start descriptor
195  * - the MRn[CS] bit must be cleared
196  */
197 static void dma_start(struct fsldma_chan *chan)
198 {
199  u32 mode;
200 
201  mode = DMA_IN(chan, &chan->regs->mr, 32);
202 
203  if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
204  DMA_OUT(chan, &chan->regs->bcr, 0, 32);
205  mode |= FSL_DMA_MR_EMP_EN;
206  } else {
207  mode &= ~FSL_DMA_MR_EMP_EN;
208  }
209 
210  if (chan->feature & FSL_DMA_CHAN_START_EXT) {
211  mode |= FSL_DMA_MR_EMS_EN;
212  } else {
213  mode &= ~FSL_DMA_MR_EMS_EN;
214  mode |= FSL_DMA_MR_CS;
215  }
216 
217  DMA_OUT(chan, &chan->regs->mr, mode, 32);
218 }
219 
220 static void dma_halt(struct fsldma_chan *chan)
221 {
222  u32 mode;
223  int i;
224 
225  /* read the mode register */
226  mode = DMA_IN(chan, &chan->regs->mr, 32);
227 
228  /*
229  * The 85xx controller supports channel abort, which will stop
230  * the current transfer. On 83xx, this bit is the transfer error
231  * mask bit, which should not be changed.
232  */
233  if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
234  mode |= FSL_DMA_MR_CA;
235  DMA_OUT(chan, &chan->regs->mr, mode, 32);
236 
237  mode &= ~FSL_DMA_MR_CA;
238  }
239 
240  /* stop the DMA controller */
241  mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
242  DMA_OUT(chan, &chan->regs->mr, mode, 32);
243 
244  /* wait for the DMA controller to become idle */
245  for (i = 0; i < 100; i++) {
246  if (dma_is_idle(chan))
247  return;
248 
249  udelay(10);
250  }
251 
252  if (!dma_is_idle(chan))
253  chan_err(chan, "DMA halt timeout!\n");
254 }
255 
267 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
268 {
269  u32 mode;
270 
271  mode = DMA_IN(chan, &chan->regs->mr, 32);
272 
273  switch (size) {
274  case 0:
275  mode &= ~FSL_DMA_MR_SAHE;
276  break;
277  case 1:
278  case 2:
279  case 4:
280  case 8:
281  mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
282  break;
283  }
284 
285  DMA_OUT(chan, &chan->regs->mr, mode, 32);
286 }
287 
299 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
300 {
301  u32 mode;
302 
303  mode = DMA_IN(chan, &chan->regs->mr, 32);
304 
305  switch (size) {
306  case 0:
307  mode &= ~FSL_DMA_MR_DAHE;
308  break;
309  case 1:
310  case 2:
311  case 4:
312  case 8:
313  mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
314  break;
315  }
316 
317  DMA_OUT(chan, &chan->regs->mr, mode, 32);
318 }
319 
332 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
333 {
334  u32 mode;
335 
336  BUG_ON(size > 1024);
337 
338  mode = DMA_IN(chan, &chan->regs->mr, 32);
339  mode |= (__ilog2(size) << 24) & 0x0f000000;
340 
341  DMA_OUT(chan, &chan->regs->mr, mode, 32);
342 }
343 
353 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
354 {
355  if (enable)
357  else
359 }
360 
371 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
372 {
373  if (enable)
375  else
377 }
378 
379 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
380 {
381  struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
382 
383  if (list_empty(&chan->ld_pending))
384  goto out_splice;
385 
386  /*
387  * Add the hardware descriptor to the chain of hardware descriptors
388  * that already exists in memory.
389  *
390  * This will un-set the EOL bit of the existing transaction, and the
391  * last link in this transaction will become the EOL descriptor.
392  */
393  set_desc_next(chan, &tail->hw, desc->async_tx.phys);
394 
395  /*
396  * Add the software descriptor and all children to the list
397  * of pending transactions
398  */
399 out_splice:
400  list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
401 }
402 
403 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
404 {
405  struct fsldma_chan *chan = to_fsl_chan(tx->chan);
406  struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
407  struct fsl_desc_sw *child;
408  unsigned long flags;
410 
411  spin_lock_irqsave(&chan->desc_lock, flags);
412 
413  /*
414  * assign cookies to all of the software descriptors
415  * that make up this transaction
416  */
417  list_for_each_entry(child, &desc->tx_list, node) {
418  cookie = dma_cookie_assign(&child->async_tx);
419  }
420 
421  /* put this transaction onto the tail of the pending queue */
422  append_ld_queue(chan, desc);
423 
424  spin_unlock_irqrestore(&chan->desc_lock, flags);
425 
426  return cookie;
427 }
428 
435 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
436 {
437  struct fsl_desc_sw *desc;
439 
440  desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
441  if (!desc) {
442  chan_dbg(chan, "out of memory for link descriptor\n");
443  return NULL;
444  }
445 
446  memset(desc, 0, sizeof(*desc));
447  INIT_LIST_HEAD(&desc->tx_list);
449  desc->async_tx.tx_submit = fsl_dma_tx_submit;
450  desc->async_tx.phys = pdesc;
451 
452 #ifdef FSL_DMA_LD_DEBUG
453  chan_dbg(chan, "LD %p allocated\n", desc);
454 #endif
455 
456  return desc;
457 }
458 
467 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
468 {
469  struct fsldma_chan *chan = to_fsl_chan(dchan);
470 
471  /* Has this channel already been allocated? */
472  if (chan->desc_pool)
473  return 1;
474 
475  /*
476  * We need the descriptor to be aligned to 32bytes
477  * for meeting FSL DMA specification requirement.
478  */
479  chan->desc_pool = dma_pool_create(chan->name, chan->dev,
480  sizeof(struct fsl_desc_sw),
481  __alignof__(struct fsl_desc_sw), 0);
482  if (!chan->desc_pool) {
483  chan_err(chan, "unable to allocate descriptor pool\n");
484  return -ENOMEM;
485  }
486 
487  /* there is at least one descriptor free to be allocated */
488  return 1;
489 }
490 
498 static void fsldma_free_desc_list(struct fsldma_chan *chan,
499  struct list_head *list)
500 {
501  struct fsl_desc_sw *desc, *_desc;
502 
503  list_for_each_entry_safe(desc, _desc, list, node) {
504  list_del(&desc->node);
505 #ifdef FSL_DMA_LD_DEBUG
506  chan_dbg(chan, "LD %p free\n", desc);
507 #endif
508  dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
509  }
510 }
511 
512 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
513  struct list_head *list)
514 {
515  struct fsl_desc_sw *desc, *_desc;
516 
517  list_for_each_entry_safe_reverse(desc, _desc, list, node) {
518  list_del(&desc->node);
519 #ifdef FSL_DMA_LD_DEBUG
520  chan_dbg(chan, "LD %p free\n", desc);
521 #endif
522  dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
523  }
524 }
525 
530 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
531 {
532  struct fsldma_chan *chan = to_fsl_chan(dchan);
533  unsigned long flags;
534 
535  chan_dbg(chan, "free all channel resources\n");
536  spin_lock_irqsave(&chan->desc_lock, flags);
537  fsldma_free_desc_list(chan, &chan->ld_pending);
538  fsldma_free_desc_list(chan, &chan->ld_running);
539  spin_unlock_irqrestore(&chan->desc_lock, flags);
540 
542  chan->desc_pool = NULL;
543 }
544 
545 static struct dma_async_tx_descriptor *
546 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
547 {
548  struct fsldma_chan *chan;
549  struct fsl_desc_sw *new;
550 
551  if (!dchan)
552  return NULL;
553 
554  chan = to_fsl_chan(dchan);
555 
556  new = fsl_dma_alloc_descriptor(chan);
557  if (!new) {
558  chan_err(chan, "%s\n", msg_ld_oom);
559  return NULL;
560  }
561 
562  new->async_tx.cookie = -EBUSY;
563  new->async_tx.flags = flags;
564 
565  /* Insert the link descriptor to the LD ring */
566  list_add_tail(&new->node, &new->tx_list);
567 
568  /* Set End-of-link to the last link descriptor of new list */
569  set_ld_eol(chan, new);
570 
571  return &new->async_tx;
572 }
573 
574 static struct dma_async_tx_descriptor *
575 fsl_dma_prep_memcpy(struct dma_chan *dchan,
576  dma_addr_t dma_dst, dma_addr_t dma_src,
577  size_t len, unsigned long flags)
578 {
579  struct fsldma_chan *chan;
580  struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
581  size_t copy;
582 
583  if (!dchan)
584  return NULL;
585 
586  if (!len)
587  return NULL;
588 
589  chan = to_fsl_chan(dchan);
590 
591  do {
592 
593  /* Allocate the link descriptor from DMA pool */
594  new = fsl_dma_alloc_descriptor(chan);
595  if (!new) {
596  chan_err(chan, "%s\n", msg_ld_oom);
597  goto fail;
598  }
599 
600  copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
601 
602  set_desc_cnt(chan, &new->hw, copy);
603  set_desc_src(chan, &new->hw, dma_src);
604  set_desc_dst(chan, &new->hw, dma_dst);
605 
606  if (!first)
607  first = new;
608  else
609  set_desc_next(chan, &prev->hw, new->async_tx.phys);
610 
611  new->async_tx.cookie = 0;
612  async_tx_ack(&new->async_tx);
613 
614  prev = new;
615  len -= copy;
616  dma_src += copy;
617  dma_dst += copy;
618 
619  /* Insert the link descriptor to the LD ring */
620  list_add_tail(&new->node, &first->tx_list);
621  } while (len);
622 
623  new->async_tx.flags = flags; /* client is in control of this ack */
624  new->async_tx.cookie = -EBUSY;
625 
626  /* Set End-of-link to the last link descriptor of new list */
627  set_ld_eol(chan, new);
628 
629  return &first->async_tx;
630 
631 fail:
632  if (!first)
633  return NULL;
634 
635  fsldma_free_desc_list_reverse(chan, &first->tx_list);
636  return NULL;
637 }
638 
639 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
640  struct scatterlist *dst_sg, unsigned int dst_nents,
641  struct scatterlist *src_sg, unsigned int src_nents,
642  unsigned long flags)
643 {
644  struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
645  struct fsldma_chan *chan = to_fsl_chan(dchan);
646  size_t dst_avail, src_avail;
647  dma_addr_t dst, src;
648  size_t len;
649 
650  /* basic sanity checks */
651  if (dst_nents == 0 || src_nents == 0)
652  return NULL;
653 
654  if (dst_sg == NULL || src_sg == NULL)
655  return NULL;
656 
657  /*
658  * TODO: should we check that both scatterlists have the same
659  * TODO: number of bytes in total? Is that really an error?
660  */
661 
662  /* get prepared for the loop */
663  dst_avail = sg_dma_len(dst_sg);
664  src_avail = sg_dma_len(src_sg);
665 
666  /* run until we are out of scatterlist entries */
667  while (true) {
668 
669  /* create the largest transaction possible */
670  len = min_t(size_t, src_avail, dst_avail);
671  len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
672  if (len == 0)
673  goto fetch;
674 
675  dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
676  src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
677 
678  /* allocate and populate the descriptor */
679  new = fsl_dma_alloc_descriptor(chan);
680  if (!new) {
681  chan_err(chan, "%s\n", msg_ld_oom);
682  goto fail;
683  }
684 
685  set_desc_cnt(chan, &new->hw, len);
686  set_desc_src(chan, &new->hw, src);
687  set_desc_dst(chan, &new->hw, dst);
688 
689  if (!first)
690  first = new;
691  else
692  set_desc_next(chan, &prev->hw, new->async_tx.phys);
693 
694  new->async_tx.cookie = 0;
695  async_tx_ack(&new->async_tx);
696  prev = new;
697 
698  /* Insert the link descriptor to the LD ring */
699  list_add_tail(&new->node, &first->tx_list);
700 
701  /* update metadata */
702  dst_avail -= len;
703  src_avail -= len;
704 
705 fetch:
706  /* fetch the next dst scatterlist entry */
707  if (dst_avail == 0) {
708 
709  /* no more entries: we're done */
710  if (dst_nents == 0)
711  break;
712 
713  /* fetch the next entry: if there are no more: done */
714  dst_sg = sg_next(dst_sg);
715  if (dst_sg == NULL)
716  break;
717 
718  dst_nents--;
719  dst_avail = sg_dma_len(dst_sg);
720  }
721 
722  /* fetch the next src scatterlist entry */
723  if (src_avail == 0) {
724 
725  /* no more entries: we're done */
726  if (src_nents == 0)
727  break;
728 
729  /* fetch the next entry: if there are no more: done */
730  src_sg = sg_next(src_sg);
731  if (src_sg == NULL)
732  break;
733 
734  src_nents--;
735  src_avail = sg_dma_len(src_sg);
736  }
737  }
738 
739  new->async_tx.flags = flags; /* client is in control of this ack */
740  new->async_tx.cookie = -EBUSY;
741 
742  /* Set End-of-link to the last link descriptor of new list */
743  set_ld_eol(chan, new);
744 
745  return &first->async_tx;
746 
747 fail:
748  if (!first)
749  return NULL;
750 
751  fsldma_free_desc_list_reverse(chan, &first->tx_list);
752  return NULL;
753 }
754 
768 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
769  struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
770  enum dma_transfer_direction direction, unsigned long flags,
771  void *context)
772 {
773  /*
774  * This operation is not supported on the Freescale DMA controller
775  *
776  * However, we need to provide the function pointer to allow the
777  * device_control() method to work.
778  */
779  return NULL;
780 }
781 
782 static int fsl_dma_device_control(struct dma_chan *dchan,
783  enum dma_ctrl_cmd cmd, unsigned long arg)
784 {
785  struct dma_slave_config *config;
786  struct fsldma_chan *chan;
787  unsigned long flags;
788  int size;
789 
790  if (!dchan)
791  return -EINVAL;
792 
793  chan = to_fsl_chan(dchan);
794 
795  switch (cmd) {
796  case DMA_TERMINATE_ALL:
797  spin_lock_irqsave(&chan->desc_lock, flags);
798 
799  /* Halt the DMA engine */
800  dma_halt(chan);
801 
802  /* Remove and free all of the descriptors in the LD queue */
803  fsldma_free_desc_list(chan, &chan->ld_pending);
804  fsldma_free_desc_list(chan, &chan->ld_running);
805  chan->idle = true;
806 
807  spin_unlock_irqrestore(&chan->desc_lock, flags);
808  return 0;
809 
810  case DMA_SLAVE_CONFIG:
811  config = (struct dma_slave_config *)arg;
812 
813  /* make sure the channel supports setting burst size */
814  if (!chan->set_request_count)
815  return -ENXIO;
816 
817  /* we set the controller burst size depending on direction */
818  if (config->direction == DMA_MEM_TO_DEV)
819  size = config->dst_addr_width * config->dst_maxburst;
820  else
821  size = config->src_addr_width * config->src_maxburst;
822 
823  chan->set_request_count(chan, size);
824  return 0;
825 
827 
828  /* make sure the channel supports external start */
829  if (!chan->toggle_ext_start)
830  return -ENXIO;
831 
832  chan->toggle_ext_start(chan, arg);
833  return 0;
834 
835  default:
836  return -ENXIO;
837  }
838 
839  return 0;
840 }
841 
851 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
852  struct fsl_desc_sw *desc)
853 {
854  struct dma_async_tx_descriptor *txd = &desc->async_tx;
855  struct device *dev = chan->common.device->dev;
856  dma_addr_t src = get_desc_src(chan, desc);
857  dma_addr_t dst = get_desc_dst(chan, desc);
858  u32 len = get_desc_cnt(chan, desc);
859 
860  /* Run the link descriptor callback function */
861  if (txd->callback) {
862 #ifdef FSL_DMA_LD_DEBUG
863  chan_dbg(chan, "LD %p callback\n", desc);
864 #endif
865  txd->callback(txd->callback_param);
866  }
867 
868  /* Run any dependencies */
870 
871  /* Unmap the dst buffer, if requested */
872  if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
874  dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
875  else
876  dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
877  }
878 
879  /* Unmap the src buffer, if requested */
880  if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
882  dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
883  else
884  dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
885  }
886 
887 #ifdef FSL_DMA_LD_DEBUG
888  chan_dbg(chan, "LD %p free\n", desc);
889 #endif
890  dma_pool_free(chan->desc_pool, desc, txd->phys);
891 }
892 
900 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
901 {
902  struct fsl_desc_sw *desc;
903 
904  /*
905  * If the list of pending descriptors is empty, then we
906  * don't need to do any work at all
907  */
908  if (list_empty(&chan->ld_pending)) {
909  chan_dbg(chan, "no pending LDs\n");
910  return;
911  }
912 
913  /*
914  * The DMA controller is not idle, which means that the interrupt
915  * handler will start any queued transactions when it runs after
916  * this transaction finishes
917  */
918  if (!chan->idle) {
919  chan_dbg(chan, "DMA controller still busy\n");
920  return;
921  }
922 
923  /*
924  * If there are some link descriptors which have not been
925  * transferred, we need to start the controller
926  */
927 
928  /*
929  * Move all elements from the queue of pending transactions
930  * onto the list of running transactions
931  */
932  chan_dbg(chan, "idle, starting controller\n");
933  desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
934  list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
935 
936  /*
937  * The 85xx DMA controller doesn't clear the channel start bit
938  * automatically at the end of a transfer. Therefore we must clear
939  * it in software before starting the transfer.
940  */
941  if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
942  u32 mode;
943 
944  mode = DMA_IN(chan, &chan->regs->mr, 32);
945  mode &= ~FSL_DMA_MR_CS;
946  DMA_OUT(chan, &chan->regs->mr, mode, 32);
947  }
948 
949  /*
950  * Program the descriptor's address into the DMA controller,
951  * then start the DMA transaction
952  */
953  set_cdar(chan, desc->async_tx.phys);
954  get_cdar(chan);
955 
956  dma_start(chan);
957  chan->idle = false;
958 }
959 
964 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
965 {
966  struct fsldma_chan *chan = to_fsl_chan(dchan);
967  unsigned long flags;
968 
969  spin_lock_irqsave(&chan->desc_lock, flags);
970  fsl_chan_xfer_ld_queue(chan);
971  spin_unlock_irqrestore(&chan->desc_lock, flags);
972 }
973 
978 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
980  struct dma_tx_state *txstate)
981 {
982  struct fsldma_chan *chan = to_fsl_chan(dchan);
983  enum dma_status ret;
984  unsigned long flags;
985 
986  spin_lock_irqsave(&chan->desc_lock, flags);
987  ret = dma_cookie_status(dchan, cookie, txstate);
988  spin_unlock_irqrestore(&chan->desc_lock, flags);
989 
990  return ret;
991 }
992 
993 /*----------------------------------------------------------------------------*/
994 /* Interrupt Handling */
995 /*----------------------------------------------------------------------------*/
996 
997 static irqreturn_t fsldma_chan_irq(int irq, void *data)
998 {
999  struct fsldma_chan *chan = data;
1000  u32 stat;
1001 
1002  /* save and clear the status register */
1003  stat = get_sr(chan);
1004  set_sr(chan, stat);
1005  chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1006 
1007  /* check that this was really our device */
1008  stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1009  if (!stat)
1010  return IRQ_NONE;
1011 
1012  if (stat & FSL_DMA_SR_TE)
1013  chan_err(chan, "Transfer Error!\n");
1014 
1015  /*
1016  * Programming Error
1017  * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1018  * trigger a PE interrupt.
1019  */
1020  if (stat & FSL_DMA_SR_PE) {
1021  chan_dbg(chan, "irq: Programming Error INT\n");
1022  stat &= ~FSL_DMA_SR_PE;
1023  if (get_bcr(chan) != 0)
1024  chan_err(chan, "Programming Error!\n");
1025  }
1026 
1027  /*
1028  * For MPC8349, EOCDI event need to update cookie
1029  * and start the next transfer if it exist.
1030  */
1031  if (stat & FSL_DMA_SR_EOCDI) {
1032  chan_dbg(chan, "irq: End-of-Chain link INT\n");
1033  stat &= ~FSL_DMA_SR_EOCDI;
1034  }
1035 
1036  /*
1037  * If it current transfer is the end-of-transfer,
1038  * we should clear the Channel Start bit for
1039  * prepare next transfer.
1040  */
1041  if (stat & FSL_DMA_SR_EOLNI) {
1042  chan_dbg(chan, "irq: End-of-link INT\n");
1043  stat &= ~FSL_DMA_SR_EOLNI;
1044  }
1045 
1046  /* check that the DMA controller is really idle */
1047  if (!dma_is_idle(chan))
1048  chan_err(chan, "irq: controller not idle!\n");
1049 
1050  /* check that we handled all of the bits */
1051  if (stat)
1052  chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1053 
1054  /*
1055  * Schedule the tasklet to handle all cleanup of the current
1056  * transaction. It will start a new transaction if there is
1057  * one pending.
1058  */
1059  tasklet_schedule(&chan->tasklet);
1060  chan_dbg(chan, "irq: Exit\n");
1061  return IRQ_HANDLED;
1062 }
1063 
1064 static void dma_do_tasklet(unsigned long data)
1065 {
1066  struct fsldma_chan *chan = (struct fsldma_chan *)data;
1067  struct fsl_desc_sw *desc, *_desc;
1068  LIST_HEAD(ld_cleanup);
1069  unsigned long flags;
1070 
1071  chan_dbg(chan, "tasklet entry\n");
1072 
1073  spin_lock_irqsave(&chan->desc_lock, flags);
1074 
1075  /* update the cookie if we have some descriptors to cleanup */
1076  if (!list_empty(&chan->ld_running)) {
1078 
1079  desc = to_fsl_desc(chan->ld_running.prev);
1080  cookie = desc->async_tx.cookie;
1081  dma_cookie_complete(&desc->async_tx);
1082 
1083  chan_dbg(chan, "completed_cookie=%d\n", cookie);
1084  }
1085 
1086  /*
1087  * move the descriptors to a temporary list so we can drop the lock
1088  * during the entire cleanup operation
1089  */
1090  list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1091 
1092  /* the hardware is now idle and ready for more */
1093  chan->idle = true;
1094 
1095  /*
1096  * Start any pending transactions automatically
1097  *
1098  * In the ideal case, we keep the DMA controller busy while we go
1099  * ahead and free the descriptors below.
1100  */
1101  fsl_chan_xfer_ld_queue(chan);
1102  spin_unlock_irqrestore(&chan->desc_lock, flags);
1103 
1104  /* Run the callback for each descriptor, in order */
1105  list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1106 
1107  /* Remove from the list of transactions */
1108  list_del(&desc->node);
1109 
1110  /* Run all cleanup for this descriptor */
1111  fsldma_cleanup_descriptor(chan, desc);
1112  }
1113 
1114  chan_dbg(chan, "tasklet exit\n");
1115 }
1116 
1117 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1118 {
1119  struct fsldma_device *fdev = data;
1120  struct fsldma_chan *chan;
1121  unsigned int handled = 0;
1122  u32 gsr, mask;
1123  int i;
1124 
1125  gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1126  : in_le32(fdev->regs);
1127  mask = 0xff000000;
1128  dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1129 
1130  for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1131  chan = fdev->chan[i];
1132  if (!chan)
1133  continue;
1134 
1135  if (gsr & mask) {
1136  dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1137  fsldma_chan_irq(irq, chan);
1138  handled++;
1139  }
1140 
1141  gsr &= ~mask;
1142  mask >>= 8;
1143  }
1144 
1145  return IRQ_RETVAL(handled);
1146 }
1147 
1148 static void fsldma_free_irqs(struct fsldma_device *fdev)
1149 {
1150  struct fsldma_chan *chan;
1151  int i;
1152 
1153  if (fdev->irq != NO_IRQ) {
1154  dev_dbg(fdev->dev, "free per-controller IRQ\n");
1155  free_irq(fdev->irq, fdev);
1156  return;
1157  }
1158 
1159  for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1160  chan = fdev->chan[i];
1161  if (chan && chan->irq != NO_IRQ) {
1162  chan_dbg(chan, "free per-channel IRQ\n");
1163  free_irq(chan->irq, chan);
1164  }
1165  }
1166 }
1167 
1168 static int fsldma_request_irqs(struct fsldma_device *fdev)
1169 {
1170  struct fsldma_chan *chan;
1171  int ret;
1172  int i;
1173 
1174  /* if we have a per-controller IRQ, use that */
1175  if (fdev->irq != NO_IRQ) {
1176  dev_dbg(fdev->dev, "request per-controller IRQ\n");
1177  ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1178  "fsldma-controller", fdev);
1179  return ret;
1180  }
1181 
1182  /* no per-controller IRQ, use the per-channel IRQs */
1183  for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1184  chan = fdev->chan[i];
1185  if (!chan)
1186  continue;
1187 
1188  if (chan->irq == NO_IRQ) {
1189  chan_err(chan, "interrupts property missing in device tree\n");
1190  ret = -ENODEV;
1191  goto out_unwind;
1192  }
1193 
1194  chan_dbg(chan, "request per-channel IRQ\n");
1195  ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1196  "fsldma-chan", chan);
1197  if (ret) {
1198  chan_err(chan, "unable to request per-channel IRQ\n");
1199  goto out_unwind;
1200  }
1201  }
1202 
1203  return 0;
1204 
1205 out_unwind:
1206  for (/* none */; i >= 0; i--) {
1207  chan = fdev->chan[i];
1208  if (!chan)
1209  continue;
1210 
1211  if (chan->irq == NO_IRQ)
1212  continue;
1213 
1214  free_irq(chan->irq, chan);
1215  }
1216 
1217  return ret;
1218 }
1219 
1220 /*----------------------------------------------------------------------------*/
1221 /* OpenFirmware Subsystem */
1222 /*----------------------------------------------------------------------------*/
1223 
1224 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1225  struct device_node *node, u32 feature, const char *compatible)
1226 {
1227  struct fsldma_chan *chan;
1228  struct resource res;
1229  int err;
1230 
1231  /* alloc channel */
1232  chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1233  if (!chan) {
1234  dev_err(fdev->dev, "no free memory for DMA channels!\n");
1235  err = -ENOMEM;
1236  goto out_return;
1237  }
1238 
1239  /* ioremap registers for use */
1240  chan->regs = of_iomap(node, 0);
1241  if (!chan->regs) {
1242  dev_err(fdev->dev, "unable to ioremap registers\n");
1243  err = -ENOMEM;
1244  goto out_free_chan;
1245  }
1246 
1247  err = of_address_to_resource(node, 0, &res);
1248  if (err) {
1249  dev_err(fdev->dev, "unable to find 'reg' property\n");
1250  goto out_iounmap_regs;
1251  }
1252 
1253  chan->feature = feature;
1254  if (!fdev->feature)
1255  fdev->feature = chan->feature;
1256 
1257  /*
1258  * If the DMA device's feature is different than the feature
1259  * of its channels, report the bug
1260  */
1261  WARN_ON(fdev->feature != chan->feature);
1262 
1263  chan->dev = fdev->dev;
1264  chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1265  if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1266  dev_err(fdev->dev, "too many channels for device\n");
1267  err = -EINVAL;
1268  goto out_iounmap_regs;
1269  }
1270 
1271  fdev->chan[chan->id] = chan;
1272  tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1273  snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1274 
1275  /* Initialize the channel */
1276  dma_init(chan);
1277 
1278  /* Clear cdar registers */
1279  set_cdar(chan, 0);
1280 
1281  switch (chan->feature & FSL_DMA_IP_MASK) {
1282  case FSL_DMA_IP_85XX:
1283  chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1284  case FSL_DMA_IP_83XX:
1285  chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1286  chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1287  chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1288  chan->set_request_count = fsl_chan_set_request_count;
1289  }
1290 
1291  spin_lock_init(&chan->desc_lock);
1292  INIT_LIST_HEAD(&chan->ld_pending);
1293  INIT_LIST_HEAD(&chan->ld_running);
1294  chan->idle = true;
1295 
1296  chan->common.device = &fdev->common;
1297  dma_cookie_init(&chan->common);
1298 
1299  /* find the IRQ line, if it exists in the device tree */
1300  chan->irq = irq_of_parse_and_map(node, 0);
1301 
1302  /* Add the channel to DMA device channel list */
1303  list_add_tail(&chan->common.device_node, &fdev->common.channels);
1304  fdev->common.chancnt++;
1305 
1306  dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1307  chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1308 
1309  return 0;
1310 
1311 out_iounmap_regs:
1312  iounmap(chan->regs);
1313 out_free_chan:
1314  kfree(chan);
1315 out_return:
1316  return err;
1317 }
1318 
1319 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1320 {
1321  irq_dispose_mapping(chan->irq);
1322  list_del(&chan->common.device_node);
1323  iounmap(chan->regs);
1324  kfree(chan);
1325 }
1326 
1327 static int __devinit fsldma_of_probe(struct platform_device *op)
1328 {
1329  struct fsldma_device *fdev;
1330  struct device_node *child;
1331  int err;
1332 
1333  fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1334  if (!fdev) {
1335  dev_err(&op->dev, "No enough memory for 'priv'\n");
1336  err = -ENOMEM;
1337  goto out_return;
1338  }
1339 
1340  fdev->dev = &op->dev;
1341  INIT_LIST_HEAD(&fdev->common.channels);
1342 
1343  /* ioremap the registers for use */
1344  fdev->regs = of_iomap(op->dev.of_node, 0);
1345  if (!fdev->regs) {
1346  dev_err(&op->dev, "unable to ioremap registers\n");
1347  err = -ENOMEM;
1348  goto out_free_fdev;
1349  }
1350 
1351  /* map the channel IRQ if it exists, but don't hookup the handler yet */
1352  fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1353 
1354  dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1355  dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1356  dma_cap_set(DMA_SG, fdev->common.cap_mask);
1357  dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1358  fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1359  fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1360  fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1361  fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1362  fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1363  fdev->common.device_tx_status = fsl_tx_status;
1364  fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1365  fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1366  fdev->common.device_control = fsl_dma_device_control;
1367  fdev->common.dev = &op->dev;
1368 
1369  dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1370 
1371  dev_set_drvdata(&op->dev, fdev);
1372 
1373  /*
1374  * We cannot use of_platform_bus_probe() because there is no
1375  * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1376  * channel object.
1377  */
1378  for_each_child_of_node(op->dev.of_node, child) {
1379  if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1380  fsl_dma_chan_probe(fdev, child,
1382  "fsl,eloplus-dma-channel");
1383  }
1384 
1385  if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1386  fsl_dma_chan_probe(fdev, child,
1388  "fsl,elo-dma-channel");
1389  }
1390  }
1391 
1392  /*
1393  * Hookup the IRQ handler(s)
1394  *
1395  * If we have a per-controller interrupt, we prefer that to the
1396  * per-channel interrupts to reduce the number of shared interrupt
1397  * handlers on the same IRQ line
1398  */
1399  err = fsldma_request_irqs(fdev);
1400  if (err) {
1401  dev_err(fdev->dev, "unable to request IRQs\n");
1402  goto out_free_fdev;
1403  }
1404 
1406  return 0;
1407 
1408 out_free_fdev:
1409  irq_dispose_mapping(fdev->irq);
1410  kfree(fdev);
1411 out_return:
1412  return err;
1413 }
1414 
1415 static int fsldma_of_remove(struct platform_device *op)
1416 {
1417  struct fsldma_device *fdev;
1418  unsigned int i;
1419 
1420  fdev = dev_get_drvdata(&op->dev);
1422 
1423  fsldma_free_irqs(fdev);
1424 
1425  for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1426  if (fdev->chan[i])
1427  fsl_dma_chan_remove(fdev->chan[i]);
1428  }
1429 
1430  iounmap(fdev->regs);
1431  dev_set_drvdata(&op->dev, NULL);
1432  kfree(fdev);
1433 
1434  return 0;
1435 }
1436 
1437 static const struct of_device_id fsldma_of_ids[] = {
1438  { .compatible = "fsl,eloplus-dma", },
1439  { .compatible = "fsl,elo-dma", },
1440  {}
1441 };
1442 
1443 static struct platform_driver fsldma_of_driver = {
1444  .driver = {
1445  .name = "fsl-elo-dma",
1446  .owner = THIS_MODULE,
1447  .of_match_table = fsldma_of_ids,
1448  },
1449  .probe = fsldma_of_probe,
1450  .remove = fsldma_of_remove,
1451 };
1452 
1453 /*----------------------------------------------------------------------------*/
1454 /* Module Init / Exit */
1455 /*----------------------------------------------------------------------------*/
1456 
1457 static __init int fsldma_init(void)
1458 {
1459  pr_info("Freescale Elo / Elo Plus DMA driver\n");
1460  return platform_driver_register(&fsldma_of_driver);
1461 }
1462 
1463 static void __exit fsldma_exit(void)
1464 {
1465  platform_driver_unregister(&fsldma_of_driver);
1466 }
1467 
1468 subsys_initcall(fsldma_init);
1469 module_exit(fsldma_exit);
1470 
1471 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1472 MODULE_LICENSE("GPL");