Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hifn_795x.c
Go to the documentation of this file.
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <[email protected]>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35 
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38 
39 #include <asm/kmap_types.h>
40 
41 //#define HIFN_DEBUG
42 
43 #ifdef HIFN_DEBUG
44 #define dprintk(f, a...) printk(f, ##a)
45 #else
46 #define dprintk(f, a...) do {} while (0)
47 #endif
48 
49 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
50 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
51 MODULE_PARM_DESC(hifn_pll_ref,
52  "PLL reference clock (pci[freq] or ext[freq], default ext)");
53 
54 static atomic_t hifn_dev_number;
55 
56 #define ACRYPTO_OP_DECRYPT 0
57 #define ACRYPTO_OP_ENCRYPT 1
58 #define ACRYPTO_OP_HMAC 2
59 #define ACRYPTO_OP_RNG 3
60 
61 #define ACRYPTO_MODE_ECB 0
62 #define ACRYPTO_MODE_CBC 1
63 #define ACRYPTO_MODE_CFB 2
64 #define ACRYPTO_MODE_OFB 3
65 
66 #define ACRYPTO_TYPE_AES_128 0
67 #define ACRYPTO_TYPE_AES_192 1
68 #define ACRYPTO_TYPE_AES_256 2
69 #define ACRYPTO_TYPE_3DES 3
70 #define ACRYPTO_TYPE_DES 4
71 
72 #define PCI_VENDOR_ID_HIFN 0x13A3
73 #define PCI_DEVICE_ID_HIFN_7955 0x0020
74 #define PCI_DEVICE_ID_HIFN_7956 0x001d
75 
76 /* I/O region sizes */
77 
78 #define HIFN_BAR0_SIZE 0x1000
79 #define HIFN_BAR1_SIZE 0x2000
80 #define HIFN_BAR2_SIZE 0x8000
81 
82 /* DMA registres */
83 
84 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
85 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
86 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
87 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
88 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
89 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
90 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
91 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
92 #define HIFN_CHIP_ID 0x98 /* Chip ID */
93 
94 /*
95  * Processing Unit Registers (offset from BASEREG0)
96  */
97 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
98 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
99 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
100 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
101 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
102 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
103 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
104 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
105 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
106 
107 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
108 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
109 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
110 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
111 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
112 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
113 
114 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
115 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
116 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
117 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
118 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
119 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
120 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
121 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
122 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
123 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
124 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
125 
126 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
127 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
128 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
129 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
130 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
131 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
132 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
133 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
134 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
135 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
136 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
137 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
138 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
139 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
140 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
141 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
142 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
143 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
144 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
145 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
146 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
147 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
148 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
149 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
150 
151 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
152 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
153 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
154 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
155 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
156 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
157 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
158 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
159 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
160 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
161 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
162 
163 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
164 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
165 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
166 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
167 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
168 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
169 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
170 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
171 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
172 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
173 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
174 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
175 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
176 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
177 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
178 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
179 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
180 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
181 
182 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
183 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
184 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
185 
186 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
187 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
188 
189 /*
190  * DMA Interface Registers (offset from BASEREG1)
191  */
192 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
193 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
194 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
195 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
196 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
197 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
198 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
199 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
200 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
201 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
202 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
203 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
204 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
205 #define HIFN_1_REVID 0x98 /* Revision ID */
206 #define HIFN_1_UNLOCK_SECRET1 0xf4
207 #define HIFN_1_UNLOCK_SECRET2 0xfc
208 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
209 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
210 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
211 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
212 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
213 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
214 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
215 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
216 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
217 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
218 
219 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
220 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
221 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
222 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
223 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
224 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
225 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
226 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
227 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
228 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
229 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
230 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
231 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
232 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
233 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
234 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
235 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
236 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
237 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
238 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
239 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
240 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
241 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
242 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
243 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
244 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
245 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
246 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
247 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
248 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
249 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
250 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
251 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
252 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
253 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
254 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
255 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
256 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
257 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
258 
259 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
260 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
261 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
262 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
263 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
264 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
265 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
266 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
267 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
268 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
269 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
270 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
271 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
272 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
273 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
274 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
275 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
276 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
277 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
278 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
279 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
280 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
281 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
282 
283 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
284 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
285 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
286 #define HIFN_DMACNFG_UNLOCK 0x00000800
287 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
288 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
289 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
290 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
291 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
292 
293 /* PLL configuration register */
294 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
295 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
296 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
297 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
298 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
299 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
300 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
301 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
302 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
303 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
304 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
305 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
306 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
307 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
308 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
309 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
310 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
311 
312 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
313 
314 /* Public key reset register (HIFN_1_PUB_RESET) */
315 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
316 
317 /* Public base address register (HIFN_1_PUB_BASE) */
318 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
319 
320 /* Public operand length register (HIFN_1_PUB_OPLEN) */
321 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
322 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
323 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
324 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
325 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
326 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
327 
328 /* Public operation register (HIFN_1_PUB_OP) */
329 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
330 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
331 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
332 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
333 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
334 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
335 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
336 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
337 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
338 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
339 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
340 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
341 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
342 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
343 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
344 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
345 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
346 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
347 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
348 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
349 
350 /* Public status register (HIFN_1_PUB_STATUS) */
351 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
352 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
353 
354 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
355 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
356 
357 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
358 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
359 
360 #define HIFN_NAMESIZE 32
361 #define HIFN_MAX_RESULT_ORDER 5
362 
363 #define HIFN_D_CMD_RSIZE 24*1
364 #define HIFN_D_SRC_RSIZE 80*1
365 #define HIFN_D_DST_RSIZE 80*1
366 #define HIFN_D_RES_RSIZE 24*1
367 
368 #define HIFN_D_DST_DALIGN 4
369 
370 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
371 
372 #define AES_MIN_KEY_SIZE 16
373 #define AES_MAX_KEY_SIZE 32
374 
375 #define HIFN_DES_KEY_LENGTH 8
376 #define HIFN_3DES_KEY_LENGTH 24
377 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
378 #define HIFN_IV_LENGTH 8
379 #define HIFN_AES_IV_LENGTH 16
380 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
381 
382 #define HIFN_MAC_KEY_LENGTH 64
383 #define HIFN_MD5_LENGTH 16
384 #define HIFN_SHA1_LENGTH 20
385 #define HIFN_MAC_TRUNC_LENGTH 12
386 
387 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
388 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
389 #define HIFN_USED_RESULT 12
390 
391 struct hifn_desc
392 {
393  volatile __le32 l;
394  volatile __le32 p;
395 };
396 
397 struct hifn_dma {
402 
405 
406  /*
407  * Our current positions for insertion and removal from the descriptor
408  * rings.
409  */
410  volatile int cmdi, srci, dsti, resi;
411  volatile int cmdu, srcu, dstu, resu;
412  int cmdk, srck, dstk, resk;
413 };
414 
415 #define HIFN_FLAG_CMD_BUSY (1<<0)
416 #define HIFN_FLAG_SRC_BUSY (1<<1)
417 #define HIFN_FLAG_DST_BUSY (1<<2)
418 #define HIFN_FLAG_RES_BUSY (1<<3)
419 #define HIFN_FLAG_OLD_KEY (1<<4)
420 
421 #define HIFN_DEFAULT_ACTIVE_NUM 5
422 
424 {
426 
427  int irq;
428 
429  struct pci_dev *pdev;
430  void __iomem *bar[3];
431 
432  void *desc_virt;
434 
436 
438 
440 
444  unsigned long reset;
445  unsigned long success;
446  unsigned long prev_success;
447 
449 
451 
454 
455  unsigned int pk_clk_freq;
456 
457 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
458  unsigned int rng_wait_time;
459  ktime_t rngtime;
460  struct hwrng rng;
461 #endif
462 };
463 
464 #define HIFN_D_LENGTH 0x0000ffff
465 #define HIFN_D_NOINVALID 0x01000000
466 #define HIFN_D_MASKDONEIRQ 0x02000000
467 #define HIFN_D_DESTOVER 0x04000000
468 #define HIFN_D_OVER 0x08000000
469 #define HIFN_D_LAST 0x20000000
470 #define HIFN_D_JUMP 0x40000000
471 #define HIFN_D_VALID 0x80000000
472 
474 {
475  volatile __le16 masks;
476  volatile __le16 session_num;
479 };
480 
481 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
482 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
483 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
484 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
485 #define HIFN_BASE_CMD_DECODE 0x2000
486 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
487 #define HIFN_BASE_CMD_SRCLEN_S 14
488 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
489 #define HIFN_BASE_CMD_DSTLEN_S 12
490 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
491 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
492 
493 /*
494  * Structure to help build up the command data structure.
495  */
497 {
498  volatile __le16 masks;
499  volatile __le16 header_skip;
501  volatile __le16 reserved;
502 };
503 
504 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
505 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
506 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
507 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
508 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
509 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
510 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
511 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
512 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
513 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
514 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
515 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
516 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
517 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
518 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
519 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
520 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
521 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
522 #define HIFN_CRYPT_CMD_SRCLEN_S 14
523 
524 /*
525  * Structure to help build up the command data structure.
526  */
528 {
529  volatile __le16 masks;
530  volatile __le16 header_skip;
532  volatile __le16 reserved;
533 };
534 
535 #define HIFN_MAC_CMD_ALG_MASK 0x0001
536 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
537 #define HIFN_MAC_CMD_ALG_MD5 0x0001
538 #define HIFN_MAC_CMD_MODE_MASK 0x000c
539 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
540 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
541 #define HIFN_MAC_CMD_MODE_HASH 0x0008
542 #define HIFN_MAC_CMD_MODE_FULL 0x0004
543 #define HIFN_MAC_CMD_TRUNC 0x0010
544 #define HIFN_MAC_CMD_RESULT 0x0020
545 #define HIFN_MAC_CMD_APPEND 0x0040
546 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
547 #define HIFN_MAC_CMD_SRCLEN_S 14
548 
549 /*
550  * MAC POS IPsec initiates authentication after encryption on encodes
551  * and before decryption on decodes.
552  */
553 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
554 #define HIFN_MAC_CMD_NEW_KEY 0x0800
555 
557 {
558  volatile __le16 masks;
559  volatile __le16 header_skip;
561  volatile __le16 reserved;
562 };
563 
564 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
565 #define HIFN_COMP_CMD_SRCLEN_S 14
566 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
567 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
568 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
569 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
570 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
571 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
572 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
573 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
574 
576 {
577  volatile __le16 flags;
578  volatile __le16 session;
579  volatile __le16 src_cnt; /* 15:0 of source count */
580  volatile __le16 dst_cnt; /* 15:0 of dest count */
581 };
582 
583 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
584 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
585 #define HIFN_BASE_RES_SRCLEN_S 14
586 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
587 #define HIFN_BASE_RES_DSTLEN_S 12
588 
590 {
591  volatile __le16 flags;
592  volatile __le16 crc;
593 };
594 
595 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
596 #define HIFN_COMP_RES_LCB_S 8
597 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
598 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
599 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
600 
602 {
603  volatile __le16 flags;
604  volatile __le16 reserved;
605  /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
606 };
607 
608 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
609 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
610 
612 {
613  volatile __le16 flags;
614  volatile __le16 reserved;
615 };
616 
617 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
618 
619 #ifndef HIFN_POLL_FREQUENCY
620 #define HIFN_POLL_FREQUENCY 0x1
621 #endif
622 
623 #ifndef HIFN_POLL_SCALAR
624 #define HIFN_POLL_SCALAR 0x0
625 #endif
626 
627 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
628 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
629 
631 {
632  struct list_head entry;
633  struct crypto_alg alg;
634  struct hifn_device *dev;
635 };
636 
637 #define ASYNC_SCATTERLIST_CACHE 16
638 
639 #define ASYNC_FLAGS_MISALIGNED (1<<0)
640 
642 {
645  int num;
646 };
647 
649 {
651  struct hifn_device *dev;
652  unsigned int keysize;
653 };
654 
656 {
657  u8 *iv;
658  unsigned int ivsize;
661 };
662 
663 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
664 
665 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
666 {
667  u32 ret;
668 
669  ret = readl(dev->bar[0] + reg);
670 
671  return ret;
672 }
673 
674 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
675 {
676  u32 ret;
677 
678  ret = readl(dev->bar[1] + reg);
679 
680  return ret;
681 }
682 
683 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
684 {
685  writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
686 }
687 
688 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
689 {
690  writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
691 }
692 
693 static void hifn_wait_puc(struct hifn_device *dev)
694 {
695  int i;
696  u32 ret;
697 
698  for (i=10000; i > 0; --i) {
699  ret = hifn_read_0(dev, HIFN_0_PUCTRL);
700  if (!(ret & HIFN_PUCTRL_RESET))
701  break;
702 
703  udelay(1);
704  }
705 
706  if (!i)
707  dprintk("%s: Failed to reset PUC unit.\n", dev->name);
708 }
709 
710 static void hifn_reset_puc(struct hifn_device *dev)
711 {
712  hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
713  hifn_wait_puc(dev);
714 }
715 
716 static void hifn_stop_device(struct hifn_device *dev)
717 {
718  hifn_write_1(dev, HIFN_1_DMA_CSR,
721  hifn_write_0(dev, HIFN_0_PUIER, 0);
722  hifn_write_1(dev, HIFN_1_DMA_IER, 0);
723 }
724 
725 static void hifn_reset_dma(struct hifn_device *dev, int full)
726 {
727  hifn_stop_device(dev);
728 
729  /*
730  * Setting poll frequency and others to 0.
731  */
732  hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
734  mdelay(1);
735 
736  /*
737  * Reset DMA.
738  */
739  if (full) {
740  hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
741  mdelay(1);
742  } else {
743  hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
745  hifn_reset_puc(dev);
746  }
747 
748  hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
750 
751  hifn_reset_puc(dev);
752 }
753 
754 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
755 {
756  int i;
757  u32 v;
758 
759  for (i = 0; i < cnt; i++) {
760 
761  /* get the parity */
762  v = a & 0x80080125;
763  v ^= v >> 16;
764  v ^= v >> 8;
765  v ^= v >> 4;
766  v ^= v >> 2;
767  v ^= v >> 1;
768 
769  a = (v & 1) ^ (a << 1);
770  }
771 
772  return a;
773 }
774 
775 static struct pci2id {
776  u_short pci_vendor;
777  u_short pci_prod;
778  char card_id[13];
779 } pci2id[] = {
780  {
783  { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
784  0x00, 0x00, 0x00, 0x00, 0x00 }
785  },
786  {
789  { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
790  0x00, 0x00, 0x00, 0x00, 0x00 }
791  }
792 };
793 
794 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
795 static int hifn_rng_data_present(struct hwrng *rng, int wait)
796 {
797  struct hifn_device *dev = (struct hifn_device *)rng->priv;
798  s64 nsec;
799 
800  nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
801  nsec -= dev->rng_wait_time;
802  if (nsec <= 0)
803  return 1;
804  if (!wait)
805  return 0;
806  ndelay(nsec);
807  return 1;
808 }
809 
810 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
811 {
812  struct hifn_device *dev = (struct hifn_device *)rng->priv;
813 
814  *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
815  dev->rngtime = ktime_get();
816  return 4;
817 }
818 
819 static int hifn_register_rng(struct hifn_device *dev)
820 {
821  /*
822  * We must wait at least 256 Pk_clk cycles between two reads of the rng.
823  */
824  dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
825  dev->pk_clk_freq) * 256;
826 
827  dev->rng.name = dev->name;
828  dev->rng.data_present = hifn_rng_data_present,
829  dev->rng.data_read = hifn_rng_data_read,
830  dev->rng.priv = (unsigned long)dev;
831 
832  return hwrng_register(&dev->rng);
833 }
834 
835 static void hifn_unregister_rng(struct hifn_device *dev)
836 {
837  hwrng_unregister(&dev->rng);
838 }
839 #else
840 #define hifn_register_rng(dev) 0
841 #define hifn_unregister_rng(dev)
842 #endif
843 
844 static int hifn_init_pubrng(struct hifn_device *dev)
845 {
846  int i;
847 
848  hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
850 
851  for (i=100; i > 0; --i) {
852  mdelay(1);
853 
854  if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
855  break;
856  }
857 
858  if (!i)
859  dprintk("Chip %s: Failed to initialise public key engine.\n",
860  dev->name);
861  else {
862  hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
863  dev->dmareg |= HIFN_DMAIER_PUBDONE;
864  hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
865 
866  dprintk("Chip %s: Public key engine has been successfully "
867  "initialised.\n", dev->name);
868  }
869 
870  /*
871  * Enable RNG engine.
872  */
873 
874  hifn_write_1(dev, HIFN_1_RNG_CONFIG,
875  hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
876  dprintk("Chip %s: RNG engine has been successfully initialised.\n",
877  dev->name);
878 
879 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
880  /* First value must be discarded */
881  hifn_read_1(dev, HIFN_1_RNG_DATA);
882  dev->rngtime = ktime_get();
883 #endif
884  return 0;
885 }
886 
887 static int hifn_enable_crypto(struct hifn_device *dev)
888 {
889  u32 dmacfg, addr;
890  char *offtbl = NULL;
891  int i;
892 
893  for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
894  if (pci2id[i].pci_vendor == dev->pdev->vendor &&
895  pci2id[i].pci_prod == dev->pdev->device) {
896  offtbl = pci2id[i].card_id;
897  break;
898  }
899  }
900 
901  if (offtbl == NULL) {
902  dprintk("Chip %s: Unknown card!\n", dev->name);
903  return -ENODEV;
904  }
905 
906  dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
907 
908  hifn_write_1(dev, HIFN_1_DMA_CNFG,
911  mdelay(1);
912  addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
913  mdelay(1);
914  hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
915  mdelay(1);
916 
917  for (i=0; i<12; ++i) {
918  addr = hifn_next_signature(addr, offtbl[i] + 0x101);
919  hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
920 
921  mdelay(1);
922  }
923  hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
924 
925  dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
926 
927  return 0;
928 }
929 
930 static void hifn_init_dma(struct hifn_device *dev)
931 {
932  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
933  u32 dptr = dev->desc_dma;
934  int i;
935 
936  for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
937  dma->cmdr[i].p = __cpu_to_le32(dptr +
938  offsetof(struct hifn_dma, command_bufs[i][0]));
939  for (i=0; i<HIFN_D_RES_RSIZE; ++i)
940  dma->resr[i].p = __cpu_to_le32(dptr +
941  offsetof(struct hifn_dma, result_bufs[i][0]));
942 
943  /*
944  * Setup LAST descriptors.
945  */
946  dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
947  offsetof(struct hifn_dma, cmdr[0]));
948  dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
949  offsetof(struct hifn_dma, srcr[0]));
950  dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
951  offsetof(struct hifn_dma, dstr[0]));
952  dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
953  offsetof(struct hifn_dma, resr[0]));
954 
955  dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
956  dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
957  dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
958 }
959 
960 /*
961  * Initialize the PLL. We need to know the frequency of the reference clock
962  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
963  * allows us to operate without the risk of overclocking the chip. If it
964  * actually uses 33MHz, the chip will operate at half the speed, this can be
965  * overriden by specifying the frequency as module parameter (pci33).
966  *
967  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
968  * stable clock and the PCI clock frequency may vary, so the default is the
969  * external clock. There is no way to find out its frequency, we default to
970  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
971  * has an external crystal populated at 66MHz.
972  */
973 static void hifn_init_pll(struct hifn_device *dev)
974 {
975  unsigned int freq, m;
976  u32 pllcfg;
977 
978  pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
979 
980  if (strncmp(hifn_pll_ref, "ext", 3) == 0)
981  pllcfg |= HIFN_PLL_REF_CLK_PLL;
982  else
983  pllcfg |= HIFN_PLL_REF_CLK_HBI;
984 
985  if (hifn_pll_ref[3] != '\0')
986  freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
987  else {
988  freq = 66;
989  printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
990  "override with hifn_pll_ref=%.3s<frequency>\n",
991  freq, hifn_pll_ref);
992  }
993 
994  m = HIFN_PLL_FCK_MAX / freq;
995 
996  pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
997  if (m <= 8)
998  pllcfg |= HIFN_PLL_IS_1_8;
999  else
1000  pllcfg |= HIFN_PLL_IS_9_12;
1001 
1002  /* Select clock source and enable clock bypass */
1003  hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1005 
1006  /* Let the chip lock to the input clock */
1007  mdelay(10);
1008 
1009  /* Disable clock bypass */
1010  hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1012 
1013  /* Switch the engines to the PLL */
1014  hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1016 
1017  /*
1018  * The Fpk_clk runs at half the total speed. Its frequency is needed to
1019  * calculate the minimum time between two reads of the rng. Since 33MHz
1020  * is actually 33.333... we overestimate the frequency here, resulting
1021  * in slightly larger intervals.
1022  */
1023  dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1024 }
1025 
1026 static void hifn_init_registers(struct hifn_device *dev)
1027 {
1028  u32 dptr = dev->desc_dma;
1029 
1030  /* Initialization magic... */
1031  hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1032  hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1033  hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1034 
1035  /* write all 4 ring address registers */
1036  hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1037  offsetof(struct hifn_dma, cmdr[0]));
1038  hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1039  offsetof(struct hifn_dma, srcr[0]));
1040  hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1041  offsetof(struct hifn_dma, dstr[0]));
1042  hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1043  offsetof(struct hifn_dma, resr[0]));
1044 
1045  mdelay(2);
1046 #if 0
1047  hifn_write_1(dev, HIFN_1_DMA_CSR,
1060 #else
1061  hifn_write_1(dev, HIFN_1_DMA_CSR,
1074 #endif
1075  hifn_read_1(dev, HIFN_1_DMA_CSR);
1076 
1081  dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1082 
1083  hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1084  hifn_read_1(dev, HIFN_1_DMA_IER);
1085 #if 0
1086  hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1090 #else
1091  hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1092 #endif
1093  hifn_init_pll(dev);
1094 
1095  hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1096  hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1100 }
1101 
1102 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1103  unsigned dlen, unsigned slen, u16 mask, u8 snum)
1104 {
1105  struct hifn_base_command *base_cmd;
1106  u8 *buf_pos = buf;
1107 
1108  base_cmd = (struct hifn_base_command *)buf_pos;
1109  base_cmd->masks = __cpu_to_le16(mask);
1110  base_cmd->total_source_count =
1112  base_cmd->total_dest_count =
1114 
1115  dlen >>= 16;
1116  slen >>= 16;
1117  base_cmd->session_num = __cpu_to_le16(snum |
1120 
1121  return sizeof(struct hifn_base_command);
1122 }
1123 
1124 static int hifn_setup_crypto_command(struct hifn_device *dev,
1125  u8 *buf, unsigned dlen, unsigned slen,
1126  u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1127 {
1128  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1129  struct hifn_crypt_command *cry_cmd;
1130  u8 *buf_pos = buf;
1131  u16 cmd_len;
1132 
1133  cry_cmd = (struct hifn_crypt_command *)buf_pos;
1134 
1135  cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1136  dlen >>= 16;
1137  cry_cmd->masks = __cpu_to_le16(mode |
1138  ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1140  cry_cmd->header_skip = 0;
1141  cry_cmd->reserved = 0;
1142 
1143  buf_pos += sizeof(struct hifn_crypt_command);
1144 
1145  dma->cmdu++;
1146  if (dma->cmdu > 1) {
1147  dev->dmareg |= HIFN_DMAIER_C_WAIT;
1148  hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1149  }
1150 
1151  if (keylen) {
1152  memcpy(buf_pos, key, keylen);
1153  buf_pos += keylen;
1154  }
1155  if (ivsize) {
1156  memcpy(buf_pos, iv, ivsize);
1157  buf_pos += ivsize;
1158  }
1159 
1160  cmd_len = buf_pos - buf;
1161 
1162  return cmd_len;
1163 }
1164 
1165 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1166  struct hifn_context *ctx, struct hifn_request_context *rctx,
1167  void *priv, unsigned int nbytes)
1168 {
1169  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1170  int cmd_len, sa_idx;
1171  u8 *buf, *buf_pos;
1172  u16 mask;
1173 
1174  sa_idx = dma->cmdi;
1175  buf_pos = buf = dma->command_bufs[dma->cmdi];
1176 
1177  mask = 0;
1178  switch (rctx->op) {
1179  case ACRYPTO_OP_DECRYPT:
1181  break;
1182  case ACRYPTO_OP_ENCRYPT:
1183  mask = HIFN_BASE_CMD_CRYPT;
1184  break;
1185  case ACRYPTO_OP_HMAC:
1186  mask = HIFN_BASE_CMD_MAC;
1187  break;
1188  default:
1189  goto err_out;
1190  }
1191 
1192  buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1193  nbytes, mask, dev->snum);
1194 
1195  if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1196  u16 md = 0;
1197 
1198  if (ctx->keysize)
1199  md |= HIFN_CRYPT_CMD_NEW_KEY;
1200  if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1201  md |= HIFN_CRYPT_CMD_NEW_IV;
1202 
1203  switch (rctx->mode) {
1204  case ACRYPTO_MODE_ECB:
1206  break;
1207  case ACRYPTO_MODE_CBC:
1209  break;
1210  case ACRYPTO_MODE_CFB:
1212  break;
1213  case ACRYPTO_MODE_OFB:
1215  break;
1216  default:
1217  goto err_out;
1218  }
1219 
1220  switch (rctx->type) {
1221  case ACRYPTO_TYPE_AES_128:
1222  if (ctx->keysize != 16)
1223  goto err_out;
1224  md |= HIFN_CRYPT_CMD_KSZ_128 |
1226  break;
1227  case ACRYPTO_TYPE_AES_192:
1228  if (ctx->keysize != 24)
1229  goto err_out;
1230  md |= HIFN_CRYPT_CMD_KSZ_192 |
1232  break;
1233  case ACRYPTO_TYPE_AES_256:
1234  if (ctx->keysize != 32)
1235  goto err_out;
1236  md |= HIFN_CRYPT_CMD_KSZ_256 |
1238  break;
1239  case ACRYPTO_TYPE_3DES:
1240  if (ctx->keysize != 24)
1241  goto err_out;
1243  break;
1244  case ACRYPTO_TYPE_DES:
1245  if (ctx->keysize != 8)
1246  goto err_out;
1247  md |= HIFN_CRYPT_CMD_ALG_DES;
1248  break;
1249  default:
1250  goto err_out;
1251  }
1252 
1253  buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1254  nbytes, nbytes, ctx->key, ctx->keysize,
1255  rctx->iv, rctx->ivsize, md);
1256  }
1257 
1258  dev->sa[sa_idx] = priv;
1259  dev->started++;
1260 
1261  cmd_len = buf_pos - buf;
1262  dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1264 
1265  if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1266  dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1269  dma->cmdi = 0;
1270  } else
1271  dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1272 
1273  if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1274  hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1275  dev->flags |= HIFN_FLAG_CMD_BUSY;
1276  }
1277  return 0;
1278 
1279 err_out:
1280  return -EINVAL;
1281 }
1282 
1283 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1284  unsigned int offset, unsigned int size, int last)
1285 {
1286  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1287  int idx;
1288  dma_addr_t addr;
1289 
1290  addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1291 
1292  idx = dma->srci;
1293 
1294  dma->srcr[idx].p = __cpu_to_le32(addr);
1295  dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1296  HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1297 
1298  if (++idx == HIFN_D_SRC_RSIZE) {
1299  dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1301  (last ? HIFN_D_LAST : 0));
1302  idx = 0;
1303  }
1304 
1305  dma->srci = idx;
1306  dma->srcu++;
1307 
1308  if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1309  hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1310  dev->flags |= HIFN_FLAG_SRC_BUSY;
1311  }
1312 
1313  return size;
1314 }
1315 
1316 static void hifn_setup_res_desc(struct hifn_device *dev)
1317 {
1318  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1319 
1320  dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1322  /*
1323  * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1324  * HIFN_D_LAST);
1325  */
1326 
1327  if (++dma->resi == HIFN_D_RES_RSIZE) {
1330  dma->resi = 0;
1331  }
1332 
1333  dma->resu++;
1334 
1335  if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1336  hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1337  dev->flags |= HIFN_FLAG_RES_BUSY;
1338  }
1339 }
1340 
1341 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1342  unsigned offset, unsigned size, int last)
1343 {
1344  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1345  int idx;
1346  dma_addr_t addr;
1347 
1348  addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1349 
1350  idx = dma->dsti;
1351  dma->dstr[idx].p = __cpu_to_le32(addr);
1352  dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1353  HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1354 
1355  if (++idx == HIFN_D_DST_RSIZE) {
1356  dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1358  (last ? HIFN_D_LAST : 0));
1359  idx = 0;
1360  }
1361  dma->dsti = idx;
1362  dma->dstu++;
1363 
1364  if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1365  hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1366  dev->flags |= HIFN_FLAG_DST_BUSY;
1367  }
1368 }
1369 
1370 static int hifn_setup_dma(struct hifn_device *dev,
1371  struct hifn_context *ctx, struct hifn_request_context *rctx,
1372  struct scatterlist *src, struct scatterlist *dst,
1373  unsigned int nbytes, void *priv)
1374 {
1375  struct scatterlist *t;
1376  struct page *spage, *dpage;
1377  unsigned int soff, doff;
1378  unsigned int n, len;
1379 
1380  n = nbytes;
1381  while (n) {
1382  spage = sg_page(src);
1383  soff = src->offset;
1384  len = min(src->length, n);
1385 
1386  hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1387 
1388  src++;
1389  n -= len;
1390  }
1391 
1392  t = &rctx->walk.cache[0];
1393  n = nbytes;
1394  while (n) {
1395  if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1396  BUG_ON(!sg_page(t));
1397  dpage = sg_page(t);
1398  doff = 0;
1399  len = t->length;
1400  } else {
1401  BUG_ON(!sg_page(dst));
1402  dpage = sg_page(dst);
1403  doff = dst->offset;
1404  len = dst->length;
1405  }
1406  len = min(len, n);
1407 
1408  hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1409 
1410  dst++;
1411  t++;
1412  n -= len;
1413  }
1414 
1415  hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1416  hifn_setup_res_desc(dev);
1417  return 0;
1418 }
1419 
1420 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1421  int num, gfp_t gfp_flags)
1422 {
1423  int i;
1424 
1425  num = min(ASYNC_SCATTERLIST_CACHE, num);
1426  sg_init_table(w->cache, num);
1427 
1428  w->num = 0;
1429  for (i=0; i<num; ++i) {
1430  struct page *page = alloc_page(gfp_flags);
1431  struct scatterlist *s;
1432 
1433  if (!page)
1434  break;
1435 
1436  s = &w->cache[i];
1437 
1438  sg_set_page(s, page, PAGE_SIZE, 0);
1439  w->num++;
1440  }
1441 
1442  return i;
1443 }
1444 
1445 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1446 {
1447  int i;
1448 
1449  for (i=0; i<w->num; ++i) {
1450  struct scatterlist *s = &w->cache[i];
1451 
1452  __free_page(sg_page(s));
1453 
1454  s->length = 0;
1455  }
1456 
1457  w->num = 0;
1458 }
1459 
1460 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1461  unsigned int size, unsigned int *nbytesp)
1462 {
1463  unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1464  int idx = 0;
1465 
1466  if (drest < size || size > nbytes)
1467  return -EINVAL;
1468 
1469  while (size) {
1470  copy = min3(drest, size, dst->length);
1471 
1472  size -= copy;
1473  drest -= copy;
1474  nbytes -= copy;
1475 
1476  dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1477  __func__, copy, size, drest, nbytes);
1478 
1479  dst++;
1480  idx++;
1481  }
1482 
1483  *nbytesp = nbytes;
1484  *drestp = drest;
1485 
1486  return idx;
1487 }
1488 
1489 static int hifn_cipher_walk(struct ablkcipher_request *req,
1490  struct hifn_cipher_walk *w)
1491 {
1492  struct scatterlist *dst, *t;
1493  unsigned int nbytes = req->nbytes, offset, copy, diff;
1494  int idx, tidx, err;
1495 
1496  tidx = idx = 0;
1497  offset = 0;
1498  while (nbytes) {
1499  if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1500  return -EINVAL;
1501 
1502  dst = &req->dst[idx];
1503 
1504  dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1505  __func__, dst->length, dst->offset, offset, nbytes);
1506 
1507  if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1509  offset) {
1510  unsigned slen = min(dst->length - offset, nbytes);
1511  unsigned dlen = PAGE_SIZE;
1512 
1513  t = &w->cache[idx];
1514 
1515  err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1516  if (err < 0)
1517  return err;
1518 
1519  idx += err;
1520 
1521  copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1522  diff = slen & (HIFN_D_DST_DALIGN - 1);
1523 
1524  if (dlen < nbytes) {
1525  /*
1526  * Destination page does not have enough space
1527  * to put there additional blocksized chunk,
1528  * so we mark that page as containing only
1529  * blocksize aligned chunks:
1530  * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1531  * and increase number of bytes to be processed
1532  * in next chunk:
1533  * nbytes += diff;
1534  */
1535  nbytes += diff;
1536 
1537  /*
1538  * Temporary of course...
1539  * Kick author if you will catch this one.
1540  */
1541  printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1542  "slen: %u, offset: %u.\n",
1543  __func__, dlen, nbytes, slen, offset);
1544  printk(KERN_ERR "%s: please contact author to fix this "
1545  "issue, generally you should not catch "
1546  "this path under any condition but who "
1547  "knows how did you use crypto code.\n"
1548  "Thank you.\n", __func__);
1549  BUG();
1550  } else {
1551  copy += diff + nbytes;
1552 
1553  dst = &req->dst[idx];
1554 
1555  err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1556  if (err < 0)
1557  return err;
1558 
1559  idx += err;
1560  }
1561 
1562  t->length = copy;
1563  t->offset = offset;
1564  } else {
1565  nbytes -= min(dst->length, nbytes);
1566  idx++;
1567  }
1568 
1569  tidx++;
1570  }
1571 
1572  return tidx;
1573 }
1574 
1575 static int hifn_setup_session(struct ablkcipher_request *req)
1576 {
1577  struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1578  struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1579  struct hifn_device *dev = ctx->dev;
1580  unsigned long dlen, flags;
1581  unsigned int nbytes = req->nbytes, idx = 0;
1582  int err = -EINVAL, sg_num;
1583  struct scatterlist *dst;
1584 
1585  if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1586  goto err_out_exit;
1587 
1588  rctx->walk.flags = 0;
1589 
1590  while (nbytes) {
1591  dst = &req->dst[idx];
1592  dlen = min(dst->length, nbytes);
1593 
1594  if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1595  !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1596  rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1597 
1598  nbytes -= dlen;
1599  idx++;
1600  }
1601 
1602  if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1603  err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1604  if (err < 0)
1605  return err;
1606  }
1607 
1608  sg_num = hifn_cipher_walk(req, &rctx->walk);
1609  if (sg_num < 0) {
1610  err = sg_num;
1611  goto err_out_exit;
1612  }
1613 
1614  spin_lock_irqsave(&dev->lock, flags);
1615  if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1616  err = -EAGAIN;
1617  goto err_out;
1618  }
1619 
1620  err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1621  if (err)
1622  goto err_out;
1623 
1624  dev->snum++;
1625 
1627  spin_unlock_irqrestore(&dev->lock, flags);
1628 
1629  return 0;
1630 
1631 err_out:
1632  spin_unlock_irqrestore(&dev->lock, flags);
1633 err_out_exit:
1634  if (err) {
1635  printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1636  "type: %u, err: %d.\n",
1637  dev->name, rctx->iv, rctx->ivsize,
1638  ctx->key, ctx->keysize,
1639  rctx->mode, rctx->op, rctx->type, err);
1640  }
1641 
1642  return err;
1643 }
1644 
1645 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1646 {
1647  int n, err;
1648  u8 src[16];
1649  struct hifn_context ctx;
1650  struct hifn_request_context rctx;
1651  u8 fips_aes_ecb_from_zero[16] = {
1652  0x66, 0xE9, 0x4B, 0xD4,
1653  0xEF, 0x8A, 0x2C, 0x3B,
1654  0x88, 0x4C, 0xFA, 0x59,
1655  0xCA, 0x34, 0x2B, 0x2E};
1656  struct scatterlist sg;
1657 
1658  memset(src, 0, sizeof(src));
1659  memset(ctx.key, 0, sizeof(ctx.key));
1660 
1661  ctx.dev = dev;
1662  ctx.keysize = 16;
1663  rctx.ivsize = 0;
1664  rctx.iv = NULL;
1665  rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1666  rctx.mode = ACRYPTO_MODE_ECB;
1667  rctx.type = ACRYPTO_TYPE_AES_128;
1668  rctx.walk.cache[0].length = 0;
1669 
1670  sg_init_one(&sg, &src, sizeof(src));
1671 
1672  err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1673  if (err)
1674  goto err_out;
1675 
1676  dev->started = 0;
1677  msleep(200);
1678 
1679  dprintk("%s: decoded: ", dev->name);
1680  for (n=0; n<sizeof(src); ++n)
1681  dprintk("%02x ", src[n]);
1682  dprintk("\n");
1683  dprintk("%s: FIPS : ", dev->name);
1684  for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1685  dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1686  dprintk("\n");
1687 
1688  if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1689  printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1690  "passed.\n", dev->name);
1691  return 0;
1692  }
1693 
1694 err_out:
1695  printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1696  return -1;
1697 }
1698 
1699 static int hifn_start_device(struct hifn_device *dev)
1700 {
1701  int err;
1702 
1703  dev->started = dev->active = 0;
1704  hifn_reset_dma(dev, 1);
1705 
1706  err = hifn_enable_crypto(dev);
1707  if (err)
1708  return err;
1709 
1710  hifn_reset_puc(dev);
1711 
1712  hifn_init_dma(dev);
1713 
1714  hifn_init_registers(dev);
1715 
1716  hifn_init_pubrng(dev);
1717 
1718  return 0;
1719 }
1720 
1721 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1722  struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1723 {
1724  unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1725  void *daddr;
1726  int idx = 0;
1727 
1728  if (srest < size || size > nbytes)
1729  return -EINVAL;
1730 
1731  while (size) {
1732  copy = min3(srest, dst->length, size);
1733 
1734  daddr = kmap_atomic(sg_page(dst));
1735  memcpy(daddr + dst->offset + offset, saddr, copy);
1736  kunmap_atomic(daddr);
1737 
1738  nbytes -= copy;
1739  size -= copy;
1740  srest -= copy;
1741  saddr += copy;
1742  offset = 0;
1743 
1744  dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1745  __func__, copy, size, srest, nbytes);
1746 
1747  dst++;
1748  idx++;
1749  }
1750 
1751  *nbytesp = nbytes;
1752  *srestp = srest;
1753 
1754  return idx;
1755 }
1756 
1757 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1758 {
1759  unsigned long flags;
1760 
1761  spin_lock_irqsave(&dev->lock, flags);
1762  dev->sa[i] = NULL;
1763  dev->started--;
1764  if (dev->started < 0)
1765  printk("%s: started: %d.\n", __func__, dev->started);
1766  spin_unlock_irqrestore(&dev->lock, flags);
1767  BUG_ON(dev->started < 0);
1768 }
1769 
1770 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1771 {
1772  struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1773 
1774  if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1775  unsigned int nbytes = req->nbytes;
1776  int idx = 0, err;
1777  struct scatterlist *dst, *t;
1778  void *saddr;
1779 
1780  while (nbytes) {
1781  t = &rctx->walk.cache[idx];
1782  dst = &req->dst[idx];
1783 
1784  dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1785  "sg_page(dst): %p, dst->length: %u, "
1786  "nbytes: %u.\n",
1787  __func__, sg_page(t), t->length,
1788  sg_page(dst), dst->length, nbytes);
1789 
1790  if (!t->length) {
1791  nbytes -= min(dst->length, nbytes);
1792  idx++;
1793  continue;
1794  }
1795 
1796  saddr = kmap_atomic(sg_page(t));
1797 
1798  err = ablkcipher_get(saddr, &t->length, t->offset,
1799  dst, nbytes, &nbytes);
1800  if (err < 0) {
1801  kunmap_atomic(saddr);
1802  break;
1803  }
1804 
1805  idx += err;
1806  kunmap_atomic(saddr);
1807  }
1808 
1809  hifn_cipher_walk_exit(&rctx->walk);
1810  }
1811 
1812  req->base.complete(&req->base, error);
1813 }
1814 
1815 static void hifn_clear_rings(struct hifn_device *dev, int error)
1816 {
1817  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1818  int i, u;
1819 
1820  dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1821  "k: %d.%d.%d.%d.\n",
1822  dev->name,
1823  dma->cmdi, dma->srci, dma->dsti, dma->resi,
1824  dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1825  dma->cmdk, dma->srck, dma->dstk, dma->resk);
1826 
1827  i = dma->resk; u = dma->resu;
1828  while (u != 0) {
1829  if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1830  break;
1831 
1832  if (dev->sa[i]) {
1833  dev->success++;
1834  dev->reset = 0;
1835  hifn_process_ready(dev->sa[i], error);
1836  hifn_complete_sa(dev, i);
1837  }
1838 
1839  if (++i == HIFN_D_RES_RSIZE)
1840  i = 0;
1841  u--;
1842  }
1843  dma->resk = i; dma->resu = u;
1844 
1845  i = dma->srck; u = dma->srcu;
1846  while (u != 0) {
1847  if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1848  break;
1849  if (++i == HIFN_D_SRC_RSIZE)
1850  i = 0;
1851  u--;
1852  }
1853  dma->srck = i; dma->srcu = u;
1854 
1855  i = dma->cmdk; u = dma->cmdu;
1856  while (u != 0) {
1857  if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1858  break;
1859  if (++i == HIFN_D_CMD_RSIZE)
1860  i = 0;
1861  u--;
1862  }
1863  dma->cmdk = i; dma->cmdu = u;
1864 
1865  i = dma->dstk; u = dma->dstu;
1866  while (u != 0) {
1867  if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1868  break;
1869  if (++i == HIFN_D_DST_RSIZE)
1870  i = 0;
1871  u--;
1872  }
1873  dma->dstk = i; dma->dstu = u;
1874 
1875  dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1876  "k: %d.%d.%d.%d.\n",
1877  dev->name,
1878  dma->cmdi, dma->srci, dma->dsti, dma->resi,
1879  dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1880  dma->cmdk, dma->srck, dma->dstk, dma->resk);
1881 }
1882 
1883 static void hifn_work(struct work_struct *work)
1884 {
1885  struct delayed_work *dw = to_delayed_work(work);
1886  struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1887  unsigned long flags;
1888  int reset = 0;
1889  u32 r = 0;
1890 
1891  spin_lock_irqsave(&dev->lock, flags);
1892  if (dev->active == 0) {
1893  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1894 
1895  if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1896  dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1898  }
1899  if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1900  dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1902  }
1903  if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1904  dev->flags &= ~HIFN_FLAG_DST_BUSY;
1906  }
1907  if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1908  dev->flags &= ~HIFN_FLAG_RES_BUSY;
1910  }
1911  if (r)
1912  hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1913  } else
1914  dev->active--;
1915 
1916  if ((dev->prev_success == dev->success) && dev->started)
1917  reset = 1;
1918  dev->prev_success = dev->success;
1919  spin_unlock_irqrestore(&dev->lock, flags);
1920 
1921  if (reset) {
1922  if (++dev->reset >= 5) {
1923  int i;
1924  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1925 
1926  printk("%s: r: %08x, active: %d, started: %d, "
1927  "success: %lu: qlen: %u/%u, reset: %d.\n",
1928  dev->name, r, dev->active, dev->started,
1929  dev->success, dev->queue.qlen, dev->queue.max_qlen,
1930  reset);
1931 
1932  printk("%s: res: ", __func__);
1933  for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1934  printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1935  if (dev->sa[i]) {
1936  hifn_process_ready(dev->sa[i], -ENODEV);
1937  hifn_complete_sa(dev, i);
1938  }
1939  }
1940  printk("\n");
1941 
1942  hifn_reset_dma(dev, 1);
1943  hifn_stop_device(dev);
1944  hifn_start_device(dev);
1945  dev->reset = 0;
1946  }
1947 
1948  tasklet_schedule(&dev->tasklet);
1949  }
1950 
1951  schedule_delayed_work(&dev->work, HZ);
1952 }
1953 
1954 static irqreturn_t hifn_interrupt(int irq, void *data)
1955 {
1956  struct hifn_device *dev = (struct hifn_device *)data;
1957  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1958  u32 dmacsr, restart;
1959 
1960  dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1961 
1962  dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1963  "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1964  dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1965  dma->cmdi, dma->srci, dma->dsti, dma->resi,
1966  dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1967 
1968  if ((dmacsr & dev->dmareg) == 0)
1969  return IRQ_NONE;
1970 
1971  hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1972 
1973  if (dmacsr & HIFN_DMACSR_ENGINE)
1974  hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1975  if (dmacsr & HIFN_DMACSR_PUBDONE)
1976  hifn_write_1(dev, HIFN_1_PUB_STATUS,
1977  hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1978 
1980  if (restart) {
1981  u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1982 
1983  printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1984  dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1985  !!(dmacsr & HIFN_DMACSR_D_OVER),
1986  puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1987  if (!!(puisr & HIFN_PUISR_DSTOVER))
1988  hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1989  hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1991  }
1992 
1995  if (restart) {
1996  printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1997  dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1998  !!(dmacsr & HIFN_DMACSR_S_ABORT),
1999  !!(dmacsr & HIFN_DMACSR_D_ABORT),
2000  !!(dmacsr & HIFN_DMACSR_R_ABORT));
2001  hifn_reset_dma(dev, 1);
2002  hifn_init_dma(dev);
2003  hifn_init_registers(dev);
2004  }
2005 
2006  if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2007  dprintk("%s: wait on command.\n", dev->name);
2008  dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2009  hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2010  }
2011 
2012  tasklet_schedule(&dev->tasklet);
2013 
2014  return IRQ_HANDLED;
2015 }
2016 
2017 static void hifn_flush(struct hifn_device *dev)
2018 {
2019  unsigned long flags;
2020  struct crypto_async_request *async_req;
2021  struct ablkcipher_request *req;
2022  struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2023  int i;
2024 
2025  for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2026  struct hifn_desc *d = &dma->resr[i];
2027 
2028  if (dev->sa[i]) {
2029  hifn_process_ready(dev->sa[i],
2030  (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2031  hifn_complete_sa(dev, i);
2032  }
2033  }
2034 
2035  spin_lock_irqsave(&dev->lock, flags);
2036  while ((async_req = crypto_dequeue_request(&dev->queue))) {
2037  req = container_of(async_req, struct ablkcipher_request, base);
2038  spin_unlock_irqrestore(&dev->lock, flags);
2039 
2040  hifn_process_ready(req, -ENODEV);
2041 
2042  spin_lock_irqsave(&dev->lock, flags);
2043  }
2044  spin_unlock_irqrestore(&dev->lock, flags);
2045 }
2046 
2047 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2048  unsigned int len)
2049 {
2050  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2051  struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2052  struct hifn_device *dev = ctx->dev;
2053 
2054  if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2055  crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2056  return -1;
2057  }
2058 
2059  if (len == HIFN_DES_KEY_LENGTH) {
2061  int ret = des_ekey(tmp, key);
2062 
2063  if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2065  return -EINVAL;
2066  }
2067  }
2068 
2069  dev->flags &= ~HIFN_FLAG_OLD_KEY;
2070 
2071  memcpy(ctx->key, key, len);
2072  ctx->keysize = len;
2073 
2074  return 0;
2075 }
2076 
2077 static int hifn_handle_req(struct ablkcipher_request *req)
2078 {
2079  struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2080  struct hifn_device *dev = ctx->dev;
2081  int err = -EAGAIN;
2082 
2083  if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2084  err = hifn_setup_session(req);
2085 
2086  if (err == -EAGAIN) {
2087  unsigned long flags;
2088 
2089  spin_lock_irqsave(&dev->lock, flags);
2090  err = ablkcipher_enqueue_request(&dev->queue, req);
2091  spin_unlock_irqrestore(&dev->lock, flags);
2092  }
2093 
2094  return err;
2095 }
2096 
2097 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2098  u8 type, u8 mode)
2099 {
2100  struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2101  struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2102  unsigned ivsize;
2103 
2104  ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2105 
2106  if (req->info && mode != ACRYPTO_MODE_ECB) {
2107  if (type == ACRYPTO_TYPE_AES_128)
2108  ivsize = HIFN_AES_IV_LENGTH;
2109  else if (type == ACRYPTO_TYPE_DES)
2110  ivsize = HIFN_DES_KEY_LENGTH;
2111  else if (type == ACRYPTO_TYPE_3DES)
2112  ivsize = HIFN_3DES_KEY_LENGTH;
2113  }
2114 
2115  if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2116  if (ctx->keysize == 24)
2117  type = ACRYPTO_TYPE_AES_192;
2118  else if (ctx->keysize == 32)
2119  type = ACRYPTO_TYPE_AES_256;
2120  }
2121 
2122  rctx->op = op;
2123  rctx->mode = mode;
2124  rctx->type = type;
2125  rctx->iv = req->info;
2126  rctx->ivsize = ivsize;
2127 
2128  /*
2129  * HEAVY TODO: needs to kick Herbert XU to write documentation.
2130  * HEAVY TODO: needs to kick Herbert XU to write documentation.
2131  * HEAVY TODO: needs to kick Herbert XU to write documentation.
2132  */
2133 
2134  return hifn_handle_req(req);
2135 }
2136 
2137 static int hifn_process_queue(struct hifn_device *dev)
2138 {
2139  struct crypto_async_request *async_req, *backlog;
2140  struct ablkcipher_request *req;
2141  unsigned long flags;
2142  int err = 0;
2143 
2144  while (dev->started < HIFN_QUEUE_LENGTH) {
2145  spin_lock_irqsave(&dev->lock, flags);
2146  backlog = crypto_get_backlog(&dev->queue);
2147  async_req = crypto_dequeue_request(&dev->queue);
2148  spin_unlock_irqrestore(&dev->lock, flags);
2149 
2150  if (!async_req)
2151  break;
2152 
2153  if (backlog)
2154  backlog->complete(backlog, -EINPROGRESS);
2155 
2156  req = container_of(async_req, struct ablkcipher_request, base);
2157 
2158  err = hifn_handle_req(req);
2159  if (err)
2160  break;
2161  }
2162 
2163  return err;
2164 }
2165 
2166 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2167  u8 type, u8 mode)
2168 {
2169  int err;
2170  struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2171  struct hifn_device *dev = ctx->dev;
2172 
2173  err = hifn_setup_crypto_req(req, op, type, mode);
2174  if (err)
2175  return err;
2176 
2177  if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2178  hifn_process_queue(dev);
2179 
2180  return -EINPROGRESS;
2181 }
2182 
2183 /*
2184  * AES ecryption functions.
2185  */
2186 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2187 {
2188  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2190 }
2191 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2192 {
2193  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2195 }
2196 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2197 {
2198  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2200 }
2201 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2202 {
2203  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2205 }
2206 
2207 /*
2208  * AES decryption functions.
2209  */
2210 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2211 {
2212  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2214 }
2215 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2216 {
2217  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2219 }
2220 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2221 {
2222  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2224 }
2225 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2226 {
2227  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2229 }
2230 
2231 /*
2232  * DES ecryption functions.
2233  */
2234 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2235 {
2236  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2238 }
2239 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2240 {
2241  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2243 }
2244 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2245 {
2246  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2248 }
2249 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2250 {
2251  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2253 }
2254 
2255 /*
2256  * DES decryption functions.
2257  */
2258 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2259 {
2260  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2262 }
2263 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2264 {
2265  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2267 }
2268 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2269 {
2270  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2272 }
2273 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2274 {
2275  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2277 }
2278 
2279 /*
2280  * 3DES ecryption functions.
2281  */
2282 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2283 {
2284  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2286 }
2287 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2288 {
2289  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2291 }
2292 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2293 {
2294  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2296 }
2297 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2298 {
2299  return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2301 }
2302 
2303 /*
2304  * 3DES decryption functions.
2305  */
2306 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2307 {
2308  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2310 }
2311 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2312 {
2313  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2315 }
2316 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2317 {
2318  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2320 }
2321 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2322 {
2323  return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2325 }
2326 
2328 {
2331  unsigned int bsize;
2333 };
2334 
2335 static struct hifn_alg_template hifn_alg_templates[] = {
2336  /*
2337  * 3DES ECB, CBC, CFB and OFB modes.
2338  */
2339  {
2340  .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2341  .ablkcipher = {
2342  .min_keysize = HIFN_3DES_KEY_LENGTH,
2343  .max_keysize = HIFN_3DES_KEY_LENGTH,
2344  .setkey = hifn_setkey,
2345  .encrypt = hifn_encrypt_3des_cfb,
2346  .decrypt = hifn_decrypt_3des_cfb,
2347  },
2348  },
2349  {
2350  .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2351  .ablkcipher = {
2352  .min_keysize = HIFN_3DES_KEY_LENGTH,
2353  .max_keysize = HIFN_3DES_KEY_LENGTH,
2354  .setkey = hifn_setkey,
2355  .encrypt = hifn_encrypt_3des_ofb,
2356  .decrypt = hifn_decrypt_3des_ofb,
2357  },
2358  },
2359  {
2360  .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2361  .ablkcipher = {
2362  .ivsize = HIFN_IV_LENGTH,
2363  .min_keysize = HIFN_3DES_KEY_LENGTH,
2364  .max_keysize = HIFN_3DES_KEY_LENGTH,
2365  .setkey = hifn_setkey,
2366  .encrypt = hifn_encrypt_3des_cbc,
2367  .decrypt = hifn_decrypt_3des_cbc,
2368  },
2369  },
2370  {
2371  .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2372  .ablkcipher = {
2373  .min_keysize = HIFN_3DES_KEY_LENGTH,
2374  .max_keysize = HIFN_3DES_KEY_LENGTH,
2375  .setkey = hifn_setkey,
2376  .encrypt = hifn_encrypt_3des_ecb,
2377  .decrypt = hifn_decrypt_3des_ecb,
2378  },
2379  },
2380 
2381  /*
2382  * DES ECB, CBC, CFB and OFB modes.
2383  */
2384  {
2385  .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2386  .ablkcipher = {
2387  .min_keysize = HIFN_DES_KEY_LENGTH,
2388  .max_keysize = HIFN_DES_KEY_LENGTH,
2389  .setkey = hifn_setkey,
2390  .encrypt = hifn_encrypt_des_cfb,
2391  .decrypt = hifn_decrypt_des_cfb,
2392  },
2393  },
2394  {
2395  .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2396  .ablkcipher = {
2397  .min_keysize = HIFN_DES_KEY_LENGTH,
2398  .max_keysize = HIFN_DES_KEY_LENGTH,
2399  .setkey = hifn_setkey,
2400  .encrypt = hifn_encrypt_des_ofb,
2401  .decrypt = hifn_decrypt_des_ofb,
2402  },
2403  },
2404  {
2405  .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2406  .ablkcipher = {
2407  .ivsize = HIFN_IV_LENGTH,
2408  .min_keysize = HIFN_DES_KEY_LENGTH,
2409  .max_keysize = HIFN_DES_KEY_LENGTH,
2410  .setkey = hifn_setkey,
2411  .encrypt = hifn_encrypt_des_cbc,
2412  .decrypt = hifn_decrypt_des_cbc,
2413  },
2414  },
2415  {
2416  .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2417  .ablkcipher = {
2418  .min_keysize = HIFN_DES_KEY_LENGTH,
2419  .max_keysize = HIFN_DES_KEY_LENGTH,
2420  .setkey = hifn_setkey,
2421  .encrypt = hifn_encrypt_des_ecb,
2422  .decrypt = hifn_decrypt_des_ecb,
2423  },
2424  },
2425 
2426  /*
2427  * AES ECB, CBC, CFB and OFB modes.
2428  */
2429  {
2430  .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2431  .ablkcipher = {
2432  .min_keysize = AES_MIN_KEY_SIZE,
2433  .max_keysize = AES_MAX_KEY_SIZE,
2434  .setkey = hifn_setkey,
2435  .encrypt = hifn_encrypt_aes_ecb,
2436  .decrypt = hifn_decrypt_aes_ecb,
2437  },
2438  },
2439  {
2440  .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2441  .ablkcipher = {
2442  .ivsize = HIFN_AES_IV_LENGTH,
2443  .min_keysize = AES_MIN_KEY_SIZE,
2444  .max_keysize = AES_MAX_KEY_SIZE,
2445  .setkey = hifn_setkey,
2446  .encrypt = hifn_encrypt_aes_cbc,
2447  .decrypt = hifn_decrypt_aes_cbc,
2448  },
2449  },
2450  {
2451  .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2452  .ablkcipher = {
2453  .min_keysize = AES_MIN_KEY_SIZE,
2454  .max_keysize = AES_MAX_KEY_SIZE,
2455  .setkey = hifn_setkey,
2456  .encrypt = hifn_encrypt_aes_cfb,
2457  .decrypt = hifn_decrypt_aes_cfb,
2458  },
2459  },
2460  {
2461  .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2462  .ablkcipher = {
2463  .min_keysize = AES_MIN_KEY_SIZE,
2464  .max_keysize = AES_MAX_KEY_SIZE,
2465  .setkey = hifn_setkey,
2466  .encrypt = hifn_encrypt_aes_ofb,
2467  .decrypt = hifn_decrypt_aes_ofb,
2468  },
2469  },
2470 };
2471 
2472 static int hifn_cra_init(struct crypto_tfm *tfm)
2473 {
2474  struct crypto_alg *alg = tfm->__crt_alg;
2475  struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2476  struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2477 
2478  ctx->dev = ha->dev;
2479  tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2480  return 0;
2481 }
2482 
2483 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2484 {
2485  struct hifn_crypto_alg *alg;
2486  int err;
2487 
2488  alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2489  if (!alg)
2490  return -ENOMEM;
2491 
2492  snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2493  snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2494  t->drv_name, dev->name);
2495 
2496  alg->alg.cra_priority = 300;
2497  alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2499  alg->alg.cra_blocksize = t->bsize;
2500  alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2501  alg->alg.cra_alignmask = 0;
2502  alg->alg.cra_type = &crypto_ablkcipher_type;
2503  alg->alg.cra_module = THIS_MODULE;
2504  alg->alg.cra_u.ablkcipher = t->ablkcipher;
2505  alg->alg.cra_init = hifn_cra_init;
2506 
2507  alg->dev = dev;
2508 
2509  list_add_tail(&alg->entry, &dev->alg_list);
2510 
2511  err = crypto_register_alg(&alg->alg);
2512  if (err) {
2513  list_del(&alg->entry);
2514  kfree(alg);
2515  }
2516 
2517  return err;
2518 }
2519 
2520 static void hifn_unregister_alg(struct hifn_device *dev)
2521 {
2522  struct hifn_crypto_alg *a, *n;
2523 
2524  list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2525  list_del(&a->entry);
2527  kfree(a);
2528  }
2529 }
2530 
2531 static int hifn_register_alg(struct hifn_device *dev)
2532 {
2533  int i, err;
2534 
2535  for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2536  err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2537  if (err)
2538  goto err_out_exit;
2539  }
2540 
2541  return 0;
2542 
2543 err_out_exit:
2544  hifn_unregister_alg(dev);
2545  return err;
2546 }
2547 
2548 static void hifn_tasklet_callback(unsigned long data)
2549 {
2550  struct hifn_device *dev = (struct hifn_device *)data;
2551 
2552  /*
2553  * This is ok to call this without lock being held,
2554  * althogh it modifies some parameters used in parallel,
2555  * (like dev->success), but they are used in process
2556  * context or update is atomic (like setting dev->sa[i] to NULL).
2557  */
2558  hifn_clear_rings(dev, 0);
2559 
2560  if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2561  hifn_process_queue(dev);
2562 }
2563 
2564 static int __devinit hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2565 {
2566  int err, i;
2567  struct hifn_device *dev;
2568  char name[8];
2569 
2570  err = pci_enable_device(pdev);
2571  if (err)
2572  return err;
2573  pci_set_master(pdev);
2574 
2575  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2576  if (err)
2577  goto err_out_disable_pci_device;
2578 
2579  snprintf(name, sizeof(name), "hifn%d",
2580  atomic_inc_return(&hifn_dev_number)-1);
2581 
2582  err = pci_request_regions(pdev, name);
2583  if (err)
2584  goto err_out_disable_pci_device;
2585 
2586  if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2587  pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2588  pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2589  dprintk("%s: Broken hardware - I/O regions are too small.\n",
2590  pci_name(pdev));
2591  err = -ENODEV;
2592  goto err_out_free_regions;
2593  }
2594 
2595  dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2596  GFP_KERNEL);
2597  if (!dev) {
2598  err = -ENOMEM;
2599  goto err_out_free_regions;
2600  }
2601 
2602  INIT_LIST_HEAD(&dev->alg_list);
2603 
2604  snprintf(dev->name, sizeof(dev->name), "%s", name);
2605  spin_lock_init(&dev->lock);
2606 
2607  for (i=0; i<3; ++i) {
2608  unsigned long addr, size;
2609 
2610  addr = pci_resource_start(pdev, i);
2611  size = pci_resource_len(pdev, i);
2612 
2613  dev->bar[i] = ioremap_nocache(addr, size);
2614  if (!dev->bar[i]) {
2615  err = -ENOMEM;
2616  goto err_out_unmap_bars;
2617  }
2618  }
2619 
2620  dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2621  &dev->desc_dma);
2622  if (!dev->desc_virt) {
2623  dprintk("Failed to allocate descriptor rings.\n");
2624  err = -ENOMEM;
2625  goto err_out_unmap_bars;
2626  }
2627  memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2628 
2629  dev->pdev = pdev;
2630  dev->irq = pdev->irq;
2631 
2632  for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2633  dev->sa[i] = NULL;
2634 
2635  pci_set_drvdata(pdev, dev);
2636 
2637  tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2638 
2639  crypto_init_queue(&dev->queue, 1);
2640 
2641  err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2642  if (err) {
2643  dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2644  dev->irq = 0;
2645  goto err_out_free_desc;
2646  }
2647 
2648  err = hifn_start_device(dev);
2649  if (err)
2650  goto err_out_free_irq;
2651 
2652  err = hifn_test(dev, 1, 0);
2653  if (err)
2654  goto err_out_stop_device;
2655 
2656  err = hifn_register_rng(dev);
2657  if (err)
2658  goto err_out_stop_device;
2659 
2660  err = hifn_register_alg(dev);
2661  if (err)
2662  goto err_out_unregister_rng;
2663 
2664  INIT_DELAYED_WORK(&dev->work, hifn_work);
2665  schedule_delayed_work(&dev->work, HZ);
2666 
2667  dprintk("HIFN crypto accelerator card at %s has been "
2668  "successfully registered as %s.\n",
2669  pci_name(pdev), dev->name);
2670 
2671  return 0;
2672 
2673 err_out_unregister_rng:
2674  hifn_unregister_rng(dev);
2675 err_out_stop_device:
2676  hifn_reset_dma(dev, 1);
2677  hifn_stop_device(dev);
2678 err_out_free_irq:
2679  free_irq(dev->irq, dev->name);
2680  tasklet_kill(&dev->tasklet);
2681 err_out_free_desc:
2682  pci_free_consistent(pdev, sizeof(struct hifn_dma),
2683  dev->desc_virt, dev->desc_dma);
2684 
2685 err_out_unmap_bars:
2686  for (i=0; i<3; ++i)
2687  if (dev->bar[i])
2688  iounmap(dev->bar[i]);
2689 
2690 err_out_free_regions:
2691  pci_release_regions(pdev);
2692 
2693 err_out_disable_pci_device:
2694  pci_disable_device(pdev);
2695 
2696  return err;
2697 }
2698 
2699 static void __devexit hifn_remove(struct pci_dev *pdev)
2700 {
2701  int i;
2702  struct hifn_device *dev;
2703 
2704  dev = pci_get_drvdata(pdev);
2705 
2706  if (dev) {
2708 
2709  hifn_unregister_rng(dev);
2710  hifn_unregister_alg(dev);
2711  hifn_reset_dma(dev, 1);
2712  hifn_stop_device(dev);
2713 
2714  free_irq(dev->irq, dev->name);
2715  tasklet_kill(&dev->tasklet);
2716 
2717  hifn_flush(dev);
2718 
2719  pci_free_consistent(pdev, sizeof(struct hifn_dma),
2720  dev->desc_virt, dev->desc_dma);
2721  for (i=0; i<3; ++i)
2722  if (dev->bar[i])
2723  iounmap(dev->bar[i]);
2724 
2725  kfree(dev);
2726  }
2727 
2728  pci_release_regions(pdev);
2729  pci_disable_device(pdev);
2730 }
2731 
2732 static struct pci_device_id hifn_pci_tbl[] = {
2735  { 0 }
2736 };
2737 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2738 
2739 static struct pci_driver hifn_pci_driver = {
2740  .name = "hifn795x",
2741  .id_table = hifn_pci_tbl,
2742  .probe = hifn_probe,
2743  .remove = __devexit_p(hifn_remove),
2744 };
2745 
2746 static int __init hifn_init(void)
2747 {
2748  unsigned int freq;
2749  int err;
2750 
2751  /* HIFN supports only 32-bit addresses */
2752  BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2753 
2754  if (strncmp(hifn_pll_ref, "ext", 3) &&
2755  strncmp(hifn_pll_ref, "pci", 3)) {
2756  printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2757  "must be pci or ext");
2758  return -EINVAL;
2759  }
2760 
2761  /*
2762  * For the 7955/7956 the reference clock frequency must be in the
2763  * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2764  * but this chip is currently not supported.
2765  */
2766  if (hifn_pll_ref[3] != '\0') {
2767  freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2768  if (freq < 20 || freq > 100) {
2769  printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2770  "frequency, must be in the range "
2771  "of 20-100");
2772  return -EINVAL;
2773  }
2774  }
2775 
2776  err = pci_register_driver(&hifn_pci_driver);
2777  if (err < 0) {
2778  dprintk("Failed to register PCI driver for %s device.\n",
2779  hifn_pci_driver.name);
2780  return -ENODEV;
2781  }
2782 
2783  printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2784  "has been successfully registered.\n");
2785 
2786  return 0;
2787 }
2788 
2789 static void __exit hifn_fini(void)
2790 {
2791  pci_unregister_driver(&hifn_pci_driver);
2792 
2793  printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2794  "has been successfully unregistered.\n");
2795 }
2796 
2797 module_init(hifn_init);
2798 module_exit(hifn_fini);
2799 
2800 MODULE_LICENSE("GPL");
2801 MODULE_AUTHOR("Evgeniy Polyakov <[email protected]>");
2802 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");