Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sched.h
Go to the documentation of this file.
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
9 };
10 
11 #include <asm/param.h> /* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29 
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43 
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 
55 #include <asm/processor.h>
56 
57 struct exec_domain;
58 struct futex_pi_state;
59 struct robust_list_head;
60 struct bio_list;
61 struct fs_struct;
62 struct perf_event_context;
63 struct blk_plug;
64 
65 /*
66  * List of flags we want to share for kernel threads,
67  * if only because they are not used by them anyway.
68  */
69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
70 
71 /*
72  * These are the constant used to fake the fixed-point load-average
73  * counting. Some notes:
74  * - 11 bit fractions expand to 22 bits by the multiplies: this gives
75  * a load-average precision of 10 bits integer + 11 bits fractional
76  * - if you want to count load-averages more often, you need more
77  * precision, or rounding will get you. With 2-second counting freq,
78  * the EXP_n values would be 1981, 2034 and 2043 if still using only
79  * 11 bit fractions.
80  */
81 extern unsigned long avenrun[]; /* Load averages */
82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
83 
84 #define FSHIFT 11 /* nr of bits of precision */
85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
88 #define EXP_5 2014 /* 1/exp(5sec/5min) */
89 #define EXP_15 2037 /* 1/exp(5sec/15min) */
90 
91 #define CALC_LOAD(load,exp,n) \
92  load *= exp; \
93  load += n*(FIXED_1-exp); \
94  load >>= FSHIFT;
95 
96 extern unsigned long total_forks;
97 extern int nr_threads;
98 DECLARE_PER_CPU(unsigned long, process_counts);
99 extern int nr_processes(void);
100 extern unsigned long nr_running(void);
101 extern unsigned long nr_uninterruptible(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105 
106 
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109 
110 extern unsigned long get_parent_ip(unsigned long addr);
111 
112 struct seq_file;
113 struct cfs_rq;
114 struct task_group;
115 #ifdef CONFIG_SCHED_DEBUG
116 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
117 extern void proc_sched_set_task(struct task_struct *p);
118 extern void
119 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
120 #else
121 static inline void
122 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
123 {
124 }
125 static inline void proc_sched_set_task(struct task_struct *p)
126 {
127 }
128 static inline void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
130 {
131 }
132 #endif
133 
134 /*
135  * Task state bitmask. NOTE! These bits are also
136  * encoded in fs/proc/array.c: get_task_state().
137  *
138  * We have two separate sets of flags: task->state
139  * is about runnability, while task->exit_state are
140  * about the task exiting. Confusing, but this way
141  * modifying one set can't modify the other one by
142  * mistake.
143  */
144 #define TASK_RUNNING 0
145 #define TASK_INTERRUPTIBLE 1
146 #define TASK_UNINTERRUPTIBLE 2
147 #define __TASK_STOPPED 4
148 #define __TASK_TRACED 8
149 /* in tsk->exit_state */
150 #define EXIT_ZOMBIE 16
151 #define EXIT_DEAD 32
152 /* in tsk->state again */
153 #define TASK_DEAD 64
154 #define TASK_WAKEKILL 128
155 #define TASK_WAKING 256
156 #define TASK_STATE_MAX 512
157 
158 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
159 
160 extern char ___assert_task_state[1 - 2*!!(
161  sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
162 
163 /* Convenience macros for the sake of set_task_state */
164 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
165 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
166 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
167 
168 /* Convenience macros for the sake of wake_up */
169 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
170 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
171 
172 /* get_task_state() */
173 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
174  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
175  __TASK_TRACED)
176 
177 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
178 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
179 #define task_is_dead(task) ((task)->exit_state != 0)
180 #define task_is_stopped_or_traced(task) \
181  ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
182 #define task_contributes_to_load(task) \
183  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
184  (task->flags & PF_FROZEN) == 0)
185 
186 #define __set_task_state(tsk, state_value) \
187  do { (tsk)->state = (state_value); } while (0)
188 #define set_task_state(tsk, state_value) \
189  set_mb((tsk)->state, (state_value))
190 
191 /*
192  * set_current_state() includes a barrier so that the write of current->state
193  * is correctly serialised wrt the caller's subsequent test of whether to
194  * actually sleep:
195  *
196  * set_current_state(TASK_UNINTERRUPTIBLE);
197  * if (do_i_need_to_sleep())
198  * schedule();
199  *
200  * If the caller does not need such serialisation then use __set_current_state()
201  */
202 #define __set_current_state(state_value) \
203  do { current->state = (state_value); } while (0)
204 #define set_current_state(state_value) \
205  set_mb(current->state, (state_value))
206 
207 /* Task command name length */
208 #define TASK_COMM_LEN 16
209 
210 #include <linux/spinlock.h>
211 
212 /*
213  * This serializes "schedule()" and also protects
214  * the run-queue from deletions/modifications (but
215  * _adding_ to the beginning of the run-queue has
216  * a separate lock).
217  */
218 extern rwlock_t tasklist_lock;
219 extern spinlock_t mmlist_lock;
220 
221 struct task_struct;
222 
223 #ifdef CONFIG_PROVE_RCU
224 extern int lockdep_tasklist_lock_is_held(void);
225 #endif /* #ifdef CONFIG_PROVE_RCU */
226 
227 extern void sched_init(void);
228 extern void sched_init_smp(void);
229 extern asmlinkage void schedule_tail(struct task_struct *prev);
230 extern void init_idle(struct task_struct *idle, int cpu);
231 extern void init_idle_bootup_task(struct task_struct *idle);
232 
233 extern int runqueue_is_locked(int cpu);
234 
235 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
236 extern void nohz_balance_enter_idle(int cpu);
237 extern void set_cpu_sd_state_idle(void);
238 extern int get_nohz_timer_target(void);
239 #else
240 static inline void nohz_balance_enter_idle(int cpu) { }
241 static inline void set_cpu_sd_state_idle(void) { }
242 #endif
243 
244 /*
245  * Only dump TASK_* tasks. (0 for all tasks)
246  */
247 extern void show_state_filter(unsigned long state_filter);
248 
249 static inline void show_state(void)
250 {
252 }
253 
254 extern void show_regs(struct pt_regs *);
255 
256 /*
257  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
258  * task), SP is the stack pointer of the first frame that should be shown in the back
259  * trace (or NULL if the entire call-chain of the task should be shown).
260  */
261 extern void show_stack(struct task_struct *task, unsigned long *sp);
262 
263 void io_schedule(void);
264 long io_schedule_timeout(long timeout);
265 
266 extern void cpu_init (void);
267 extern void trap_init(void);
268 extern void update_process_times(int user);
269 extern void scheduler_tick(void);
270 
271 extern void sched_show_task(struct task_struct *p);
272 
273 #ifdef CONFIG_LOCKUP_DETECTOR
274 extern void touch_softlockup_watchdog(void);
275 extern void touch_softlockup_watchdog_sync(void);
276 extern void touch_all_softlockup_watchdogs(void);
277 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
278  void __user *buffer,
279  size_t *lenp, loff_t *ppos);
280 extern unsigned int softlockup_panic;
281 void lockup_detector_init(void);
282 #else
283 static inline void touch_softlockup_watchdog(void)
284 {
285 }
286 static inline void touch_softlockup_watchdog_sync(void)
287 {
288 }
289 static inline void touch_all_softlockup_watchdogs(void)
290 {
291 }
292 static inline void lockup_detector_init(void)
293 {
294 }
295 #endif
296 
297 #ifdef CONFIG_DETECT_HUNG_TASK
298 extern unsigned int sysctl_hung_task_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
303  void __user *buffer,
304  size_t *lenp, loff_t *ppos);
305 #else
306 /* Avoid need for ifdefs elsewhere in the code */
307 enum { sysctl_hung_task_timeout_secs = 0 };
308 #endif
309 
310 /* Attach to any functions which should be ignored in wchan output. */
311 #define __sched __attribute__((__section__(".sched.text")))
312 
313 /* Linker adds these: start and end of __sched functions */
314 extern char __sched_text_start[], __sched_text_end[];
315 
316 /* Is this address in the __sched functions? */
317 extern int in_sched_functions(unsigned long addr);
318 
319 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
320 extern signed long schedule_timeout(signed long timeout);
321 extern signed long schedule_timeout_interruptible(signed long timeout);
322 extern signed long schedule_timeout_killable(signed long timeout);
323 extern signed long schedule_timeout_uninterruptible(signed long timeout);
324 asmlinkage void schedule(void);
325 extern void schedule_preempt_disabled(void);
326 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
327 
328 struct nsproxy;
329 struct user_namespace;
330 
331 /*
332  * Default maximum number of active map areas, this limits the number of vmas
333  * per mm struct. Users can overwrite this number by sysctl but there is a
334  * problem.
335  *
336  * When a program's coredump is generated as ELF format, a section is created
337  * per a vma. In ELF, the number of sections is represented in unsigned short.
338  * This means the number of sections should be smaller than 65535 at coredump.
339  * Because the kernel adds some informative sections to a image of program at
340  * generating coredump, we need some margin. The number of extra sections is
341  * 1-3 now and depends on arch. We use "5" as safe margin, here.
342  */
343 #define MAPCOUNT_ELF_CORE_MARGIN (5)
344 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
345 
346 extern int sysctl_max_map_count;
347 
348 #include <linux/aio.h>
349 
350 #ifdef CONFIG_MMU
351 extern void arch_pick_mmap_layout(struct mm_struct *mm);
352 extern unsigned long
353 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
354  unsigned long, unsigned long);
355 extern unsigned long
356 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
357  unsigned long len, unsigned long pgoff,
358  unsigned long flags);
359 extern void arch_unmap_area(struct mm_struct *, unsigned long);
360 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
361 #else
362 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
363 #endif
364 
365 
366 extern void set_dumpable(struct mm_struct *mm, int value);
367 extern int get_dumpable(struct mm_struct *mm);
368 
369 /* get/set_dumpable() values */
370 #define SUID_DUMPABLE_DISABLED 0
371 #define SUID_DUMPABLE_ENABLED 1
372 #define SUID_DUMPABLE_SAFE 2
373 
374 /* mm flags */
375 /* dumpable bits */
376 #define MMF_DUMPABLE 0 /* core dump is permitted */
377 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
378 
379 #define MMF_DUMPABLE_BITS 2
380 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
381 
382 /* coredump filter bits */
383 #define MMF_DUMP_ANON_PRIVATE 2
384 #define MMF_DUMP_ANON_SHARED 3
385 #define MMF_DUMP_MAPPED_PRIVATE 4
386 #define MMF_DUMP_MAPPED_SHARED 5
387 #define MMF_DUMP_ELF_HEADERS 6
388 #define MMF_DUMP_HUGETLB_PRIVATE 7
389 #define MMF_DUMP_HUGETLB_SHARED 8
390 
391 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
392 #define MMF_DUMP_FILTER_BITS 7
393 #define MMF_DUMP_FILTER_MASK \
394  (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
395 #define MMF_DUMP_FILTER_DEFAULT \
396  ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
397  (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
398 
399 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
400 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
401 #else
402 # define MMF_DUMP_MASK_DEFAULT_ELF 0
403 #endif
404  /* leave room for more dump flags */
405 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
406 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
407 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
408 
409 #define MMF_HAS_UPROBES 19 /* has uprobes */
410 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
411 
412 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
413 
419 };
420 
421 struct pacct_struct {
422  int ac_flag;
424  unsigned long ac_mem;
426  unsigned long ac_minflt, ac_majflt;
427 };
428 
429 struct cpu_itimer {
434 };
435 
447 struct task_cputime {
450  unsigned long long sum_exec_runtime;
451 };
452 /* Alternate field names when used to cache expirations. */
453 #define prof_exp stime
454 #define virt_exp utime
455 #define sched_exp sum_exec_runtime
456 
457 #define INIT_CPUTIME \
458  (struct task_cputime) { \
459  .utime = 0, \
460  .stime = 0, \
461  .sum_exec_runtime = 0, \
462  }
463 
464 /*
465  * Disable preemption until the scheduler is running.
466  * Reset by start_kernel()->sched_init()->init_idle().
467  *
468  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
469  * before the scheduler is active -- see should_resched().
470  */
471 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
472 
485  int running;
487 };
488 
489 #include <linux/rwsem.h>
490 struct autogroup;
491 
492 /*
493  * NOTE! "signal_struct" does not have its own
494  * locking, because a shared signal_struct always
495  * implies a shared sighand_struct, so locking
496  * sighand_struct is always a proper superset of
497  * the locking of signal_struct.
498  */
503 
504  wait_queue_head_t wait_chldexit; /* for wait4() */
505 
506  /* current thread group signal load-balancing target: */
508 
509  /* shared signal handling: */
511 
512  /* thread group exit support */
514  /* overloaded:
515  * - notify group_exit_task when ->count is equal to notify_count
516  * - everyone except group_exit_task is stopped during signal delivery
517  * of fatal signals, group_exit_task processes the signal.
518  */
521 
522  /* thread group stop support, overloads group_exit_code too */
524  unsigned int flags; /* see SIGNAL_* flags below */
525 
526  /*
527  * PR_SET_CHILD_SUBREAPER marks a process, like a service
528  * manager, to re-parent orphan (double-forking) child processes
529  * to this process instead of 'init'. The service manager is
530  * able to receive SIGCHLD signals and is able to investigate
531  * the process until it calls wait(). All children of this
532  * process will inherit a flag if they should look for a
533  * child_subreaper process at exit.
534  */
535  unsigned int is_child_subreaper:1;
536  unsigned int has_child_subreaper:1;
537 
538  /* POSIX.1b Interval Timers */
540 
541  /* ITIMER_REAL timer for the process */
543  struct pid *leader_pid;
545 
546  /*
547  * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
548  * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
549  * values are defined to 0 and 1 respectively
550  */
551  struct cpu_itimer it[2];
552 
553  /*
554  * Thread group totals for process CPU timers.
555  * See thread_group_cputimer(), et al, for details.
556  */
558 
559  /* Earliest-expiration cache. */
561 
563 
564  struct pid *tty_old_pgrp;
565 
566  /* boolean value for session group leader */
567  int leader;
568 
569  struct tty_struct *tty; /* NULL if no tty */
570 
571 #ifdef CONFIG_SCHED_AUTOGROUP
572  struct autogroup *autogroup;
573 #endif
574  /*
575  * Cumulative resource counters for dead threads in the group,
576  * and for reaped dead child processes forked by this group.
577  * Live threads maintain their own counters and add to these
578  * in __exit_signal, except for the group leader.
579  */
583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
585 #endif
586  unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
587  unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
588  unsigned long inblock, oublock, cinblock, coublock;
589  unsigned long maxrss, cmaxrss;
591 
592  /*
593  * Cumulative ns of schedule CPU time fo dead threads in the
594  * group, not including a zombie group leader, (This only differs
595  * from jiffies_to_ns(utime + stime) if sched_clock uses something
596  * other than jiffies.)
597  */
598  unsigned long long sum_sched_runtime;
599 
600  /*
601  * We don't bother to synchronize most readers of this at all,
602  * because there is no reader checking a limit that actually needs
603  * to get both rlim_cur and rlim_max atomically, and either one
604  * alone is a single word that can safely be read normally.
605  * getrlimit/setrlimit use task_lock(current->group_leader) to
606  * protect this instead of the siglock, because they really
607  * have no need to disable irqs.
608  */
610 
611 #ifdef CONFIG_BSD_PROCESS_ACCT
612  struct pacct_struct pacct; /* per-process accounting information */
613 #endif
614 #ifdef CONFIG_TASKSTATS
615  struct taskstats *stats;
616 #endif
617 #ifdef CONFIG_AUDIT
618  unsigned audit_tty;
620 #endif
621 #ifdef CONFIG_CGROUPS
622  /*
623  * group_rwsem prevents new tasks from entering the threadgroup and
624  * member tasks from exiting,a more specifically, setting of
625  * PF_EXITING. fork and exit paths are protected with this rwsem
626  * using threadgroup_change_begin/end(). Users which require
627  * threadgroup to remain stable should use threadgroup_[un]lock()
628  * which also takes care of exec path. Currently, cgroup is the
629  * only user.
630  */
631  struct rw_semaphore group_rwsem;
632 #endif
633 
634  int oom_score_adj; /* OOM kill score adjustment */
635  int oom_score_adj_min; /* OOM kill score adjustment minimum value.
636  * Only settable by CAP_SYS_RESOURCE. */
637 
638  struct mutex cred_guard_mutex; /* guard against foreign influences on
639  * credential calculations
640  * (notably. ptrace) */
641 };
642 
643 /*
644  * Bits in flags field of signal_struct.
645  */
646 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
647 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
648 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
649 /*
650  * Pending notifications to parent.
651  */
652 #define SIGNAL_CLD_STOPPED 0x00000010
653 #define SIGNAL_CLD_CONTINUED 0x00000020
654 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
655 
656 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
657 
658 /* If true, all threads except ->group_exit_task have pending SIGKILL */
659 static inline int signal_group_exit(const struct signal_struct *sig)
660 {
661  return (sig->flags & SIGNAL_GROUP_EXIT) ||
662  (sig->group_exit_task != NULL);
663 }
664 
665 /*
666  * Some day this will be a full-fledged user tracking system..
667  */
668 struct user_struct {
669  atomic_t __count; /* reference count */
670  atomic_t processes; /* How many processes does this user have? */
671  atomic_t files; /* How many open files does this user have? */
672  atomic_t sigpending; /* How many pending signals does this user have? */
673 #ifdef CONFIG_INOTIFY_USER
674  atomic_t inotify_watches; /* How many inotify watches does this user have? */
675  atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
676 #endif
677 #ifdef CONFIG_FANOTIFY
678  atomic_t fanotify_listeners;
679 #endif
680 #ifdef CONFIG_EPOLL
681  atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
682 #endif
683 #ifdef CONFIG_POSIX_MQUEUE
684  /* protected by mq_lock */
685  unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
686 #endif
687  unsigned long locked_shm; /* How many pages of mlocked shm ? */
688 
689 #ifdef CONFIG_KEYS
690  struct key *uid_keyring; /* UID specific keyring */
691  struct key *session_keyring; /* UID's default session keyring */
692 #endif
693 
694  /* Hash table maintenance information */
697 
698 #ifdef CONFIG_PERF_EVENTS
699  atomic_long_t locked_vm;
700 #endif
701 };
702 
703 extern int uids_sysfs_init(void);
704 
705 extern struct user_struct *find_user(kuid_t);
706 
707 extern struct user_struct root_user;
708 #define INIT_USER (&root_user)
709 
710 
711 struct backing_dev_info;
712 struct reclaim_state;
713 
714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715 struct sched_info {
716  /* cumulative counters */
717  unsigned long pcount; /* # of times run on this cpu */
718  unsigned long long run_delay; /* time spent waiting on a runqueue */
719 
720  /* timestamps */
721  unsigned long long last_arrival,/* when we last ran on a cpu */
722  last_queued; /* when we were last queued to run */
723 };
724 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
725 
726 #ifdef CONFIG_TASK_DELAY_ACCT
727 struct task_delay_info {
729  unsigned int flags; /* Private per-task flags */
730 
731  /* For each stat XXX, add following, aligned appropriately
732  *
733  * struct timespec XXX_start, XXX_end;
734  * u64 XXX_delay;
735  * u32 XXX_count;
736  *
737  * Atomicity of updates to XXX_delay, XXX_count protected by
738  * single lock above (split into XXX_lock if contention is an issue).
739  */
740 
741  /*
742  * XXX_count is incremented on every XXX operation, the delay
743  * associated with the operation is added to XXX_delay.
744  * XXX_delay contains the accumulated delay time in nanoseconds.
745  */
746  struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
747  u64 blkio_delay; /* wait for sync block io completion */
748  u64 swapin_delay; /* wait for swapin block io completion */
749  u32 blkio_count; /* total count of the number of sync block */
750  /* io operations performed */
751  u32 swapin_count; /* total count of the number of swapin block */
752  /* io operations performed */
753 
754  struct timespec freepages_start, freepages_end;
755  u64 freepages_delay; /* wait for memory reclaim */
756  u32 freepages_count; /* total count of memory reclaim */
757 };
758 #endif /* CONFIG_TASK_DELAY_ACCT */
759 
760 static inline int sched_info_on(void)
761 {
762 #ifdef CONFIG_SCHEDSTATS
763  return 1;
764 #elif defined(CONFIG_TASK_DELAY_ACCT)
765  extern int delayacct_on;
766  return delayacct_on;
767 #else
768  return 0;
769 #endif
770 }
771 
777 };
778 
779 /*
780  * Increase resolution of nice-level calculations for 64-bit architectures.
781  * The extra resolution improves shares distribution and load balancing of
782  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
783  * hierarchies, especially on larger systems. This is not a user-visible change
784  * and does not change the user-interface for setting shares/weights.
785  *
786  * We increase resolution only if we have enough bits to allow this increased
787  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
788  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
789  * increased costs.
790  */
791 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
792 # define SCHED_LOAD_RESOLUTION 10
793 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
794 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
795 #else
796 # define SCHED_LOAD_RESOLUTION 0
797 # define scale_load(w) (w)
798 # define scale_load_down(w) (w)
799 #endif
800 
801 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
803 
804 /*
805  * Increase resolution of cpu_power calculations
806  */
807 #define SCHED_POWER_SHIFT 10
808 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
809 
810 /*
811  * sched-domains (multiprocessor balancing) declarations:
812  */
813 #ifdef CONFIG_SMP
814 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
815 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
816 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
817 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
818 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
819 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
820 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
821 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
822 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
823 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
824 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
825 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
826 
827 extern int __weak arch_sd_sibiling_asym_packing(void);
828 
829 struct sched_group_power {
830  atomic_t ref;
831  /*
832  * CPU power of this group, SCHED_LOAD_SCALE being max power for a
833  * single CPU.
834  */
835  unsigned int power, power_orig;
836  unsigned long next_update;
837  /*
838  * Number of busy cpus in this group.
839  */
840  atomic_t nr_busy_cpus;
841 
842  unsigned long cpumask[0]; /* iteration mask */
843 };
844 
845 struct sched_group {
846  struct sched_group *next; /* Must be a circular list */
847  atomic_t ref;
848 
849  unsigned int group_weight;
850  struct sched_group_power *sgp;
851 
852  /*
853  * The CPUs this group covers.
854  *
855  * NOTE: this field is variable length. (Allocated dynamically
856  * by attaching extra space to the end of the structure,
857  * depending on how many CPUs the kernel has booted up with)
858  */
859  unsigned long cpumask[0];
860 };
861 
862 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
863 {
864  return to_cpumask(sg->cpumask);
865 }
866 
867 /*
868  * cpumask masking which cpus in the group are allowed to iterate up the domain
869  * tree.
870  */
871 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
872 {
873  return to_cpumask(sg->sgp->cpumask);
874 }
875 
880 static inline unsigned int group_first_cpu(struct sched_group *group)
881 {
882  return cpumask_first(sched_group_cpus(group));
883 }
884 
885 struct sched_domain_attr {
886  int relax_domain_level;
887 };
888 
889 #define SD_ATTR_INIT (struct sched_domain_attr) { \
890  .relax_domain_level = -1, \
891 }
892 
893 extern int sched_domain_level_max;
894 
895 struct sched_domain {
896  /* These fields must be setup */
897  struct sched_domain *parent; /* top domain must be null terminated */
898  struct sched_domain *child; /* bottom domain must be null terminated */
899  struct sched_group *groups; /* the balancing groups of the domain */
900  unsigned long min_interval; /* Minimum balance interval ms */
901  unsigned long max_interval; /* Maximum balance interval ms */
902  unsigned int busy_factor; /* less balancing by factor if busy */
903  unsigned int imbalance_pct; /* No balance until over watermark */
904  unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
905  unsigned int busy_idx;
906  unsigned int idle_idx;
907  unsigned int newidle_idx;
908  unsigned int wake_idx;
909  unsigned int forkexec_idx;
910  unsigned int smt_gain;
911  int flags; /* See SD_* */
912  int level;
913 
914  /* Runtime fields. */
915  unsigned long last_balance; /* init to jiffies. units in jiffies */
916  unsigned int balance_interval; /* initialise to 1. units in ms. */
917  unsigned int nr_balance_failed; /* initialise to 0 */
918 
919  u64 last_update;
920 
921 #ifdef CONFIG_SCHEDSTATS
922  /* load_balance() stats */
923  unsigned int lb_count[CPU_MAX_IDLE_TYPES];
924  unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
925  unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
926  unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
927  unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
928  unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
929  unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
930  unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
931 
932  /* Active load balancing */
933  unsigned int alb_count;
934  unsigned int alb_failed;
935  unsigned int alb_pushed;
936 
937  /* SD_BALANCE_EXEC stats */
938  unsigned int sbe_count;
939  unsigned int sbe_balanced;
940  unsigned int sbe_pushed;
941 
942  /* SD_BALANCE_FORK stats */
943  unsigned int sbf_count;
944  unsigned int sbf_balanced;
945  unsigned int sbf_pushed;
946 
947  /* try_to_wake_up() stats */
948  unsigned int ttwu_wake_remote;
949  unsigned int ttwu_move_affine;
950  unsigned int ttwu_move_balance;
951 #endif
952 #ifdef CONFIG_SCHED_DEBUG
953  char *name;
954 #endif
955  union {
956  void *private; /* used during construction */
957  struct rcu_head rcu; /* used during destruction */
958  };
959 
960  unsigned int span_weight;
961  /*
962  * Span of all CPUs in this domain.
963  *
964  * NOTE: this field is variable length. (Allocated dynamically
965  * by attaching extra space to the end of the structure,
966  * depending on how many CPUs the kernel has booted up with)
967  */
968  unsigned long span[0];
969 };
970 
971 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
972 {
973  return to_cpumask(sd->span);
974 }
975 
976 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
977  struct sched_domain_attr *dattr_new);
978 
979 /* Allocate an array of sched domains, for partition_sched_domains(). */
980 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
981 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
982 
983 /* Test a flag in parent sched domain */
984 static inline int test_sd_parent(struct sched_domain *sd, int flag)
985 {
986  if (sd->parent && (sd->parent->flags & flag))
987  return 1;
988 
989  return 0;
990 }
991 
992 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
993 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
994 
995 bool cpus_share_cache(int this_cpu, int that_cpu);
996 
997 #else /* CONFIG_SMP */
998 
999 struct sched_domain_attr;
1000 
1001 static inline void
1002 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1003  struct sched_domain_attr *dattr_new)
1004 {
1005 }
1006 
1007 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1008 {
1009  return true;
1010 }
1011 
1012 #endif /* !CONFIG_SMP */
1013 
1014 
1015 struct io_context; /* See blkdev.h */
1016 
1017 
1018 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1019 extern void prefetch_stack(struct task_struct *t);
1020 #else
1021 static inline void prefetch_stack(struct task_struct *t) { }
1022 #endif
1023 
1024 struct audit_context; /* See audit.c */
1025 struct mempolicy;
1026 struct pipe_inode_info;
1027 struct uts_namespace;
1028 
1029 struct rq;
1030 struct sched_domain;
1031 
1032 /*
1033  * wake flags
1034  */
1035 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1036 #define WF_FORK 0x02 /* child wakeup after fork */
1037 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1038 
1039 #define ENQUEUE_WAKEUP 1
1040 #define ENQUEUE_HEAD 2
1041 #ifdef CONFIG_SMP
1042 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1043 #else
1044 #define ENQUEUE_WAKING 0
1045 #endif
1046 
1047 #define DEQUEUE_SLEEP 1
1048 
1049 struct sched_class {
1050  const struct sched_class *next;
1051 
1052  void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1053  void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1054  void (*yield_task) (struct rq *rq);
1055  bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1056 
1057  void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1058 
1059  struct task_struct * (*pick_next_task) (struct rq *rq);
1060  void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1061 
1062 #ifdef CONFIG_SMP
1063  int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1064 
1065  void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1066  void (*post_schedule) (struct rq *this_rq);
1067  void (*task_waking) (struct task_struct *task);
1068  void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1069 
1070  void (*set_cpus_allowed)(struct task_struct *p,
1071  const struct cpumask *newmask);
1072 
1073  void (*rq_online)(struct rq *rq);
1074  void (*rq_offline)(struct rq *rq);
1075 #endif
1076 
1077  void (*set_curr_task) (struct rq *rq);
1078  void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1079  void (*task_fork) (struct task_struct *p);
1080 
1081  void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1082  void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1083  void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1084  int oldprio);
1085 
1086  unsigned int (*get_rr_interval) (struct rq *rq,
1087  struct task_struct *task);
1088 
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090  void (*task_move_group) (struct task_struct *p, int on_rq);
1091 #endif
1092 };
1093 
1094 struct load_weight {
1095  unsigned long weight, inv_weight;
1096 };
1097 
1098 #ifdef CONFIG_SCHEDSTATS
1099 struct sched_statistics {
1100  u64 wait_start;
1101  u64 wait_max;
1102  u64 wait_count;
1103  u64 wait_sum;
1104  u64 iowait_count;
1105  u64 iowait_sum;
1106 
1107  u64 sleep_start;
1108  u64 sleep_max;
1109  s64 sum_sleep_runtime;
1110 
1111  u64 block_start;
1112  u64 block_max;
1113  u64 exec_max;
1114  u64 slice_max;
1115 
1116  u64 nr_migrations_cold;
1117  u64 nr_failed_migrations_affine;
1118  u64 nr_failed_migrations_running;
1119  u64 nr_failed_migrations_hot;
1120  u64 nr_forced_migrations;
1121 
1122  u64 nr_wakeups;
1123  u64 nr_wakeups_sync;
1124  u64 nr_wakeups_migrate;
1125  u64 nr_wakeups_local;
1126  u64 nr_wakeups_remote;
1127  u64 nr_wakeups_affine;
1128  u64 nr_wakeups_affine_attempts;
1129  u64 nr_wakeups_passive;
1130  u64 nr_wakeups_idle;
1131 };
1132 #endif
1133 
1135  struct load_weight load; /* for load-balancing */
1138  unsigned int on_rq;
1139 
1144 
1146 
1147 #ifdef CONFIG_SCHEDSTATS
1148  struct sched_statistics statistics;
1149 #endif
1150 
1151 #ifdef CONFIG_FAIR_GROUP_SCHED
1152  struct sched_entity *parent;
1153  /* rq on which this entity is (to be) queued: */
1154  struct cfs_rq *cfs_rq;
1155  /* rq "owned" by this entity/group: */
1156  struct cfs_rq *my_q;
1157 #endif
1158 };
1159 
1162  unsigned long timeout;
1163  unsigned int time_slice;
1164 
1166 #ifdef CONFIG_RT_GROUP_SCHED
1167  struct sched_rt_entity *parent;
1168  /* rq on which this entity is (to be) queued: */
1169  struct rt_rq *rt_rq;
1170  /* rq "owned" by this entity/group: */
1171  struct rt_rq *my_q;
1172 #endif
1173 };
1174 
1175 /*
1176  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1177  * Timeslices get refilled after they expire.
1178  */
1179 #define RR_TIMESLICE (100 * HZ / 1000)
1180 
1181 struct rcu_node;
1182 
1188 };
1189 
1190 struct task_struct {
1191  volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1192  void *stack;
1194  unsigned int flags; /* per process flags, defined below */
1195  unsigned int ptrace;
1196 
1197 #ifdef CONFIG_SMP
1198  struct llist_node wake_entry;
1199  int on_cpu;
1200 #endif
1201  int on_rq;
1202 
1204  unsigned int rt_priority;
1205  const struct sched_class *sched_class;
1208 #ifdef CONFIG_CGROUP_SCHED
1209  struct task_group *sched_task_group;
1210 #endif
1211 
1212 #ifdef CONFIG_PREEMPT_NOTIFIERS
1213  /* list of struct preempt_notifier: */
1214  struct hlist_head preempt_notifiers;
1215 #endif
1216 
1217  /*
1218  * fpu_counter contains the number of consecutive context switches
1219  * that the FPU is used. If this is over a threshold, the lazy fpu
1220  * saving becomes unlazy to save the trap. This is an unsigned char
1221  * so that after 256 times the counter wraps and the behavior turns
1222  * lazy again; this to deal with bursty apps that only use FPU for
1223  * a short time
1224  */
1225  unsigned char fpu_counter;
1226 #ifdef CONFIG_BLK_DEV_IO_TRACE
1227  unsigned int btrace_seq;
1228 #endif
1229 
1230  unsigned int policy;
1233 
1234 #ifdef CONFIG_PREEMPT_RCU
1235  int rcu_read_lock_nesting;
1236  char rcu_read_unlock_special;
1237  struct list_head rcu_node_entry;
1238 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1239 #ifdef CONFIG_TREE_PREEMPT_RCU
1240  struct rcu_node *rcu_blocked_node;
1241 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1242 #ifdef CONFIG_RCU_BOOST
1243  struct rt_mutex *rcu_boost_mutex;
1244 #endif /* #ifdef CONFIG_RCU_BOOST */
1245 
1246 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1247  struct sched_info sched_info;
1248 #endif
1249 
1251 #ifdef CONFIG_SMP
1252  struct plist_node pushable_tasks;
1253 #endif
1254 
1256 #ifdef CONFIG_COMPAT_BRK
1257  unsigned brk_randomized:1;
1258 #endif
1259 #if defined(SPLIT_RSS_COUNTING)
1260  struct task_rss_stat rss_stat;
1261 #endif
1262 /* task state */
1265  int pdeath_signal; /* The signal sent when the parent dies */
1266  unsigned int jobctl; /* JOBCTL_*, siglock protected */
1267  /* ??? */
1268  unsigned int personality;
1269  unsigned did_exec:1;
1270  unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1271  * execve */
1272  unsigned in_iowait:1;
1273 
1274  /* task may not gain privileges */
1275  unsigned no_new_privs:1;
1276 
1277  /* Revert to default priority/policy when forking */
1280 
1283 
1284 #ifdef CONFIG_CC_STACKPROTECTOR
1285  /* Canary value for the -fstack-protector gcc feature */
1286  unsigned long stack_canary;
1287 #endif
1288  /*
1289  * pointers to (original) parent process, youngest child, younger sibling,
1290  * older sibling, respectively. (p->father can be replaced with
1291  * p->real_parent->pid)
1292  */
1293  struct task_struct __rcu *real_parent; /* real parent process */
1294  struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1295  /*
1296  * children/sibling forms the list of my natural children
1297  */
1298  struct list_head children; /* list of my children */
1299  struct list_head sibling; /* linkage in my parent's children list */
1300  struct task_struct *group_leader; /* threadgroup leader */
1301 
1302  /*
1303  * ptraced is the list of tasks this task is using ptrace on.
1304  * This includes both natural children and PTRACE_ATTACH targets.
1305  * p->ptrace_entry is p's link on the p->parent->ptraced list.
1306  */
1309 
1310  /* PID/PID hash table linkage. */
1313 
1314  struct completion *vfork_done; /* for vfork() */
1315  int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1316  int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1317 
1320 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1322 #endif
1323  unsigned long nvcsw, nivcsw; /* context switch counts */
1324  struct timespec start_time; /* monotonic time */
1325  struct timespec real_start_time; /* boot based time */
1326 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1327  unsigned long min_flt, maj_flt;
1328 
1331 
1332 /* process credentials */
1333  const struct cred __rcu *real_cred; /* objective and real subjective task
1334  * credentials (COW) */
1335  const struct cred __rcu *cred; /* effective (overridable) subjective task
1336  * credentials (COW) */
1337  char comm[TASK_COMM_LEN]; /* executable name excluding path
1338  - access with [gs]et_task_comm (which lock
1339  it with task_lock())
1340  - initialized normally by setup_new_exec */
1341 /* file system info */
1343 #ifdef CONFIG_SYSVIPC
1344 /* ipc stuff */
1345  struct sysv_sem sysvsem;
1346 #endif
1347 #ifdef CONFIG_DETECT_HUNG_TASK
1348 /* hung task detection */
1349  unsigned long last_switch_count;
1350 #endif
1351 /* CPU-specific state of this task */
1353 /* filesystem information */
1354  struct fs_struct *fs;
1355 /* open file information */
1357 /* namespaces */
1358  struct nsproxy *nsproxy;
1359 /* signal handlers */
1362 
1364  sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1366 
1367  unsigned long sas_ss_sp;
1368  size_t sas_ss_size;
1369  int (*notifier)(void *priv);
1373 
1375 #ifdef CONFIG_AUDITSYSCALL
1376  kuid_t loginuid;
1377  unsigned int sessionid;
1378 #endif
1380 
1381 /* Thread group tracking */
1384 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1385  * mempolicy */
1387 
1388  /* Protection of the PI data structures: */
1390 
1391 #ifdef CONFIG_RT_MUTEXES
1392  /* PI waiters blocked on a rt_mutex held by this task */
1393  struct plist_head pi_waiters;
1394  /* Deadlock detection and priority inheritance handling */
1395  struct rt_mutex_waiter *pi_blocked_on;
1396 #endif
1397 
1398 #ifdef CONFIG_DEBUG_MUTEXES
1399  /* mutex deadlock detection */
1400  struct mutex_waiter *blocked_on;
1401 #endif
1402 #ifdef CONFIG_TRACE_IRQFLAGS
1403  unsigned int irq_events;
1404  unsigned long hardirq_enable_ip;
1405  unsigned long hardirq_disable_ip;
1406  unsigned int hardirq_enable_event;
1407  unsigned int hardirq_disable_event;
1408  int hardirqs_enabled;
1409  int hardirq_context;
1410  unsigned long softirq_disable_ip;
1411  unsigned long softirq_enable_ip;
1412  unsigned int softirq_disable_event;
1413  unsigned int softirq_enable_event;
1414  int softirqs_enabled;
1415  int softirq_context;
1416 #endif
1417 #ifdef CONFIG_LOCKDEP
1418 # define MAX_LOCK_DEPTH 48UL
1419  u64 curr_chain_key;
1420  int lockdep_depth;
1421  unsigned int lockdep_recursion;
1422  struct held_lock held_locks[MAX_LOCK_DEPTH];
1423  gfp_t lockdep_reclaim_gfp;
1424 #endif
1425 
1426 /* journalling filesystem info */
1428 
1429 /* stacked block device info */
1431 
1432 #ifdef CONFIG_BLOCK
1433 /* stack plugging */
1434  struct blk_plug *plug;
1435 #endif
1436 
1437 /* VM state */
1439 
1441 
1443 
1444  unsigned long ptrace_message;
1445  siginfo_t *last_siginfo; /* For ptrace use. */
1447 #if defined(CONFIG_TASK_XACCT)
1448  u64 acct_rss_mem1; /* accumulated rss usage */
1449  u64 acct_vm_mem1; /* accumulated virtual memory usage */
1450  cputime_t acct_timexpd; /* stime + utime since last update */
1451 #endif
1452 #ifdef CONFIG_CPUSETS
1453  nodemask_t mems_allowed; /* Protected by alloc_lock */
1454  seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1455  int cpuset_mem_spread_rotor;
1456  int cpuset_slab_spread_rotor;
1457 #endif
1458 #ifdef CONFIG_CGROUPS
1459  /* Control Group info protected by css_set_lock */
1460  struct css_set __rcu *cgroups;
1461  /* cg_list protected by css_set_lock and tsk->alloc_lock */
1462  struct list_head cg_list;
1463 #endif
1464 #ifdef CONFIG_FUTEX
1466 #ifdef CONFIG_COMPAT
1467  struct compat_robust_list_head __user *compat_robust_list;
1468 #endif
1469  struct list_head pi_state_list;
1470  struct futex_pi_state *pi_state_cache;
1471 #endif
1472 #ifdef CONFIG_PERF_EVENTS
1473  struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1474  struct mutex perf_event_mutex;
1475  struct list_head perf_event_list;
1476 #endif
1477 #ifdef CONFIG_NUMA
1478  struct mempolicy *mempolicy; /* Protected by alloc_lock */
1479  short il_next;
1480  short pref_node_fork;
1481 #endif
1482  struct rcu_head rcu;
1483 
1484  /*
1485  * cache last used pipe for splice
1486  */
1488 
1490 
1491 #ifdef CONFIG_TASK_DELAY_ACCT
1492  struct task_delay_info *delays;
1493 #endif
1494 #ifdef CONFIG_FAULT_INJECTION
1495  int make_it_fail;
1496 #endif
1497  /*
1498  * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1499  * balance_dirty_pages() for some dirty throttling pause
1500  */
1503  unsigned long dirty_paused_when; /* start of a write-and-pause period */
1504 
1505 #ifdef CONFIG_LATENCYTOP
1506  int latency_record_count;
1507  struct latency_record latency_record[LT_SAVECOUNT];
1508 #endif
1509  /*
1510  * time slack values; these are used to round up poll() and
1511  * select() etc timeout values. These are in nanoseconds.
1512  */
1513  unsigned long timer_slack_ns;
1514  unsigned long default_timer_slack_ns;
1515 
1516 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1517  /* Index of current stored address in ret_stack */
1518  int curr_ret_stack;
1519  /* Stack of return addresses for return function tracing */
1520  struct ftrace_ret_stack *ret_stack;
1521  /* time stamp for last schedule */
1522  unsigned long long ftrace_timestamp;
1523  /*
1524  * Number of functions that haven't been traced
1525  * because of depth overrun.
1526  */
1527  atomic_t trace_overrun;
1528  /* Pause for the tracing */
1529  atomic_t tracing_graph_pause;
1530 #endif
1531 #ifdef CONFIG_TRACING
1532  /* state flags for use by tracers */
1533  unsigned long trace;
1534  /* bitmask and counter of trace recursion */
1535  unsigned long trace_recursion;
1536 #endif /* CONFIG_TRACING */
1537 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1538  struct memcg_batch_info {
1539  int do_batch; /* incremented when batch uncharge started */
1540  struct mem_cgroup *memcg; /* target memcg of uncharge */
1541  unsigned long nr_pages; /* uncharged usage */
1542  unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1543  } memcg_batch;
1544 #endif
1545 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1546  atomic_t ptrace_bp_refcnt;
1547 #endif
1548 #ifdef CONFIG_UPROBES
1549  struct uprobe_task *utask;
1550 #endif
1551 };
1552 
1553 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1554 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1555 
1556 /*
1557  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1558  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1559  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1560  * values are inverted: lower p->prio value means higher priority.
1561  *
1562  * The MAX_USER_RT_PRIO value allows the actual maximum
1563  * RT priority to be separate from the value exported to
1564  * user-space. This allows kernel threads to set their
1565  * priority to a value higher than any user task. Note:
1566  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1567  */
1568 
1569 #define MAX_USER_RT_PRIO 100
1570 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1571 
1572 #define MAX_PRIO (MAX_RT_PRIO + 40)
1573 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1574 
1575 static inline int rt_prio(int prio)
1576 {
1577  if (unlikely(prio < MAX_RT_PRIO))
1578  return 1;
1579  return 0;
1580 }
1581 
1582 static inline int rt_task(struct task_struct *p)
1583 {
1584  return rt_prio(p->prio);
1585 }
1586 
1587 static inline struct pid *task_pid(struct task_struct *task)
1588 {
1589  return task->pids[PIDTYPE_PID].pid;
1590 }
1591 
1592 static inline struct pid *task_tgid(struct task_struct *task)
1593 {
1594  return task->group_leader->pids[PIDTYPE_PID].pid;
1595 }
1596 
1597 /*
1598  * Without tasklist or rcu lock it is not safe to dereference
1599  * the result of task_pgrp/task_session even if task == current,
1600  * we can race with another thread doing sys_setsid/sys_setpgid.
1601  */
1602 static inline struct pid *task_pgrp(struct task_struct *task)
1603 {
1604  return task->group_leader->pids[PIDTYPE_PGID].pid;
1605 }
1606 
1607 static inline struct pid *task_session(struct task_struct *task)
1608 {
1609  return task->group_leader->pids[PIDTYPE_SID].pid;
1610 }
1611 
1612 struct pid_namespace;
1613 
1614 /*
1615  * the helpers to get the task's different pids as they are seen
1616  * from various namespaces
1617  *
1618  * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1619  * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1620  * current.
1621  * task_xid_nr_ns() : id seen from the ns specified;
1622  *
1623  * set_task_vxid() : assigns a virtual id to a task;
1624  *
1625  * see also pid_nr() etc in include/linux/pid.h
1626  */
1628  struct pid_namespace *ns);
1629 
1630 static inline pid_t task_pid_nr(struct task_struct *tsk)
1631 {
1632  return tsk->pid;
1633 }
1634 
1635 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1636  struct pid_namespace *ns)
1637 {
1638  return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1639 }
1640 
1641 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1642 {
1643  return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1644 }
1645 
1646 
1647 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1648 {
1649  return tsk->tgid;
1650 }
1651 
1652 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1653 
1654 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1655 {
1656  return pid_vnr(task_tgid(tsk));
1657 }
1658 
1659 
1660 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1661  struct pid_namespace *ns)
1662 {
1663  return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1664 }
1665 
1666 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1667 {
1668  return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1669 }
1670 
1671 
1672 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1673  struct pid_namespace *ns)
1674 {
1675  return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1676 }
1677 
1678 static inline pid_t task_session_vnr(struct task_struct *tsk)
1679 {
1680  return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1681 }
1682 
1683 /* obsolete, do not use */
1684 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1685 {
1686  return task_pgrp_nr_ns(tsk, &init_pid_ns);
1687 }
1688 
1697 static inline int pid_alive(struct task_struct *p)
1698 {
1699  return p->pids[PIDTYPE_PID].pid != NULL;
1700 }
1701 
1708 static inline int is_global_init(struct task_struct *tsk)
1709 {
1710  return tsk->pid == 1;
1711 }
1712 
1713 /*
1714  * is_container_init:
1715  * check whether in the task is init in its own pid namespace.
1716  */
1717 extern int is_container_init(struct task_struct *tsk);
1718 
1719 extern struct pid *cad_pid;
1720 
1721 extern void free_task(struct task_struct *tsk);
1722 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1723 
1724 extern void __put_task_struct(struct task_struct *t);
1725 
1726 static inline void put_task_struct(struct task_struct *t)
1727 {
1728  if (atomic_dec_and_test(&t->usage))
1729  __put_task_struct(t);
1730 }
1731 
1732 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1733 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1734 
1735 /*
1736  * Per process flags
1737  */
1738 #define PF_EXITING 0x00000004 /* getting shut down */
1739 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1740 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1741 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1742 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1743 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1744 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1745 #define PF_DUMPCORE 0x00000200 /* dumped core */
1746 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1747 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1748 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1749 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1750 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1751 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1752 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1753 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1754 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1755 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1756 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1757 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1758 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1759 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1760 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1761 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1762 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1763 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1764 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1765 
1766 /*
1767  * Only the _current_ task can read/write to tsk->flags, but other
1768  * tasks can access tsk->flags in readonly mode for example
1769  * with tsk_used_math (like during threaded core dumping).
1770  * There is however an exception to this rule during ptrace
1771  * or during fork: the ptracer task is allowed to write to the
1772  * child->flags of its traced child (same goes for fork, the parent
1773  * can write to the child->flags), because we're guaranteed the
1774  * child is not running and in turn not changing child->flags
1775  * at the same time the parent does it.
1776  */
1777 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1778 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1779 #define clear_used_math() clear_stopped_child_used_math(current)
1780 #define set_used_math() set_stopped_child_used_math(current)
1781 #define conditional_stopped_child_used_math(condition, child) \
1782  do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1783 #define conditional_used_math(condition) \
1784  conditional_stopped_child_used_math(condition, current)
1785 #define copy_to_stopped_child_used_math(child) \
1786  do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1787 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1788 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1789 #define used_math() tsk_used_math(current)
1790 
1791 /*
1792  * task->jobctl flags
1793  */
1794 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1795 
1796 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1797 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1798 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1799 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1800 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1801 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1802 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1803 
1804 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1805 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1806 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1807 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1808 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1809 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1810 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1811 
1812 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1813 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1814 
1815 extern bool task_set_jobctl_pending(struct task_struct *task,
1816  unsigned int mask);
1817 extern void task_clear_jobctl_trapping(struct task_struct *task);
1818 extern void task_clear_jobctl_pending(struct task_struct *task,
1819  unsigned int mask);
1820 
1821 #ifdef CONFIG_PREEMPT_RCU
1822 
1823 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1824 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1825 
1826 static inline void rcu_copy_process(struct task_struct *p)
1827 {
1828  p->rcu_read_lock_nesting = 0;
1829  p->rcu_read_unlock_special = 0;
1830 #ifdef CONFIG_TREE_PREEMPT_RCU
1831  p->rcu_blocked_node = NULL;
1832 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1833 #ifdef CONFIG_RCU_BOOST
1834  p->rcu_boost_mutex = NULL;
1835 #endif /* #ifdef CONFIG_RCU_BOOST */
1836  INIT_LIST_HEAD(&p->rcu_node_entry);
1837 }
1838 
1839 #else
1840 
1841 static inline void rcu_copy_process(struct task_struct *p)
1842 {
1843 }
1844 
1845 #endif
1846 
1847 static inline void rcu_switch(struct task_struct *prev,
1848  struct task_struct *next)
1849 {
1850 #ifdef CONFIG_RCU_USER_QS
1851  rcu_user_hooks_switch(prev, next);
1852 #endif
1853 }
1854 
1855 static inline void tsk_restore_flags(struct task_struct *task,
1856  unsigned long orig_flags, unsigned long flags)
1857 {
1858  task->flags &= ~flags;
1859  task->flags |= orig_flags & flags;
1860 }
1861 
1862 #ifdef CONFIG_SMP
1863 extern void do_set_cpus_allowed(struct task_struct *p,
1864  const struct cpumask *new_mask);
1865 
1866 extern int set_cpus_allowed_ptr(struct task_struct *p,
1867  const struct cpumask *new_mask);
1868 #else
1869 static inline void do_set_cpus_allowed(struct task_struct *p,
1870  const struct cpumask *new_mask)
1871 {
1872 }
1873 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1874  const struct cpumask *new_mask)
1875 {
1876  if (!cpumask_test_cpu(0, new_mask))
1877  return -EINVAL;
1878  return 0;
1879 }
1880 #endif
1881 
1882 #ifdef CONFIG_NO_HZ
1883 void calc_load_enter_idle(void);
1884 void calc_load_exit_idle(void);
1885 #else
1886 static inline void calc_load_enter_idle(void) { }
1887 static inline void calc_load_exit_idle(void) { }
1888 #endif /* CONFIG_NO_HZ */
1889 
1890 #ifndef CONFIG_CPUMASK_OFFSTACK
1891 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1892 {
1893  return set_cpus_allowed_ptr(p, &new_mask);
1894 }
1895 #endif
1896 
1897 /*
1898  * Do not use outside of architecture code which knows its limitations.
1899  *
1900  * sched_clock() has no promise of monotonicity or bounded drift between
1901  * CPUs, use (which you should not) requires disabling IRQs.
1902  *
1903  * Please use one of the three interfaces below.
1904  */
1905 extern unsigned long long notrace sched_clock(void);
1906 /*
1907  * See the comment in kernel/sched/clock.c
1908  */
1909 extern u64 cpu_clock(int cpu);
1910 extern u64 local_clock(void);
1911 extern u64 sched_clock_cpu(int cpu);
1912 
1913 
1914 extern void sched_clock_init(void);
1915 
1916 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1917 static inline void sched_clock_tick(void)
1918 {
1919 }
1920 
1921 static inline void sched_clock_idle_sleep_event(void)
1922 {
1923 }
1924 
1925 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1926 {
1927 }
1928 #else
1929 /*
1930  * Architectures can set this to 1 if they have specified
1931  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1932  * but then during bootup it turns out that sched_clock()
1933  * is reliable after all:
1934  */
1935 extern int sched_clock_stable;
1936 
1937 extern void sched_clock_tick(void);
1938 extern void sched_clock_idle_sleep_event(void);
1939 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1940 #endif
1941 
1942 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1943 /*
1944  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1945  * The reason for this explicit opt-in is not to have perf penalty with
1946  * slow sched_clocks.
1947  */
1948 extern void enable_sched_clock_irqtime(void);
1949 extern void disable_sched_clock_irqtime(void);
1950 #else
1951 static inline void enable_sched_clock_irqtime(void) {}
1952 static inline void disable_sched_clock_irqtime(void) {}
1953 #endif
1954 
1955 extern unsigned long long
1957 
1958 /* sched_exec is called by processes performing an exec */
1959 #ifdef CONFIG_SMP
1960 extern void sched_exec(void);
1961 #else
1962 #define sched_exec() {}
1963 #endif
1964 
1965 extern void sched_clock_idle_sleep_event(void);
1966 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1967 
1968 #ifdef CONFIG_HOTPLUG_CPU
1969 extern void idle_task_exit(void);
1970 #else
1971 static inline void idle_task_exit(void) {}
1972 #endif
1973 
1974 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1975 extern void wake_up_idle_cpu(int cpu);
1976 #else
1977 static inline void wake_up_idle_cpu(int cpu) { }
1978 #endif
1979 
1980 extern unsigned int sysctl_sched_latency;
1981 extern unsigned int sysctl_sched_min_granularity;
1982 extern unsigned int sysctl_sched_wakeup_granularity;
1983 extern unsigned int sysctl_sched_child_runs_first;
1984 
1990 };
1992 
1993 #ifdef CONFIG_SCHED_DEBUG
1994 extern unsigned int sysctl_sched_migration_cost;
1995 extern unsigned int sysctl_sched_nr_migrate;
1996 extern unsigned int sysctl_sched_time_avg;
1997 extern unsigned int sysctl_timer_migration;
1998 extern unsigned int sysctl_sched_shares_window;
1999 
2000 int sched_proc_update_handler(struct ctl_table *table, int write,
2001  void __user *buffer, size_t *length,
2002  loff_t *ppos);
2003 #endif
2004 #ifdef CONFIG_SCHED_DEBUG
2005 static inline unsigned int get_sysctl_timer_migration(void)
2006 {
2007  return sysctl_timer_migration;
2008 }
2009 #else
2010 static inline unsigned int get_sysctl_timer_migration(void)
2011 {
2012  return 1;
2013 }
2014 #endif
2015 extern unsigned int sysctl_sched_rt_period;
2016 extern int sysctl_sched_rt_runtime;
2017 
2018 int sched_rt_handler(struct ctl_table *table, int write,
2019  void __user *buffer, size_t *lenp,
2020  loff_t *ppos);
2021 
2022 #ifdef CONFIG_SCHED_AUTOGROUP
2023 extern unsigned int sysctl_sched_autogroup_enabled;
2024 
2025 extern void sched_autogroup_create_attach(struct task_struct *p);
2026 extern void sched_autogroup_detach(struct task_struct *p);
2027 extern void sched_autogroup_fork(struct signal_struct *sig);
2028 extern void sched_autogroup_exit(struct signal_struct *sig);
2029 #ifdef CONFIG_PROC_FS
2030 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2031 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2032 #endif
2033 #else
2034 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2035 static inline void sched_autogroup_detach(struct task_struct *p) { }
2036 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2037 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2038 #endif
2039 
2040 #ifdef CONFIG_CFS_BANDWIDTH
2041 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2042 #endif
2043 
2044 #ifdef CONFIG_RT_MUTEXES
2045 extern int rt_mutex_getprio(struct task_struct *p);
2046 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2047 extern void rt_mutex_adjust_pi(struct task_struct *p);
2048 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2049 {
2050  return tsk->pi_blocked_on != NULL;
2051 }
2052 #else
2053 static inline int rt_mutex_getprio(struct task_struct *p)
2054 {
2055  return p->normal_prio;
2056 }
2057 # define rt_mutex_adjust_pi(p) do { } while (0)
2058 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2059 {
2060  return false;
2061 }
2062 #endif
2063 
2064 extern bool yield_to(struct task_struct *p, bool preempt);
2065 extern void set_user_nice(struct task_struct *p, long nice);
2066 extern int task_prio(const struct task_struct *p);
2067 extern int task_nice(const struct task_struct *p);
2068 extern int can_nice(const struct task_struct *p, const int nice);
2069 extern int task_curr(const struct task_struct *p);
2070 extern int idle_cpu(int cpu);
2071 extern int sched_setscheduler(struct task_struct *, int,
2072  const struct sched_param *);
2073 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2074  const struct sched_param *);
2075 extern struct task_struct *idle_task(int cpu);
2080 static inline bool is_idle_task(const struct task_struct *p)
2081 {
2082  return p->pid == 0;
2083 }
2084 extern struct task_struct *curr_task(int cpu);
2085 extern void set_curr_task(int cpu, struct task_struct *p);
2086 
2087 void yield(void);
2088 
2089 /*
2090  * The default (Linux) execution domain.
2091  */
2092 extern struct exec_domain default_exec_domain;
2093 
2096  unsigned long stack[THREAD_SIZE/sizeof(long)];
2097 };
2098 
2099 #ifndef __HAVE_ARCH_KSTACK_END
2100 static inline int kstack_end(void *addr)
2101 {
2102  /* Reliable end of stack detection:
2103  * Some APM bios versions misalign the stack
2104  */
2105  return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2106 }
2107 #endif
2108 
2109 extern union thread_union init_thread_union;
2110 extern struct task_struct init_task;
2111 
2112 extern struct mm_struct init_mm;
2113 
2114 extern struct pid_namespace init_pid_ns;
2115 
2116 /*
2117  * find a task by one of its numerical ids
2118  *
2119  * find_task_by_pid_ns():
2120  * finds a task by its pid in the specified namespace
2121  * find_task_by_vpid():
2122  * finds a task by its virtual pid
2123  *
2124  * see also find_vpid() etc in include/linux/pid.h
2125  */
2126 
2127 extern struct task_struct *find_task_by_vpid(pid_t nr);
2128 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2129  struct pid_namespace *ns);
2130 
2131 extern void __set_special_pids(struct pid *pid);
2132 
2133 /* per-UID process charging. */
2134 extern struct user_struct * alloc_uid(kuid_t);
2135 static inline struct user_struct *get_uid(struct user_struct *u)
2136 {
2137  atomic_inc(&u->__count);
2138  return u;
2139 }
2140 extern void free_uid(struct user_struct *);
2141 
2142 #include <asm/current.h>
2143 
2144 extern void xtime_update(unsigned long ticks);
2145 
2146 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2147 extern int wake_up_process(struct task_struct *tsk);
2148 extern void wake_up_new_task(struct task_struct *tsk);
2149 #ifdef CONFIG_SMP
2150  extern void kick_process(struct task_struct *tsk);
2151 #else
2152  static inline void kick_process(struct task_struct *tsk) { }
2153 #endif
2154 extern void sched_fork(struct task_struct *p);
2155 extern void sched_dead(struct task_struct *p);
2156 
2157 extern void proc_caches_init(void);
2158 extern void flush_signals(struct task_struct *);
2159 extern void __flush_signals(struct task_struct *);
2160 extern void ignore_signals(struct task_struct *);
2161 extern void flush_signal_handlers(struct task_struct *, int force_default);
2162 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2163 
2164 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2165 {
2166  unsigned long flags;
2167  int ret;
2168 
2169  spin_lock_irqsave(&tsk->sighand->siglock, flags);
2170  ret = dequeue_signal(tsk, mask, info);
2171  spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2172 
2173  return ret;
2174 }
2175 
2176 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2177  sigset_t *mask);
2178 extern void unblock_all_signals(void);
2179 extern void release_task(struct task_struct * p);
2180 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2181 extern int force_sigsegv(int, struct task_struct *);
2182 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2183 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2184 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2185 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2186  const struct cred *, u32);
2187 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2188 extern int kill_pid(struct pid *pid, int sig, int priv);
2189 extern int kill_proc_info(int, struct siginfo *, pid_t);
2190 extern __must_check bool do_notify_parent(struct task_struct *, int);
2191 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2192 extern void force_sig(int, struct task_struct *);
2193 extern int send_sig(int, struct task_struct *, int);
2194 extern int zap_other_threads(struct task_struct *p);
2195 extern struct sigqueue *sigqueue_alloc(void);
2196 extern void sigqueue_free(struct sigqueue *);
2197 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2198 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2199 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2200 
2201 static inline void restore_saved_sigmask(void)
2202 {
2203  if (test_and_clear_restore_sigmask())
2204  __set_current_blocked(&current->saved_sigmask);
2205 }
2206 
2207 static inline sigset_t *sigmask_to_save(void)
2208 {
2209  sigset_t *res = &current->blocked;
2210  if (unlikely(test_restore_sigmask()))
2211  res = &current->saved_sigmask;
2212  return res;
2213 }
2214 
2215 static inline int kill_cad_pid(int sig, int priv)
2216 {
2217  return kill_pid(cad_pid, sig, priv);
2218 }
2219 
2220 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2221 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2222 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2223 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2224 
2225 /*
2226  * True if we are on the alternate signal stack.
2227  */
2228 static inline int on_sig_stack(unsigned long sp)
2229 {
2230 #ifdef CONFIG_STACK_GROWSUP
2231  return sp >= current->sas_ss_sp &&
2232  sp - current->sas_ss_sp < current->sas_ss_size;
2233 #else
2234  return sp > current->sas_ss_sp &&
2235  sp - current->sas_ss_sp <= current->sas_ss_size;
2236 #endif
2237 }
2238 
2239 static inline int sas_ss_flags(unsigned long sp)
2240 {
2241  return (current->sas_ss_size == 0 ? SS_DISABLE
2242  : on_sig_stack(sp) ? SS_ONSTACK : 0);
2243 }
2244 
2245 /*
2246  * Routines for handling mm_structs
2247  */
2248 extern struct mm_struct * mm_alloc(void);
2249 
2250 /* mmdrop drops the mm and the page tables */
2251 extern void __mmdrop(struct mm_struct *);
2252 static inline void mmdrop(struct mm_struct * mm)
2253 {
2255  __mmdrop(mm);
2256 }
2257 
2258 /* mmput gets rid of the mappings and all user-space */
2259 extern void mmput(struct mm_struct *);
2260 /* Grab a reference to a task's mm, if it is not already going away */
2261 extern struct mm_struct *get_task_mm(struct task_struct *task);
2262 /*
2263  * Grab a reference to a task's mm, if it is not already going away
2264  * and ptrace_may_access with the mode parameter passed to it
2265  * succeeds.
2266  */
2267 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2268 /* Remove the current tasks stale references to the old mm_struct */
2269 extern void mm_release(struct task_struct *, struct mm_struct *);
2270 /* Allocate a new mm structure and copy contents from tsk->mm */
2271 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2272 
2273 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2274  struct task_struct *, struct pt_regs *);
2275 extern void flush_thread(void);
2276 extern void exit_thread(void);
2277 
2278 extern void exit_files(struct task_struct *);
2279 extern void __cleanup_sighand(struct sighand_struct *);
2280 
2281 extern void exit_itimers(struct signal_struct *);
2282 extern void flush_itimer_signals(void);
2283 
2284 extern void do_group_exit(int);
2285 
2286 extern void daemonize(const char *, ...);
2287 extern int allow_signal(int);
2288 extern int disallow_signal(int);
2289 
2290 extern int do_execve(const char *,
2291  const char __user * const __user *,
2292  const char __user * const __user *, struct pt_regs *);
2293 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2294 struct task_struct *fork_idle(int);
2295 #ifdef CONFIG_GENERIC_KERNEL_THREAD
2296 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2297 #endif
2298 
2299 extern void set_task_comm(struct task_struct *tsk, char *from);
2300 extern char *get_task_comm(char *to, struct task_struct *tsk);
2301 
2302 #ifdef CONFIG_SMP
2303 void scheduler_ipi(void);
2304 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2305 #else
2306 static inline void scheduler_ipi(void) { }
2307 static inline unsigned long wait_task_inactive(struct task_struct *p,
2308  long match_state)
2309 {
2310  return 1;
2311 }
2312 #endif
2313 
2314 #define next_task(p) \
2315  list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2316 
2317 #define for_each_process(p) \
2318  for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2319 
2320 extern bool current_is_single_threaded(void);
2321 
2322 /*
2323  * Careful: do_each_thread/while_each_thread is a double loop so
2324  * 'break' will not work as expected - use goto instead.
2325  */
2326 #define do_each_thread(g, t) \
2327  for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2328 
2329 #define while_each_thread(g, t) \
2330  while ((t = next_thread(t)) != g)
2331 
2332 static inline int get_nr_threads(struct task_struct *tsk)
2333 {
2334  return tsk->signal->nr_threads;
2335 }
2336 
2337 static inline bool thread_group_leader(struct task_struct *p)
2338 {
2339  return p->exit_signal >= 0;
2340 }
2341 
2342 /* Do to the insanities of de_thread it is possible for a process
2343  * to have the pid of the thread group leader without actually being
2344  * the thread group leader. For iteration through the pids in proc
2345  * all we care about is that we have a task with the appropriate
2346  * pid, we don't actually care if we have the right task.
2347  */
2348 static inline int has_group_leader_pid(struct task_struct *p)
2349 {
2350  return p->pid == p->tgid;
2351 }
2352 
2353 static inline
2354 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2355 {
2356  return p1->tgid == p2->tgid;
2357 }
2358 
2359 static inline struct task_struct *next_thread(const struct task_struct *p)
2360 {
2361  return list_entry_rcu(p->thread_group.next,
2362  struct task_struct, thread_group);
2363 }
2364 
2365 static inline int thread_group_empty(struct task_struct *p)
2366 {
2367  return list_empty(&p->thread_group);
2368 }
2369 
2370 #define delay_group_leader(p) \
2371  (thread_group_leader(p) && !thread_group_empty(p))
2372 
2373 /*
2374  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2375  * subscriptions and synchronises with wait4(). Also used in procfs. Also
2376  * pins the final release of task.io_context. Also protects ->cpuset and
2377  * ->cgroup.subsys[]. And ->vfork_done.
2378  *
2379  * Nests both inside and outside of read_lock(&tasklist_lock).
2380  * It must not be nested with write_lock_irq(&tasklist_lock),
2381  * neither inside nor outside.
2382  */
2383 static inline void task_lock(struct task_struct *p)
2384 {
2385  spin_lock(&p->alloc_lock);
2386 }
2387 
2388 static inline void task_unlock(struct task_struct *p)
2389 {
2390  spin_unlock(&p->alloc_lock);
2391 }
2392 
2393 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2394  unsigned long *flags);
2395 
2396 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2397  unsigned long *flags)
2398 {
2399  struct sighand_struct *ret;
2400 
2401  ret = __lock_task_sighand(tsk, flags);
2402  (void)__cond_lock(&tsk->sighand->siglock, ret);
2403  return ret;
2404 }
2405 
2406 static inline void unlock_task_sighand(struct task_struct *tsk,
2407  unsigned long *flags)
2408 {
2409  spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2410 }
2411 
2412 #ifdef CONFIG_CGROUPS
2413 static inline void threadgroup_change_begin(struct task_struct *tsk)
2414 {
2415  down_read(&tsk->signal->group_rwsem);
2416 }
2417 static inline void threadgroup_change_end(struct task_struct *tsk)
2418 {
2419  up_read(&tsk->signal->group_rwsem);
2420 }
2421 
2442 static inline void threadgroup_lock(struct task_struct *tsk)
2443 {
2444  /*
2445  * exec uses exit for de-threading nesting group_rwsem inside
2446  * cred_guard_mutex. Grab cred_guard_mutex first.
2447  */
2448  mutex_lock(&tsk->signal->cred_guard_mutex);
2449  down_write(&tsk->signal->group_rwsem);
2450 }
2451 
2458 static inline void threadgroup_unlock(struct task_struct *tsk)
2459 {
2460  up_write(&tsk->signal->group_rwsem);
2461  mutex_unlock(&tsk->signal->cred_guard_mutex);
2462 }
2463 #else
2464 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2465 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2466 static inline void threadgroup_lock(struct task_struct *tsk) {}
2467 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2468 #endif
2469 
2470 #ifndef __HAVE_THREAD_FUNCTIONS
2471 
2472 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2473 #define task_stack_page(task) ((task)->stack)
2474 
2475 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2476 {
2477  *task_thread_info(p) = *task_thread_info(org);
2478  task_thread_info(p)->task = p;
2479 }
2480 
2481 static inline unsigned long *end_of_stack(struct task_struct *p)
2482 {
2483  return (unsigned long *)(task_thread_info(p) + 1);
2484 }
2485 
2486 #endif
2487 
2488 static inline int object_is_on_stack(void *obj)
2489 {
2490  void *stack = task_stack_page(current);
2491 
2492  return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2493 }
2494 
2495 extern void thread_info_cache_init(void);
2496 
2497 #ifdef CONFIG_DEBUG_STACK_USAGE
2498 static inline unsigned long stack_not_used(struct task_struct *p)
2499 {
2500  unsigned long *n = end_of_stack(p);
2501 
2502  do { /* Skip over canary */
2503  n++;
2504  } while (!*n);
2505 
2506  return (unsigned long)n - (unsigned long)end_of_stack(p);
2507 }
2508 #endif
2509 
2510 /* set thread flags in other task's structures
2511  * - see asm/thread_info.h for TIF_xxxx flags available
2512  */
2513 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2514 {
2515  set_ti_thread_flag(task_thread_info(tsk), flag);
2516 }
2517 
2518 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2519 {
2520  clear_ti_thread_flag(task_thread_info(tsk), flag);
2521 }
2522 
2523 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2524 {
2525  return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2526 }
2527 
2528 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2529 {
2530  return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2531 }
2532 
2533 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2534 {
2535  return test_ti_thread_flag(task_thread_info(tsk), flag);
2536 }
2537 
2538 static inline void set_tsk_need_resched(struct task_struct *tsk)
2539 {
2540  set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2541 }
2542 
2543 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2544 {
2545  clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2546 }
2547 
2548 static inline int test_tsk_need_resched(struct task_struct *tsk)
2549 {
2550  return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2551 }
2552 
2553 static inline int restart_syscall(void)
2554 {
2555  set_tsk_thread_flag(current, TIF_SIGPENDING);
2556  return -ERESTARTNOINTR;
2557 }
2558 
2559 static inline int signal_pending(struct task_struct *p)
2560 {
2561  return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2562 }
2563 
2564 static inline int __fatal_signal_pending(struct task_struct *p)
2565 {
2566  return unlikely(sigismember(&p->pending.signal, SIGKILL));
2567 }
2568 
2569 static inline int fatal_signal_pending(struct task_struct *p)
2570 {
2571  return signal_pending(p) && __fatal_signal_pending(p);
2572 }
2573 
2574 static inline int signal_pending_state(long state, struct task_struct *p)
2575 {
2576  if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2577  return 0;
2578  if (!signal_pending(p))
2579  return 0;
2580 
2581  return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2582 }
2583 
2584 static inline int need_resched(void)
2585 {
2586  return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2587 }
2588 
2589 /*
2590  * cond_resched() and cond_resched_lock(): latency reduction via
2591  * explicit rescheduling in places that are safe. The return
2592  * value indicates whether a reschedule was done in fact.
2593  * cond_resched_lock() will drop the spinlock before scheduling,
2594  * cond_resched_softirq() will enable bhs before scheduling.
2595  */
2596 extern int _cond_resched(void);
2597 
2598 #define cond_resched() ({ \
2599  __might_sleep(__FILE__, __LINE__, 0); \
2600  _cond_resched(); \
2601 })
2602 
2603 extern int __cond_resched_lock(spinlock_t *lock);
2604 
2605 #ifdef CONFIG_PREEMPT_COUNT
2606 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2607 #else
2608 #define PREEMPT_LOCK_OFFSET 0
2609 #endif
2610 
2611 #define cond_resched_lock(lock) ({ \
2612  __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2613  __cond_resched_lock(lock); \
2614 })
2615 
2616 extern int __cond_resched_softirq(void);
2617 
2618 #define cond_resched_softirq() ({ \
2619  __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2620  __cond_resched_softirq(); \
2621 })
2622 
2623 /*
2624  * Does a critical section need to be broken due to another
2625  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2626  * but a general need for low latency)
2627  */
2628 static inline int spin_needbreak(spinlock_t *lock)
2629 {
2630 #ifdef CONFIG_PREEMPT
2631  return spin_is_contended(lock);
2632 #else
2633  return 0;
2634 #endif
2635 }
2636 
2637 /*
2638  * Thread group CPU time accounting.
2639  */
2640 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2641 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2642 
2643 static inline void thread_group_cputime_init(struct signal_struct *sig)
2644 {
2645  raw_spin_lock_init(&sig->cputimer.lock);
2646 }
2647 
2648 /*
2649  * Reevaluate whether the task has signals pending delivery.
2650  * Wake the task if so.
2651  * This is required every time the blocked sigset_t changes.
2652  * callers must hold sighand->siglock.
2653  */
2654 extern void recalc_sigpending_and_wake(struct task_struct *t);
2655 extern void recalc_sigpending(void);
2656 
2657 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2658 
2659 /*
2660  * Wrappers for p->thread_info->cpu access. No-op on UP.
2661  */
2662 #ifdef CONFIG_SMP
2663 
2664 static inline unsigned int task_cpu(const struct task_struct *p)
2665 {
2666  return task_thread_info(p)->cpu;
2667 }
2668 
2669 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2670 
2671 #else
2672 
2673 static inline unsigned int task_cpu(const struct task_struct *p)
2674 {
2675  return 0;
2676 }
2677 
2678 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2679 {
2680 }
2681 
2682 #endif /* CONFIG_SMP */
2683 
2684 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2685 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2686 
2687 extern void normalize_rt_tasks(void);
2688 
2689 #ifdef CONFIG_CGROUP_SCHED
2690 
2691 extern struct task_group root_task_group;
2692 
2693 extern struct task_group *sched_create_group(struct task_group *parent);
2694 extern void sched_destroy_group(struct task_group *tg);
2695 extern void sched_move_task(struct task_struct *tsk);
2696 #ifdef CONFIG_FAIR_GROUP_SCHED
2697 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2698 extern unsigned long sched_group_shares(struct task_group *tg);
2699 #endif
2700 #ifdef CONFIG_RT_GROUP_SCHED
2701 extern int sched_group_set_rt_runtime(struct task_group *tg,
2702  long rt_runtime_us);
2703 extern long sched_group_rt_runtime(struct task_group *tg);
2704 extern int sched_group_set_rt_period(struct task_group *tg,
2705  long rt_period_us);
2706 extern long sched_group_rt_period(struct task_group *tg);
2707 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2708 #endif
2709 #endif /* CONFIG_CGROUP_SCHED */
2710 
2711 extern int task_can_switch_user(struct user_struct *up,
2712  struct task_struct *tsk);
2713 
2714 #ifdef CONFIG_TASK_XACCT
2715 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2716 {
2717  tsk->ioac.rchar += amt;
2718 }
2719 
2720 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2721 {
2722  tsk->ioac.wchar += amt;
2723 }
2724 
2725 static inline void inc_syscr(struct task_struct *tsk)
2726 {
2727  tsk->ioac.syscr++;
2728 }
2729 
2730 static inline void inc_syscw(struct task_struct *tsk)
2731 {
2732  tsk->ioac.syscw++;
2733 }
2734 #else
2735 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2736 {
2737 }
2738 
2739 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2740 {
2741 }
2742 
2743 static inline void inc_syscr(struct task_struct *tsk)
2744 {
2745 }
2746 
2747 static inline void inc_syscw(struct task_struct *tsk)
2748 {
2749 }
2750 #endif
2751 
2752 #ifndef TASK_SIZE_OF
2753 #define TASK_SIZE_OF(tsk) TASK_SIZE
2754 #endif
2755 
2756 #ifdef CONFIG_MM_OWNER
2757 extern void mm_update_next_owner(struct mm_struct *mm);
2758 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2759 #else
2760 static inline void mm_update_next_owner(struct mm_struct *mm)
2761 {
2762 }
2763 
2764 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2765 {
2766 }
2767 #endif /* CONFIG_MM_OWNER */
2768 
2769 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2770  unsigned int limit)
2771 {
2772  return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2773 }
2774 
2775 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2776  unsigned int limit)
2777 {
2778  return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2779 }
2780 
2781 static inline unsigned long rlimit(unsigned int limit)
2782 {
2783  return task_rlimit(current, limit);
2784 }
2785 
2786 static inline unsigned long rlimit_max(unsigned int limit)
2787 {
2788  return task_rlimit_max(current, limit);
2789 }
2790 
2791 #endif