Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
traps.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected]
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/spinlock.h>
23 #include <linux/kallsyms.h>
24 #include <linux/bootmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/ptrace.h>
27 #include <linux/kgdb.h>
28 #include <linux/kdebug.h>
29 #include <linux/kprobes.h>
30 #include <linux/notifier.h>
31 #include <linux/kdb.h>
32 #include <linux/irq.h>
33 #include <linux/perf_event.h>
34 
35 #include <asm/bootinfo.h>
36 #include <asm/branch.h>
37 #include <asm/break.h>
38 #include <asm/cop2.h>
39 #include <asm/cpu.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/fpu_emulator.h>
43 #include <asm/mipsregs.h>
44 #include <asm/mipsmtregs.h>
45 #include <asm/module.h>
46 #include <asm/pgtable.h>
47 #include <asm/ptrace.h>
48 #include <asm/sections.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
56 #include <asm/uasm.h>
57 
58 extern void check_wait(void);
59 extern asmlinkage void r4k_wait(void);
60 extern asmlinkage void rollback_handle_int(void);
61 extern asmlinkage void handle_int(void);
62 extern asmlinkage void handle_tlbm(void);
63 extern asmlinkage void handle_tlbl(void);
64 extern asmlinkage void handle_tlbs(void);
65 extern asmlinkage void handle_adel(void);
66 extern asmlinkage void handle_ades(void);
67 extern asmlinkage void handle_ibe(void);
68 extern asmlinkage void handle_dbe(void);
69 extern asmlinkage void handle_sys(void);
70 extern asmlinkage void handle_bp(void);
71 extern asmlinkage void handle_ri(void);
72 extern asmlinkage void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage void handle_ri_rdhwr(void);
74 extern asmlinkage void handle_cpu(void);
75 extern asmlinkage void handle_ov(void);
76 extern asmlinkage void handle_tr(void);
77 extern asmlinkage void handle_fpe(void);
78 extern asmlinkage void handle_mdmx(void);
79 extern asmlinkage void handle_watch(void);
80 extern asmlinkage void handle_mt(void);
81 extern asmlinkage void handle_dsp(void);
82 extern asmlinkage void handle_mcheck(void);
83 extern asmlinkage void handle_reserved(void);
84 
85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86  struct mips_fpu_struct *ctx, int has_fpu,
87  void *__user *fault_addr);
88 
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
96 
97 static void show_raw_backtrace(unsigned long reg29)
98 {
99  unsigned long *sp = (unsigned long *)(reg29 & ~3);
100  unsigned long addr;
101 
102  printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
104  printk("\n");
105 #endif
106  while (!kstack_end(sp)) {
107  unsigned long __user *p =
108  (unsigned long __user *)(unsigned long)sp++;
109  if (__get_user(addr, p)) {
110  printk(" (Bad stack address)");
111  break;
112  }
113  if (__kernel_text_address(addr))
114  print_ip_sym(addr);
115  }
116  printk("\n");
117 }
118 
119 #ifdef CONFIG_KALLSYMS
120 int raw_show_trace;
121 static int __init set_raw_show_trace(char *str)
122 {
123  raw_show_trace = 1;
124  return 1;
125 }
126 __setup("raw_show_trace", set_raw_show_trace);
127 #endif
128 
129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
130 {
131  unsigned long sp = regs->regs[29];
132  unsigned long ra = regs->regs[31];
133  unsigned long pc = regs->cp0_epc;
134 
135  if (!task)
136  task = current;
137 
139  show_raw_backtrace(sp);
140  return;
141  }
142  printk("Call Trace:\n");
143  do {
144  print_ip_sym(pc);
145  pc = unwind_stack(task, &sp, pc, &ra);
146  } while (pc);
147  printk("\n");
148 }
149 
150 /*
151  * This routine abuses get_user()/put_user() to reference pointers
152  * with at least a bit of error checking ...
153  */
154 static void show_stacktrace(struct task_struct *task,
155  const struct pt_regs *regs)
156 {
157  const int field = 2 * sizeof(unsigned long);
158  long stackdata;
159  int i;
160  unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
161 
162  printk("Stack :");
163  i = 0;
164  while ((unsigned long) sp & (PAGE_SIZE - 1)) {
165  if (i && ((i % (64 / field)) == 0))
166  printk("\n ");
167  if (i > 39) {
168  printk(" ...");
169  break;
170  }
171 
172  if (__get_user(stackdata, sp++)) {
173  printk(" (Bad stack address)");
174  break;
175  }
176 
177  printk(" %0*lx", field, stackdata);
178  i++;
179  }
180  printk("\n");
181  show_backtrace(task, regs);
182 }
183 
184 void show_stack(struct task_struct *task, unsigned long *sp)
185 {
186  struct pt_regs regs;
187  if (sp) {
188  regs.regs[29] = (unsigned long)sp;
189  regs.regs[31] = 0;
190  regs.cp0_epc = 0;
191  } else {
192  if (task && task != current) {
193  regs.regs[29] = task->thread.reg29;
194  regs.regs[31] = 0;
195  regs.cp0_epc = task->thread.reg31;
196 #ifdef CONFIG_KGDB_KDB
197  } else if (atomic_read(&kgdb_active) != -1 &&
199  memcpy(&regs, kdb_current_regs, sizeof(regs));
200 #endif /* CONFIG_KGDB_KDB */
201  } else {
202  prepare_frametrace(&regs);
203  }
204  }
205  show_stacktrace(task, &regs);
206 }
207 
208 /*
209  * The architecture-independent dump_stack generator
210  */
211 void dump_stack(void)
212 {
213  struct pt_regs regs;
214 
215  prepare_frametrace(&regs);
216  show_backtrace(current, &regs);
217 }
218 
220 
221 static void show_code(unsigned int __user *pc)
222 {
223  long i;
224  unsigned short __user *pc16 = NULL;
225 
226  printk("\nCode:");
227 
228  if ((unsigned long)pc & 1)
229  pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
230  for(i = -3 ; i < 6 ; i++) {
231  unsigned int insn;
232  if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
233  printk(" (Bad address in epc)\n");
234  break;
235  }
236  printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
237  }
238 }
239 
240 static void __show_regs(const struct pt_regs *regs)
241 {
242  const int field = 2 * sizeof(unsigned long);
243  unsigned int cause = regs->cp0_cause;
244  int i;
245 
246  printk("Cpu %d\n", smp_processor_id());
247 
248  /*
249  * Saved main processor registers
250  */
251  for (i = 0; i < 32; ) {
252  if ((i % 4) == 0)
253  printk("$%2d :", i);
254  if (i == 0)
255  printk(" %0*lx", field, 0UL);
256  else if (i == 26 || i == 27)
257  printk(" %*s", field, "");
258  else
259  printk(" %0*lx", field, regs->regs[i]);
260 
261  i++;
262  if ((i % 4) == 0)
263  printk("\n");
264  }
265 
266 #ifdef CONFIG_CPU_HAS_SMARTMIPS
267  printk("Acx : %0*lx\n", field, regs->acx);
268 #endif
269  printk("Hi : %0*lx\n", field, regs->hi);
270  printk("Lo : %0*lx\n", field, regs->lo);
271 
272  /*
273  * Saved cp0 registers
274  */
275  printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
276  (void *) regs->cp0_epc);
277  printk(" %s\n", print_tainted());
278  printk("ra : %0*lx %pS\n", field, regs->regs[31],
279  (void *) regs->regs[31]);
280 
281  printk("Status: %08x ", (uint32_t) regs->cp0_status);
282 
283  if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
284  if (regs->cp0_status & ST0_KUO)
285  printk("KUo ");
286  if (regs->cp0_status & ST0_IEO)
287  printk("IEo ");
288  if (regs->cp0_status & ST0_KUP)
289  printk("KUp ");
290  if (regs->cp0_status & ST0_IEP)
291  printk("IEp ");
292  if (regs->cp0_status & ST0_KUC)
293  printk("KUc ");
294  if (regs->cp0_status & ST0_IEC)
295  printk("IEc ");
296  } else {
297  if (regs->cp0_status & ST0_KX)
298  printk("KX ");
299  if (regs->cp0_status & ST0_SX)
300  printk("SX ");
301  if (regs->cp0_status & ST0_UX)
302  printk("UX ");
303  switch (regs->cp0_status & ST0_KSU) {
304  case KSU_USER:
305  printk("USER ");
306  break;
307  case KSU_SUPERVISOR:
308  printk("SUPERVISOR ");
309  break;
310  case KSU_KERNEL:
311  printk("KERNEL ");
312  break;
313  default:
314  printk("BAD_MODE ");
315  break;
316  }
317  if (regs->cp0_status & ST0_ERL)
318  printk("ERL ");
319  if (regs->cp0_status & ST0_EXL)
320  printk("EXL ");
321  if (regs->cp0_status & ST0_IE)
322  printk("IE ");
323  }
324  printk("\n");
325 
326  printk("Cause : %08x\n", cause);
327 
328  cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329  if (1 <= cause && cause <= 5)
330  printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
331 
332  printk("PrId : %08x (%s)\n", read_c0_prid(),
333  cpu_name_string());
334 }
335 
336 /*
337  * FIXME: really the generic show_regs should take a const pointer argument.
338  */
339 void show_regs(struct pt_regs *regs)
340 {
341  __show_regs((struct pt_regs *)regs);
342 }
343 
344 void show_registers(struct pt_regs *regs)
345 {
346  const int field = 2 * sizeof(unsigned long);
347 
348  __show_regs(regs);
349  print_modules();
350  printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
351  current->comm, current->pid, current_thread_info(), current,
352  field, current_thread_info()->tp_value);
353  if (cpu_has_userlocal) {
354  unsigned long tls;
355 
356  tls = read_c0_userlocal();
357  if (tls != current_thread_info()->tp_value)
358  printk("*HwTLS: %0*lx\n", field, tls);
359  }
360 
361  show_stacktrace(current, regs);
362  show_code((unsigned int __user *) regs->cp0_epc);
363  printk("\n");
364 }
365 
366 static int regs_to_trapnr(struct pt_regs *regs)
367 {
368  return (regs->cp0_cause >> 2) & 0x1f;
369 }
370 
372 
373 void __noreturn die(const char *str, struct pt_regs *regs)
374 {
375  static int die_counter;
376  int sig = SIGSEGV;
377 #ifdef CONFIG_MIPS_MT_SMTC
378  unsigned long dvpret;
379 #endif /* CONFIG_MIPS_MT_SMTC */
380 
381  oops_enter();
382 
383  if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
384  sig = 0;
385 
386  console_verbose();
388 #ifdef CONFIG_MIPS_MT_SMTC
389  dvpret = dvpe();
390 #endif /* CONFIG_MIPS_MT_SMTC */
391  bust_spinlocks(1);
392 #ifdef CONFIG_MIPS_MT_SMTC
393  mips_mt_regdump(dvpret);
394 #endif /* CONFIG_MIPS_MT_SMTC */
395 
396  printk("%s[#%d]:\n", str, ++die_counter);
397  show_registers(regs);
400 
401  oops_exit();
402 
403  if (in_interrupt())
404  panic("Fatal exception in interrupt");
405 
406  if (panic_on_oops) {
407  printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
408  ssleep(5);
409  panic("Fatal exception");
410  }
411 
412  do_exit(sig);
413 }
414 
417 
418 __asm__(
419 " .section __dbe_table, \"a\"\n"
420 " .previous \n");
421 
422 /* Given an address, look for it in the exception tables. */
423 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
424 {
425  const struct exception_table_entry *e;
426 
427  e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428  if (!e)
429  e = search_module_dbetables(addr);
430  return e;
431 }
432 
433 asmlinkage void do_be(struct pt_regs *regs)
434 {
435  const int field = 2 * sizeof(unsigned long);
436  const struct exception_table_entry *fixup = NULL;
437  int data = regs->cp0_cause & 4;
438  int action = MIPS_BE_FATAL;
439 
440  /* XXX For now. Fixme, this searches the wrong table ... */
441  if (data && !user_mode(regs))
442  fixup = search_dbe_tables(exception_epc(regs));
443 
444  if (fixup)
445  action = MIPS_BE_FIXUP;
446 
447  if (board_be_handler)
448  action = board_be_handler(regs, fixup != NULL);
449 
450  switch (action) {
451  case MIPS_BE_DISCARD:
452  return;
453  case MIPS_BE_FIXUP:
454  if (fixup) {
455  regs->cp0_epc = fixup->nextinsn;
456  return;
457  }
458  break;
459  default:
460  break;
461  }
462 
463  /*
464  * Assume it would be too dangerous to continue ...
465  */
466  printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467  data ? "Data" : "Instruction",
468  field, regs->cp0_epc, field, regs->regs[31]);
469  if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
470  == NOTIFY_STOP)
471  return;
472 
473  die_if_kernel("Oops", regs);
475 }
476 
477 /*
478  * ll/sc, rdhwr, sync emulation
479  */
480 
481 #define OPCODE 0xfc000000
482 #define BASE 0x03e00000
483 #define RT 0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL 0xc0000000
486 #define SC 0xe0000000
487 #define SPEC0 0x00000000
488 #define SPEC3 0x7c000000
489 #define RD 0x0000f800
490 #define FUNC 0x0000003f
491 #define SYNC 0x0000000f
492 #define RDHWR 0x0000003b
493 
494 /*
495  * The ll_bit is cleared by r*_switch.S
496  */
497 
498 unsigned int ll_bit;
500 
501 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
502 {
503  unsigned long value, __user *vaddr;
504  long offset;
505 
506  /*
507  * analyse the ll instruction that just caused a ri exception
508  * and put the referenced address to addr.
509  */
510 
511  /* sign extend offset */
512  offset = opcode & OFFSET;
513  offset <<= 16;
514  offset >>= 16;
515 
516  vaddr = (unsigned long __user *)
517  ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
518 
519  if ((unsigned long)vaddr & 3)
520  return SIGBUS;
521  if (get_user(value, vaddr))
522  return SIGSEGV;
523 
524  preempt_disable();
525 
526  if (ll_task == NULL || ll_task == current) {
527  ll_bit = 1;
528  } else {
529  ll_bit = 0;
530  }
531  ll_task = current;
532 
533  preempt_enable();
534 
535  regs->regs[(opcode & RT) >> 16] = value;
536 
537  return 0;
538 }
539 
540 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
541 {
542  unsigned long __user *vaddr;
543  unsigned long reg;
544  long offset;
545 
546  /*
547  * analyse the sc instruction that just caused a ri exception
548  * and put the referenced address to addr.
549  */
550 
551  /* sign extend offset */
552  offset = opcode & OFFSET;
553  offset <<= 16;
554  offset >>= 16;
555 
556  vaddr = (unsigned long __user *)
557  ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
558  reg = (opcode & RT) >> 16;
559 
560  if ((unsigned long)vaddr & 3)
561  return SIGBUS;
562 
563  preempt_disable();
564 
565  if (ll_bit == 0 || ll_task != current) {
566  regs->regs[reg] = 0;
567  preempt_enable();
568  return 0;
569  }
570 
571  preempt_enable();
572 
573  if (put_user(regs->regs[reg], vaddr))
574  return SIGSEGV;
575 
576  regs->regs[reg] = 1;
577 
578  return 0;
579 }
580 
581 /*
582  * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
583  * opcodes are supposed to result in coprocessor unusable exceptions if
584  * executed on ll/sc-less processors. That's the theory. In practice a
585  * few processors such as NEC's VR4100 throw reserved instruction exceptions
586  * instead, so we're doing the emulation thing in both exception handlers.
587  */
588 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
589 {
590  if ((opcode & OPCODE) == LL) {
591  perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
592  1, regs, 0);
593  return simulate_ll(regs, opcode);
594  }
595  if ((opcode & OPCODE) == SC) {
596  perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597  1, regs, 0);
598  return simulate_sc(regs, opcode);
599  }
600 
601  return -1; /* Must be something else ... */
602 }
603 
604 /*
605  * Simulate trapping 'rdhwr' instructions to provide user accessible
606  * registers not implemented in hardware.
607  */
608 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
609 {
610  struct thread_info *ti = task_thread_info(current);
611 
612  if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
613  int rd = (opcode & RD) >> 11;
614  int rt = (opcode & RT) >> 16;
615  perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616  1, regs, 0);
617  switch (rd) {
618  case 0: /* CPU number */
619  regs->regs[rt] = smp_processor_id();
620  return 0;
621  case 1: /* SYNCI length */
622  regs->regs[rt] = min(current_cpu_data.dcache.linesz,
623  current_cpu_data.icache.linesz);
624  return 0;
625  case 2: /* Read count register */
626  regs->regs[rt] = read_c0_count();
627  return 0;
628  case 3: /* Count register resolution */
629  switch (current_cpu_data.cputype) {
630  case CPU_20KC:
631  case CPU_25KF:
632  regs->regs[rt] = 1;
633  break;
634  default:
635  regs->regs[rt] = 2;
636  }
637  return 0;
638  case 29:
639  regs->regs[rt] = ti->tp_value;
640  return 0;
641  default:
642  return -1;
643  }
644  }
645 
646  /* Not ours. */
647  return -1;
648 }
649 
650 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
651 {
652  if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
653  perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
654  1, regs, 0);
655  return 0;
656  }
657 
658  return -1; /* Must be something else ... */
659 }
660 
661 asmlinkage void do_ov(struct pt_regs *regs)
662 {
663  siginfo_t info;
664 
665  die_if_kernel("Integer overflow", regs);
666 
667  info.si_code = FPE_INTOVF;
668  info.si_signo = SIGFPE;
669  info.si_errno = 0;
670  info.si_addr = (void __user *) regs->cp0_epc;
671  force_sig_info(SIGFPE, &info, current);
672 }
673 
674 static int process_fpemu_return(int sig, void __user *fault_addr)
675 {
676  if (sig == SIGSEGV || sig == SIGBUS) {
677  struct siginfo si = {0};
678  si.si_addr = fault_addr;
679  si.si_signo = sig;
680  if (sig == SIGSEGV) {
681  if (find_vma(current->mm, (unsigned long)fault_addr))
682  si.si_code = SEGV_ACCERR;
683  else
684  si.si_code = SEGV_MAPERR;
685  } else {
686  si.si_code = BUS_ADRERR;
687  }
688  force_sig_info(sig, &si, current);
689  return 1;
690  } else if (sig) {
691  force_sig(sig, current);
692  return 1;
693  } else {
694  return 0;
695  }
696 }
697 
698 /*
699  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
700  */
701 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
702 {
703  siginfo_t info = {0};
704 
705  if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
706  == NOTIFY_STOP)
707  return;
708  die_if_kernel("FP exception in kernel code", regs);
709 
710  if (fcr31 & FPU_CSR_UNI_X) {
711  int sig;
712  void __user *fault_addr = NULL;
713 
714  /*
715  * Unimplemented operation exception. If we've got the full
716  * software emulator on-board, let's use it...
717  *
718  * Force FPU to dump state into task/thread context. We're
719  * moving a lot of data here for what is probably a single
720  * instruction, but the alternative is to pre-decode the FP
721  * register operands before invoking the emulator, which seems
722  * a bit extreme for what should be an infrequent event.
723  */
724  /* Ensure 'resume' not overwrite saved fp context again. */
725  lose_fpu(1);
726 
727  /* Run the emulator */
728  sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
729  &fault_addr);
730 
731  /*
732  * We can't allow the emulated instruction to leave any of
733  * the cause bit set in $fcr31.
734  */
735  current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
736 
737  /* Restore the hardware register state */
738  own_fpu(1); /* Using the FPU again. */
739 
740  /* If something went wrong, signal */
741  process_fpemu_return(sig, fault_addr);
742 
743  return;
744  } else if (fcr31 & FPU_CSR_INV_X)
745  info.si_code = FPE_FLTINV;
746  else if (fcr31 & FPU_CSR_DIV_X)
747  info.si_code = FPE_FLTDIV;
748  else if (fcr31 & FPU_CSR_OVF_X)
749  info.si_code = FPE_FLTOVF;
750  else if (fcr31 & FPU_CSR_UDF_X)
751  info.si_code = FPE_FLTUND;
752  else if (fcr31 & FPU_CSR_INE_X)
753  info.si_code = FPE_FLTRES;
754  else
755  info.si_code = __SI_FAULT;
756  info.si_signo = SIGFPE;
757  info.si_errno = 0;
758  info.si_addr = (void __user *) regs->cp0_epc;
759  force_sig_info(SIGFPE, &info, current);
760 }
761 
762 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
763  const char *str)
764 {
765  siginfo_t info;
766  char b[40];
767 
768 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
769  if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770  return;
771 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
772 
773  if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774  return;
775 
776  /*
777  * A short test says that IRIX 5.3 sends SIGTRAP for all trap
778  * insns, even for trap and break codes that indicate arithmetic
779  * failures. Weird ...
780  * But should we continue the brokenness??? --macro
781  */
782  switch (code) {
783  case BRK_OVERFLOW:
784  case BRK_DIVZERO:
785  scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
786  die_if_kernel(b, regs);
787  if (code == BRK_DIVZERO)
788  info.si_code = FPE_INTDIV;
789  else
790  info.si_code = FPE_INTOVF;
791  info.si_signo = SIGFPE;
792  info.si_errno = 0;
793  info.si_addr = (void __user *) regs->cp0_epc;
794  force_sig_info(SIGFPE, &info, current);
795  break;
796  case BRK_BUG:
797  die_if_kernel("Kernel bug detected", regs);
799  break;
800  case BRK_MEMU:
801  /*
802  * Address errors may be deliberately induced by the FPU
803  * emulator to retake control of the CPU after executing the
804  * instruction in the delay slot of an emulated branch.
805  *
806  * Terminate if exception was recognized as a delay slot return
807  * otherwise handle as normal.
808  */
809  if (do_dsemulret(regs))
810  return;
811 
812  die_if_kernel("Math emu break/trap", regs);
814  break;
815  default:
816  scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
817  die_if_kernel(b, regs);
819  }
820 }
821 
822 asmlinkage void do_bp(struct pt_regs *regs)
823 {
824  unsigned int opcode, bcode;
825 
826  if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
827  goto out_sigsegv;
828 
829  /*
830  * There is the ancient bug in the MIPS assemblers that the break
831  * code starts left to bit 16 instead to bit 6 in the opcode.
832  * Gas is bug-compatible, but not always, grrr...
833  * We handle both cases with a simple heuristics. --macro
834  */
835  bcode = ((opcode >> 6) & ((1 << 20) - 1));
836  if (bcode >= (1 << 10))
837  bcode >>= 10;
838 
839  /*
840  * notify the kprobe handlers, if instruction is likely to
841  * pertain to them.
842  */
843  switch (bcode) {
844  case BRK_KPROBE_BP:
845  if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
846  return;
847  else
848  break;
849  case BRK_KPROBE_SSTEPBP:
850  if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
851  return;
852  else
853  break;
854  default:
855  break;
856  }
857 
858  do_trap_or_bp(regs, bcode, "Break");
859  return;
860 
861 out_sigsegv:
863 }
864 
865 asmlinkage void do_tr(struct pt_regs *regs)
866 {
867  unsigned int opcode, tcode = 0;
868 
869  if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
870  goto out_sigsegv;
871 
872  /* Immediate versions don't provide a code. */
873  if (!(opcode & OPCODE))
874  tcode = ((opcode >> 6) & ((1 << 10) - 1));
875 
876  do_trap_or_bp(regs, tcode, "Trap");
877  return;
878 
879 out_sigsegv:
881 }
882 
883 asmlinkage void do_ri(struct pt_regs *regs)
884 {
885  unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
886  unsigned long old_epc = regs->cp0_epc;
887  unsigned int opcode = 0;
888  int status = -1;
889 
890  if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
891  == NOTIFY_STOP)
892  return;
893 
894  die_if_kernel("Reserved instruction in kernel code", regs);
895 
896  if (unlikely(compute_return_epc(regs) < 0))
897  return;
898 
899  if (unlikely(get_user(opcode, epc) < 0))
900  status = SIGSEGV;
901 
902  if (!cpu_has_llsc && status < 0)
903  status = simulate_llsc(regs, opcode);
904 
905  if (status < 0)
906  status = simulate_rdhwr(regs, opcode);
907 
908  if (status < 0)
909  status = simulate_sync(regs, opcode);
910 
911  if (status < 0)
912  status = SIGILL;
913 
914  if (unlikely(status > 0)) {
915  regs->cp0_epc = old_epc; /* Undo skip-over. */
916  force_sig(status, current);
917  }
918 }
919 
920 /*
921  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
922  * emulated more than some threshold number of instructions, force migration to
923  * a "CPU" that has FP support.
924  */
925 static void mt_ase_fp_affinity(void)
926 {
927 #ifdef CONFIG_MIPS_MT_FPAFF
928  if (mt_fpemul_threshold > 0 &&
929  ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
930  /*
931  * If there's no FPU present, or if the application has already
932  * restricted the allowed set to exclude any CPUs with FPUs,
933  * we'll skip the procedure.
934  */
935  if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
936  cpumask_t tmask;
937 
938  current->thread.user_cpus_allowed
939  = current->cpus_allowed;
940  cpus_and(tmask, current->cpus_allowed,
942  set_cpus_allowed_ptr(current, &tmask);
943  set_thread_flag(TIF_FPUBOUND);
944  }
945  }
946 #endif /* CONFIG_MIPS_MT_FPAFF */
947 }
948 
949 /*
950  * No lock; only written during early bootup by CPU 0.
951  */
952 static RAW_NOTIFIER_HEAD(cu2_chain);
953 
955 {
956  return raw_notifier_chain_register(&cu2_chain, nb);
957 }
958 
959 int cu2_notifier_call_chain(unsigned long val, void *v)
960 {
961  return raw_notifier_call_chain(&cu2_chain, val, v);
962 }
963 
964 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
965  void *data)
966 {
967  struct pt_regs *regs = data;
968 
969  switch (action) {
970  default:
971  die_if_kernel("Unhandled kernel unaligned access or invalid "
972  "instruction", regs);
973  /* Fall through */
974 
975  case CU2_EXCEPTION:
977  }
978 
979  return NOTIFY_OK;
980 }
981 
982 asmlinkage void do_cpu(struct pt_regs *regs)
983 {
984  unsigned int __user *epc;
985  unsigned long old_epc;
986  unsigned int opcode;
987  unsigned int cpid;
988  int status;
989  unsigned long __maybe_unused flags;
990 
991  die_if_kernel("do_cpu invoked from kernel context!", regs);
992 
993  cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
994 
995  switch (cpid) {
996  case 0:
997  epc = (unsigned int __user *)exception_epc(regs);
998  old_epc = regs->cp0_epc;
999  opcode = 0;
1000  status = -1;
1001 
1002  if (unlikely(compute_return_epc(regs) < 0))
1003  return;
1004 
1005  if (unlikely(get_user(opcode, epc) < 0))
1006  status = SIGSEGV;
1007 
1008  if (!cpu_has_llsc && status < 0)
1009  status = simulate_llsc(regs, opcode);
1010 
1011  if (status < 0)
1012  status = simulate_rdhwr(regs, opcode);
1013 
1014  if (status < 0)
1015  status = SIGILL;
1016 
1017  if (unlikely(status > 0)) {
1018  regs->cp0_epc = old_epc; /* Undo skip-over. */
1019  force_sig(status, current);
1020  }
1021 
1022  return;
1023 
1024  case 1:
1025  if (used_math()) /* Using the FPU again. */
1026  own_fpu(1);
1027  else { /* First time FPU user. */
1028  init_fpu();
1029  set_used_math();
1030  }
1031 
1032  if (!raw_cpu_has_fpu) {
1033  int sig;
1034  void __user *fault_addr = NULL;
1035  sig = fpu_emulator_cop1Handler(regs,
1036  &current->thread.fpu,
1037  0, &fault_addr);
1038  if (!process_fpemu_return(sig, fault_addr))
1039  mt_ase_fp_affinity();
1040  }
1041 
1042  return;
1043 
1044  case 2:
1045  raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1046  return;
1047 
1048  case 3:
1049  break;
1050  }
1051 
1053 }
1054 
1055 asmlinkage void do_mdmx(struct pt_regs *regs)
1056 {
1058 }
1059 
1060 /*
1061  * Called with interrupts disabled.
1062  */
1063 asmlinkage void do_watch(struct pt_regs *regs)
1064 {
1065  u32 cause;
1066 
1067  /*
1068  * Clear WP (bit 22) bit of cause register so we don't loop
1069  * forever.
1070  */
1071  cause = read_c0_cause();
1072  cause &= ~(1 << 22);
1073  write_c0_cause(cause);
1074 
1075  /*
1076  * If the current thread has the watch registers loaded, save
1077  * their values and send SIGTRAP. Otherwise another thread
1078  * left the registers set, clear them and continue.
1079  */
1080  if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1082  local_irq_enable();
1084  } else {
1086  local_irq_enable();
1087  }
1088 }
1089 
1090 asmlinkage void do_mcheck(struct pt_regs *regs)
1091 {
1092  const int field = 2 * sizeof(unsigned long);
1093  int multi_match = regs->cp0_status & ST0_TS;
1094 
1095  show_regs(regs);
1096 
1097  if (multi_match) {
1098  printk("Index : %0x\n", read_c0_index());
1099  printk("Pagemask: %0x\n", read_c0_pagemask());
1100  printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1101  printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1102  printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1103  printk("\n");
1104  dump_tlb_all();
1105  }
1106 
1107  show_code((unsigned int __user *) regs->cp0_epc);
1108 
1109  /*
1110  * Some chips may have other causes of machine check (e.g. SB1
1111  * graduation timer)
1112  */
1113  panic("Caught Machine Check exception - %scaused by multiple "
1114  "matching entries in the TLB.",
1115  (multi_match) ? "" : "not ");
1116 }
1117 
1118 asmlinkage void do_mt(struct pt_regs *regs)
1119 {
1120  int subcode;
1121 
1124  switch (subcode) {
1125  case 0:
1126  printk(KERN_DEBUG "Thread Underflow\n");
1127  break;
1128  case 1:
1129  printk(KERN_DEBUG "Thread Overflow\n");
1130  break;
1131  case 2:
1132  printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1133  break;
1134  case 3:
1135  printk(KERN_DEBUG "Gating Storage Exception\n");
1136  break;
1137  case 4:
1138  printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1139  break;
1140  case 5:
1141  printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1142  break;
1143  default:
1144  printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145  subcode);
1146  break;
1147  }
1148  die_if_kernel("MIPS MT Thread exception in kernel", regs);
1149 
1151 }
1152 
1153 
1154 asmlinkage void do_dsp(struct pt_regs *regs)
1155 {
1156  if (cpu_has_dsp)
1157  panic("Unexpected DSP exception");
1158 
1160 }
1161 
1162 asmlinkage void do_reserved(struct pt_regs *regs)
1163 {
1164  /*
1165  * Game over - no way to handle this if it ever occurs. Most probably
1166  * caused by a new unknown cpu type or after another deadly
1167  * hard/software error.
1168  */
1169  show_regs(regs);
1170  panic("Caught reserved exception %ld - should not happen.",
1171  (regs->cp0_cause & 0x7f) >> 2);
1172 }
1173 
1174 static int __initdata l1parity = 1;
1175 static int __init nol1parity(char *s)
1176 {
1177  l1parity = 0;
1178  return 1;
1179 }
1180 __setup("nol1par", nol1parity);
1181 static int __initdata l2parity = 1;
1182 static int __init nol2parity(char *s)
1183 {
1184  l2parity = 0;
1185  return 1;
1186 }
1187 __setup("nol2par", nol2parity);
1188 
1189 /*
1190  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1191  * it different ways.
1192  */
1193 static inline void parity_protection_init(void)
1194 {
1195  switch (current_cpu_type()) {
1196  case CPU_24K:
1197  case CPU_34K:
1198  case CPU_74K:
1199  case CPU_1004K:
1200  {
1201 #define ERRCTL_PE 0x80000000
1202 #define ERRCTL_L2P 0x00800000
1203  unsigned long errctl;
1204  unsigned int l1parity_present, l2parity_present;
1205 
1206  errctl = read_c0_ecc();
1207  errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1208 
1209  /* probe L1 parity support */
1210  write_c0_ecc(errctl | ERRCTL_PE);
1211  back_to_back_c0_hazard();
1212  l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1213 
1214  /* probe L2 parity support */
1215  write_c0_ecc(errctl|ERRCTL_L2P);
1216  back_to_back_c0_hazard();
1217  l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1218 
1219  if (l1parity_present && l2parity_present) {
1220  if (l1parity)
1221  errctl |= ERRCTL_PE;
1222  if (l1parity ^ l2parity)
1223  errctl |= ERRCTL_L2P;
1224  } else if (l1parity_present) {
1225  if (l1parity)
1226  errctl |= ERRCTL_PE;
1227  } else if (l2parity_present) {
1228  if (l2parity)
1229  errctl |= ERRCTL_L2P;
1230  } else {
1231  /* No parity available */
1232  }
1233 
1234  printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1235 
1236  write_c0_ecc(errctl);
1237  back_to_back_c0_hazard();
1238  errctl = read_c0_ecc();
1239  printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1240 
1241  if (l1parity_present)
1242  printk(KERN_INFO "Cache parity protection %sabled\n",
1243  (errctl & ERRCTL_PE) ? "en" : "dis");
1244 
1245  if (l2parity_present) {
1246  if (l1parity_present && l1parity)
1247  errctl ^= ERRCTL_L2P;
1248  printk(KERN_INFO "L2 cache parity protection %sabled\n",
1249  (errctl & ERRCTL_L2P) ? "en" : "dis");
1250  }
1251  }
1252  break;
1253 
1254  case CPU_5KC:
1255  case CPU_5KE:
1256  case CPU_LOONGSON1:
1257  write_c0_ecc(0x80000000);
1258  back_to_back_c0_hazard();
1259  /* Set the PE bit (bit 31) in the c0_errctl register. */
1260  printk(KERN_INFO "Cache parity protection %sabled\n",
1261  (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1262  break;
1263  case CPU_20KC:
1264  case CPU_25KF:
1265  /* Clear the DE bit (bit 16) in the c0_status register. */
1266  printk(KERN_INFO "Enable cache parity protection for "
1267  "MIPS 20KC/25KF CPUs.\n");
1268  clear_c0_status(ST0_DE);
1269  break;
1270  default:
1271  break;
1272  }
1273 }
1274 
1276 {
1277  const int field = 2 * sizeof(unsigned long);
1278  unsigned int reg_val;
1279 
1280  /* For the moment, report the problem and hang. */
1281  printk("Cache error exception:\n");
1282  printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1283  reg_val = read_c0_cacheerr();
1284  printk("c0_cacheerr == %08x\n", reg_val);
1285 
1286  printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1287  reg_val & (1<<30) ? "secondary" : "primary",
1288  reg_val & (1<<31) ? "data" : "insn");
1289  printk("Error bits: %s%s%s%s%s%s%s\n",
1290  reg_val & (1<<29) ? "ED " : "",
1291  reg_val & (1<<28) ? "ET " : "",
1292  reg_val & (1<<26) ? "EE " : "",
1293  reg_val & (1<<25) ? "EB " : "",
1294  reg_val & (1<<24) ? "EI " : "",
1295  reg_val & (1<<23) ? "E1 " : "",
1296  reg_val & (1<<22) ? "E0 " : "");
1297  printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1298 
1299 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1300  if (reg_val & (1<<22))
1301  printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1302 
1303  if (reg_val & (1<<23))
1304  printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1305 #endif
1306 
1307  panic("Can't handle the cache error!");
1308 }
1309 
1310 /*
1311  * SDBBP EJTAG debug exception handler.
1312  * We skip the instruction and return to the next instruction.
1313  */
1315 {
1316  const int field = 2 * sizeof(unsigned long);
1317  unsigned long depc, old_epc;
1318  unsigned int debug;
1319 
1320  printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1321  depc = read_c0_depc();
1322  debug = read_c0_debug();
1323  printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1324  if (debug & 0x80000000) {
1325  /*
1326  * In branch delay slot.
1327  * We cheat a little bit here and use EPC to calculate the
1328  * debug return address (DEPC). EPC is restored after the
1329  * calculation.
1330  */
1331  old_epc = regs->cp0_epc;
1332  regs->cp0_epc = depc;
1333  __compute_return_epc(regs);
1334  depc = regs->cp0_epc;
1335  regs->cp0_epc = old_epc;
1336  } else
1337  depc += 4;
1338  write_c0_depc(depc);
1339 
1340 #if 0
1341  printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1342  write_c0_debug(debug | 0x100);
1343 #endif
1344 }
1345 
1346 /*
1347  * NMI exception handler.
1348  * No lock; only written during early bootup by CPU 0.
1349  */
1350 static RAW_NOTIFIER_HEAD(nmi_chain);
1351 
1353 {
1354  return raw_notifier_chain_register(&nmi_chain, nb);
1355 }
1356 
1358 {
1359  raw_notifier_call_chain(&nmi_chain, 0, regs);
1360  bust_spinlocks(1);
1361  printk("NMI taken!!!!\n");
1362  die("NMI", regs);
1363 }
1364 
1365 #define VECTORSPACING 0x100 /* for EI/VI mode */
1366 
1367 unsigned long ebase;
1368 unsigned long exception_handlers[32];
1369 unsigned long vi_handlers[64];
1370 
1371 void __init *set_except_vector(int n, void *addr)
1372 {
1373  unsigned long handler = (unsigned long) addr;
1374  unsigned long old_handler = exception_handlers[n];
1375 
1376  exception_handlers[n] = handler;
1377  if (n == 0 && cpu_has_divec) {
1378  unsigned long jump_mask = ~((1 << 28) - 1);
1379  u32 *buf = (u32 *)(ebase + 0x200);
1380  unsigned int k0 = 26;
1381  if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1382  uasm_i_j(&buf, handler & ~jump_mask);
1383  uasm_i_nop(&buf);
1384  } else {
1385  UASM_i_LA(&buf, k0, handler);
1386  uasm_i_jr(&buf, k0);
1387  uasm_i_nop(&buf);
1388  }
1389  local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1390  }
1391  return (void *)old_handler;
1392 }
1393 
1394 static asmlinkage void do_default_vi(void)
1395 {
1397  panic("Caught unexpected vectored interrupt.");
1398 }
1399 
1400 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1401 {
1402  unsigned long handler;
1403  unsigned long old_handler = vi_handlers[n];
1404  int srssets = current_cpu_data.srsets;
1405  u32 *w;
1406  unsigned char *b;
1407 
1409 
1410  if (addr == NULL) {
1411  handler = (unsigned long) do_default_vi;
1412  srs = 0;
1413  } else
1414  handler = (unsigned long) addr;
1415  vi_handlers[n] = (unsigned long) addr;
1416 
1417  b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1418 
1419  if (srs >= srssets)
1420  panic("Shadow register set %d not supported", srs);
1421 
1422  if (cpu_has_veic) {
1424  board_bind_eic_interrupt(n, srs);
1425  } else if (cpu_has_vint) {
1426  /* SRSMap is only defined if shadow sets are implemented */
1427  if (srssets > 1)
1428  change_c0_srsmap(0xf << n*4, srs << n*4);
1429  }
1430 
1431  if (srs == 0) {
1432  /*
1433  * If no shadow set is selected then use the default handler
1434  * that does normal register saving and a standard interrupt exit
1435  */
1436 
1437  extern char except_vec_vi, except_vec_vi_lui;
1438  extern char except_vec_vi_ori, except_vec_vi_end;
1439  extern char rollback_except_vec_vi;
1440  char *vec_start = (cpu_wait == r4k_wait) ?
1441  &rollback_except_vec_vi : &except_vec_vi;
1442 #ifdef CONFIG_MIPS_MT_SMTC
1443  /*
1444  * We need to provide the SMTC vectored interrupt handler
1445  * not only with the address of the handler, but with the
1446  * Status.IM bit to be masked before going there.
1447  */
1448  extern char except_vec_vi_mori;
1449  const int mori_offset = &except_vec_vi_mori - vec_start;
1450 #endif /* CONFIG_MIPS_MT_SMTC */
1451  const int handler_len = &except_vec_vi_end - vec_start;
1452  const int lui_offset = &except_vec_vi_lui - vec_start;
1453  const int ori_offset = &except_vec_vi_ori - vec_start;
1454 
1455  if (handler_len > VECTORSPACING) {
1456  /*
1457  * Sigh... panicing won't help as the console
1458  * is probably not configured :(
1459  */
1460  panic("VECTORSPACING too small");
1461  }
1462 
1463  memcpy(b, vec_start, handler_len);
1464 #ifdef CONFIG_MIPS_MT_SMTC
1465  BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1466 
1467  w = (u32 *)(b + mori_offset);
1468  *w = (*w & 0xffff0000) | (0x100 << n);
1469 #endif /* CONFIG_MIPS_MT_SMTC */
1470  w = (u32 *)(b + lui_offset);
1471  *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1472  w = (u32 *)(b + ori_offset);
1473  *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1474  local_flush_icache_range((unsigned long)b,
1475  (unsigned long)(b+handler_len));
1476  }
1477  else {
1478  /*
1479  * In other cases jump directly to the interrupt handler
1480  *
1481  * It is the handlers responsibility to save registers if required
1482  * (eg hi/lo) and return from the exception using "eret"
1483  */
1484  w = (u32 *)b;
1485  *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1486  *w = 0;
1487  local_flush_icache_range((unsigned long)b,
1488  (unsigned long)(b+8));
1489  }
1490 
1491  return (void *)old_handler;
1492 }
1493 
1494 void *set_vi_handler(int n, vi_handler_t addr)
1495 {
1496  return set_vi_srs_handler(n, addr, 0);
1497 }
1498 
1499 extern void tlb_init(void);
1500 extern void flush_tlb_handlers(void);
1501 
1502 /*
1503  * Timer interrupt
1504  */
1506 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1508 
1509 /*
1510  * Performance counter IRQ or -1 if shared with timer
1511  */
1513 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1514 
1515 static int __cpuinitdata noulri;
1516 
1517 static int __init ulri_disable(char *s)
1518 {
1519  pr_info("Disabling ulri\n");
1520  noulri = 1;
1521 
1522  return 1;
1523 }
1524 __setup("noulri", ulri_disable);
1525 
1526 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1527 {
1528  unsigned int cpu = smp_processor_id();
1529  unsigned int status_set = ST0_CU0;
1530  unsigned int hwrena = cpu_hwrena_impl_bits;
1531 #ifdef CONFIG_MIPS_MT_SMTC
1532  int secondaryTC = 0;
1533  int bootTC = (cpu == 0);
1534 
1535  /*
1536  * Only do per_cpu_trap_init() for first TC of Each VPE.
1537  * Note that this hack assumes that the SMTC init code
1538  * assigns TCs consecutively and in ascending order.
1539  */
1540 
1541  if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1542  ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1543  secondaryTC = 1;
1544 #endif /* CONFIG_MIPS_MT_SMTC */
1545 
1546  /*
1547  * Disable coprocessors and select 32-bit or 64-bit addressing
1548  * and the 16/32 or 32/32 FPR register model. Reset the BEV
1549  * flag that some firmware may have left set and the TS bit (for
1550  * IP27). Set XX for ISA IV code to work.
1551  */
1552 #ifdef CONFIG_64BIT
1553  status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1554 #endif
1555  if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1556  status_set |= ST0_XX;
1557  if (cpu_has_dsp)
1558  status_set |= ST0_MX;
1559 
1561  status_set);
1562 
1563  if (cpu_has_mips_r2)
1564  hwrena |= 0x0000000f;
1565 
1566  if (!noulri && cpu_has_userlocal)
1567  hwrena |= (1 << 29);
1568 
1569  if (hwrena)
1570  write_c0_hwrena(hwrena);
1571 
1572 #ifdef CONFIG_MIPS_MT_SMTC
1573  if (!secondaryTC) {
1574 #endif /* CONFIG_MIPS_MT_SMTC */
1575 
1576  if (cpu_has_veic || cpu_has_vint) {
1577  unsigned long sr = set_c0_status(ST0_BEV);
1578  write_c0_ebase(ebase);
1579  write_c0_status(sr);
1580  /* Setting vector spacing enables EI/VI mode */
1581  change_c0_intctl(0x3e0, VECTORSPACING);
1582  }
1583  if (cpu_has_divec) {
1584  if (cpu_has_mipsmt) {
1585  unsigned int vpflags = dvpe();
1586  set_c0_cause(CAUSEF_IV);
1587  evpe(vpflags);
1588  } else
1589  set_c0_cause(CAUSEF_IV);
1590  }
1591 
1592  /*
1593  * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1594  *
1595  * o read IntCtl.IPTI to determine the timer interrupt
1596  * o read IntCtl.IPPCI to determine the performance counter interrupt
1597  */
1598  if (cpu_has_mips_r2) {
1599  cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1600  cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1601  cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1602  if (cp0_perfcount_irq == cp0_compare_irq)
1603  cp0_perfcount_irq = -1;
1604  } else {
1605  cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1606  cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1607  cp0_perfcount_irq = -1;
1608  }
1609 
1610 #ifdef CONFIG_MIPS_MT_SMTC
1611  }
1612 #endif /* CONFIG_MIPS_MT_SMTC */
1613 
1614  if (!cpu_data[cpu].asid_cache)
1615  cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1616 
1617  atomic_inc(&init_mm.mm_count);
1618  current->active_mm = &init_mm;
1619  BUG_ON(current->mm);
1621 
1622 #ifdef CONFIG_MIPS_MT_SMTC
1623  if (bootTC) {
1624 #endif /* CONFIG_MIPS_MT_SMTC */
1625  /* Boot CPU's cache setup in setup_arch(). */
1626  if (!is_boot_cpu)
1627  cpu_cache_init();
1628  tlb_init();
1629 #ifdef CONFIG_MIPS_MT_SMTC
1630  } else if (!secondaryTC) {
1631  /*
1632  * First TC in non-boot VPE must do subset of tlb_init()
1633  * for MMU countrol registers.
1634  */
1635  write_c0_pagemask(PM_DEFAULT_MASK);
1636  write_c0_wired(0);
1637  }
1638 #endif /* CONFIG_MIPS_MT_SMTC */
1640 }
1641 
1642 /* Install CPU exception handler */
1643 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1644 {
1645  memcpy((void *)(ebase + offset), addr, size);
1646  local_flush_icache_range(ebase + offset, ebase + offset + size);
1647 }
1648 
1649 static char panic_null_cerr[] __cpuinitdata =
1650  "Trying to set NULL cache error exception handler";
1651 
1652 /*
1653  * Install uncached CPU exception handler.
1654  * This is suitable only for the cache error exception which is the only
1655  * exception handler that is being run uncached.
1656  */
1657 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1658  unsigned long size)
1659 {
1660  unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1661 
1662  if (!addr)
1663  panic(panic_null_cerr);
1664 
1665  memcpy((void *)(uncached_ebase + offset), addr, size);
1666 }
1667 
1668 static int __initdata rdhwr_noopt;
1669 static int __init set_rdhwr_noopt(char *str)
1670 {
1671  rdhwr_noopt = 1;
1672  return 1;
1673 }
1674 
1675 __setup("rdhwr_noopt", set_rdhwr_noopt);
1676 
1677 void __init trap_init(void)
1678 {
1679  extern char except_vec3_generic, except_vec3_r4000;
1680  extern char except_vec4;
1681  unsigned long i;
1682  int rollback;
1683 
1684  check_wait();
1685  rollback = (cpu_wait == r4k_wait);
1686 
1687 #if defined(CONFIG_KGDB)
1688  if (kgdb_early_setup)
1689  return; /* Already done */
1690 #endif
1691 
1692  if (cpu_has_veic || cpu_has_vint) {
1693  unsigned long size = 0x200 + VECTORSPACING*64;
1694  ebase = (unsigned long)
1695  __alloc_bootmem(size, 1 << fls(size), 0);
1696  } else {
1697  ebase = CKSEG0;
1698  if (cpu_has_mips_r2)
1699  ebase += (read_c0_ebase() & 0x3ffff000);
1700  }
1701 
1702  if (board_ebase_setup)
1704  per_cpu_trap_init(true);
1705 
1706  /*
1707  * Copy the generic exception handlers to their final destination.
1708  * This will be overriden later as suitable for a particular
1709  * configuration.
1710  */
1711  set_handler(0x180, &except_vec3_generic, 0x80);
1712 
1713  /*
1714  * Setup default vectors
1715  */
1716  for (i = 0; i <= 31; i++)
1718 
1719  /*
1720  * Copy the EJTAG debug exception vector handler code to it's final
1721  * destination.
1722  */
1725 
1726  /*
1727  * Only some CPUs have the watch exceptions.
1728  */
1729  if (cpu_has_watch)
1731 
1732  /*
1733  * Initialise interrupt handlers
1734  */
1735  if (cpu_has_veic || cpu_has_vint) {
1736  int nvec = cpu_has_veic ? 64 : 8;
1737  for (i = 0; i < nvec; i++)
1738  set_vi_handler(i, NULL);
1739  }
1740  else if (cpu_has_divec)
1741  set_handler(0x200, &except_vec4, 0x8);
1742 
1743  /*
1744  * Some CPUs can enable/disable for cache parity detection, but does
1745  * it different ways.
1746  */
1747  parity_protection_init();
1748 
1749  /*
1750  * The Data Bus Errors / Instruction Bus Errors are signaled
1751  * by external hardware. Therefore these two exceptions
1752  * may have board specific handlers.
1753  */
1754  if (board_be_init)
1755  board_be_init();
1756 
1761 
1764 
1767 
1770  set_except_vector(10, rdhwr_noopt ? handle_ri :
1776 
1777  if (current_cpu_type() == CPU_R6000 ||
1779  /*
1780  * The R6000 is the only R-series CPU that features a machine
1781  * check exception (similar to the R4000 cache error) and
1782  * unaligned ldc1/sdc1 exception. The handlers have not been
1783  * written yet. Well, anyway there is no R6000 machine on the
1784  * current list of targets for Linux/MIPS.
1785  * (Duh, crap, there is someone with a triple R6k machine)
1786  */
1787  //set_except_vector(14, handle_mc);
1788  //set_except_vector(15, handle_ndc);
1789  }
1790 
1791 
1794 
1795  if (cpu_has_fpu && !cpu_has_nofpuex)
1797 
1799 
1800  if (cpu_has_mcheck)
1802 
1803  if (cpu_has_mipsmt)
1805 
1807 
1810 
1811  if (cpu_has_vce)
1812  /* Special exception: R4[04]00 uses also the divec space. */
1813  memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1814  else if (cpu_has_4kex)
1815  memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1816  else
1817  memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1818 
1819  local_flush_icache_range(ebase, ebase + 0x400);
1821 
1823 
1824  cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1825 }