Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sdio.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
31 
32 struct ath6kl_sdio {
33  struct sdio_func *func;
34 
35  /* protects access to bus_req_freeq */
37 
38  /* free list */
40 
41  /* available bus requests */
43 
44  struct ath6kl *ar;
45 
47 
48  /* protects access to dma_buffer */
50 
51  /* scatter request list head */
53 
56 
57  /* protects access to scat_req */
59 
61 
63  const struct sdio_device_id *id;
66 
67  /* protects access to wr_asyncq */
69 };
70 
71 #define CMD53_ARG_READ 0
72 #define CMD53_ARG_WRITE 1
73 #define CMD53_ARG_BLOCK_BASIS 1
74 #define CMD53_ARG_FIXED_ADDRESS 0
75 #define CMD53_ARG_INCR_ADDRESS 1
76 
77 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
78 {
79  return ar->hif_priv;
80 }
81 
82 /*
83  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
84  * Most host controllers assume the buffer is DMA'able and will
85  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
86  * check fails on stack memory.
87  */
88 static inline bool buf_needs_bounce(u8 *buf)
89 {
90  return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
91 }
92 
93 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
94 {
95  struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
96 
97  /* EP1 has an extended range */
98  mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
100  mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
101  mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
102  mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
103  mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
104 }
105 
106 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
107  u8 mode, u8 opcode, u32 addr,
108  u16 blksz)
109 {
110  *arg = (((rw & 1) << 31) |
111  ((func & 0x7) << 28) |
112  ((mode & 1) << 27) |
113  ((opcode & 1) << 26) |
114  ((addr & 0x1FFFF) << 9) |
115  (blksz & 0x1FF));
116 }
117 
118 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
119  unsigned int address,
120  unsigned char val)
121 {
122  const u8 func = 0;
123 
124  *arg = ((write & 1) << 31) |
125  ((func & 0x7) << 28) |
126  ((raw & 1) << 27) |
127  (1 << 26) |
128  ((address & 0x1FFFF) << 9) |
129  (1 << 8) |
130  (val & 0xFF);
131 }
132 
133 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
134  unsigned int address,
135  unsigned char byte)
136 {
137  struct mmc_command io_cmd;
138 
139  memset(&io_cmd, 0, sizeof(io_cmd));
140  ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
141  io_cmd.opcode = SD_IO_RW_DIRECT;
142  io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
143 
144  return mmc_wait_for_cmd(card->host, &io_cmd, 0);
145 }
146 
147 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
148  u8 *buf, u32 len)
149 {
150  int ret = 0;
151 
152  sdio_claim_host(func);
153 
154  if (request & HIF_WRITE) {
155  /* FIXME: looks like ugly workaround for something */
156  if (addr >= HIF_MBOX_BASE_ADDR &&
157  addr <= HIF_MBOX_END_ADDR)
158  addr += (HIF_MBOX_WIDTH - len);
159 
160  /* FIXME: this also looks like ugly workaround */
161  if (addr == HIF_MBOX0_EXT_BASE_ADDR)
162  addr += HIF_MBOX0_EXT_WIDTH - len;
163 
164  if (request & HIF_FIXED_ADDRESS)
165  ret = sdio_writesb(func, addr, buf, len);
166  else
167  ret = sdio_memcpy_toio(func, addr, buf, len);
168  } else {
169  if (request & HIF_FIXED_ADDRESS)
170  ret = sdio_readsb(func, buf, addr, len);
171  else
172  ret = sdio_memcpy_fromio(func, buf, addr, len);
173  }
174 
175  sdio_release_host(func);
176 
177  ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
178  request & HIF_WRITE ? "wr" : "rd", addr,
179  request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
180  ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
181 
182  return ret;
183 }
184 
185 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
186 {
187  struct bus_request *bus_req;
188 
189  spin_lock_bh(&ar_sdio->lock);
190 
191  if (list_empty(&ar_sdio->bus_req_freeq)) {
192  spin_unlock_bh(&ar_sdio->lock);
193  return NULL;
194  }
195 
196  bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
197  struct bus_request, list);
198  list_del(&bus_req->list);
199 
200  spin_unlock_bh(&ar_sdio->lock);
201  ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
202  __func__, bus_req);
203 
204  return bus_req;
205 }
206 
207 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
208  struct bus_request *bus_req)
209 {
210  ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
211  __func__, bus_req);
212 
213  spin_lock_bh(&ar_sdio->lock);
214  list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
215  spin_unlock_bh(&ar_sdio->lock);
216 }
217 
218 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
219  struct mmc_data *data)
220 {
221  struct scatterlist *sg;
222  int i;
223 
224  data->blksz = HIF_MBOX_BLOCK_SIZE;
225  data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
226 
227  ath6kl_dbg(ATH6KL_DBG_SCATTER,
228  "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
229  (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
230  data->blksz, data->blocks, scat_req->len,
231  scat_req->scat_entries);
232 
233  data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
235 
236  /* fill SG entries */
237  sg = scat_req->sgentries;
238  sg_init_table(sg, scat_req->scat_entries);
239 
240  /* assemble SG list */
241  for (i = 0; i < scat_req->scat_entries; i++, sg++) {
242  ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
243  i, scat_req->scat_list[i].buf,
244  scat_req->scat_list[i].len);
245 
246  sg_set_buf(sg, scat_req->scat_list[i].buf,
247  scat_req->scat_list[i].len);
248  }
249 
250  /* set scatter-gather table for request */
251  data->sg = scat_req->sgentries;
252  data->sg_len = scat_req->scat_entries;
253 }
254 
255 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
256  struct bus_request *req)
257 {
258  struct mmc_request mmc_req;
259  struct mmc_command cmd;
260  struct mmc_data data;
261  struct hif_scatter_req *scat_req;
262  u8 opcode, rw;
263  int status, len;
264 
265  scat_req = req->scat_req;
266 
267  if (scat_req->virt_scat) {
268  len = scat_req->len;
269  if (scat_req->req & HIF_BLOCK_BASIS)
270  len = round_down(len, HIF_MBOX_BLOCK_SIZE);
271 
272  status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
273  scat_req->addr, scat_req->virt_dma_buf,
274  len);
275  goto scat_complete;
276  }
277 
278  memset(&mmc_req, 0, sizeof(struct mmc_request));
279  memset(&cmd, 0, sizeof(struct mmc_command));
280  memset(&data, 0, sizeof(struct mmc_data));
281 
282  ath6kl_sdio_setup_scat_data(scat_req, &data);
283 
284  opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
286 
287  rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
288 
289  /* Fixup the address so that the last byte will fall on MBOX EOM */
290  if (scat_req->req & HIF_WRITE) {
291  if (scat_req->addr == HIF_MBOX_BASE_ADDR)
292  scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
293  else
294  /* Uses extended address range */
295  scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
296  }
297 
298  /* set command argument */
299  ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
300  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
301  data.blocks);
302 
303  cmd.opcode = SD_IO_RW_EXTENDED;
305 
306  mmc_req.cmd = &cmd;
307  mmc_req.data = &data;
308 
309  sdio_claim_host(ar_sdio->func);
310 
311  mmc_set_data_timeout(&data, ar_sdio->func->card);
312  /* synchronous call to process request */
313  mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
314 
315  sdio_release_host(ar_sdio->func);
316 
317  status = cmd.error ? cmd.error : data.error;
318 
319 scat_complete:
320  scat_req->status = status;
321 
322  if (scat_req->status)
323  ath6kl_err("Scatter write request failed:%d\n",
324  scat_req->status);
325 
326  if (scat_req->req & HIF_ASYNCHRONOUS)
327  scat_req->complete(ar_sdio->ar->htc_target, scat_req);
328 
329  return status;
330 }
331 
332 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
333  int n_scat_entry, int n_scat_req,
334  bool virt_scat)
335 {
336  struct hif_scatter_req *s_req;
337  struct bus_request *bus_req;
338  int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
339  u8 *virt_buf;
340 
341  scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
342  scat_req_sz = sizeof(*s_req) + scat_list_sz;
343 
344  if (!virt_scat)
345  sg_sz = sizeof(struct scatterlist) * n_scat_entry;
346  else
347  buf_sz = 2 * L1_CACHE_BYTES +
349 
350  for (i = 0; i < n_scat_req; i++) {
351  /* allocate the scatter request */
352  s_req = kzalloc(scat_req_sz, GFP_KERNEL);
353  if (!s_req)
354  return -ENOMEM;
355 
356  if (virt_scat) {
357  virt_buf = kzalloc(buf_sz, GFP_KERNEL);
358  if (!virt_buf) {
359  kfree(s_req);
360  return -ENOMEM;
361  }
362 
363  s_req->virt_dma_buf =
364  (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
365  } else {
366  /* allocate sglist */
367  s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
368 
369  if (!s_req->sgentries) {
370  kfree(s_req);
371  return -ENOMEM;
372  }
373  }
374 
375  /* allocate a bus request for this scatter request */
376  bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
377  if (!bus_req) {
378  kfree(s_req->sgentries);
379  kfree(s_req->virt_dma_buf);
380  kfree(s_req);
381  return -ENOMEM;
382  }
383 
384  /* assign the scatter request to this bus request */
385  bus_req->scat_req = s_req;
386  s_req->busrequest = bus_req;
387 
388  s_req->virt_scat = virt_scat;
389 
390  /* add it to the scatter pool */
391  hif_scatter_req_add(ar_sdio->ar, s_req);
392  }
393 
394  return 0;
395 }
396 
397 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
398  u32 len, u32 request)
399 {
400  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
401  u8 *tbuf = NULL;
402  int ret;
403  bool bounced = false;
404 
405  if (request & HIF_BLOCK_BASIS)
406  len = round_down(len, HIF_MBOX_BLOCK_SIZE);
407 
408  if (buf_needs_bounce(buf)) {
409  if (!ar_sdio->dma_buffer)
410  return -ENOMEM;
411  mutex_lock(&ar_sdio->dma_buffer_mutex);
412  tbuf = ar_sdio->dma_buffer;
413 
414  if (request & HIF_WRITE)
415  memcpy(tbuf, buf, len);
416 
417  bounced = true;
418  } else
419  tbuf = buf;
420 
421  ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
422  if ((request & HIF_READ) && bounced)
423  memcpy(buf, tbuf, len);
424 
425  if (bounced)
426  mutex_unlock(&ar_sdio->dma_buffer_mutex);
427 
428  return ret;
429 }
430 
431 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
432  struct bus_request *req)
433 {
434  if (req->scat_req)
435  ath6kl_sdio_scat_rw(ar_sdio, req);
436  else {
437  void *context;
438  int status;
439 
440  status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
441  req->buffer, req->length,
442  req->request);
443  context = req->packet;
444  ath6kl_sdio_free_bus_req(ar_sdio, req);
445  ath6kl_hif_rw_comp_handler(context, status);
446  }
447 }
448 
449 static void ath6kl_sdio_write_async_work(struct work_struct *work)
450 {
451  struct ath6kl_sdio *ar_sdio;
452  struct bus_request *req, *tmp_req;
453 
454  ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
455 
456  spin_lock_bh(&ar_sdio->wr_async_lock);
457  list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
458  list_del(&req->list);
459  spin_unlock_bh(&ar_sdio->wr_async_lock);
460  __ath6kl_sdio_write_async(ar_sdio, req);
461  spin_lock_bh(&ar_sdio->wr_async_lock);
462  }
463  spin_unlock_bh(&ar_sdio->wr_async_lock);
464 }
465 
466 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
467 {
468  int status;
469  struct ath6kl_sdio *ar_sdio;
470 
471  ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
472 
473  ar_sdio = sdio_get_drvdata(func);
474  atomic_set(&ar_sdio->irq_handling, 1);
475  /*
476  * Release the host during interrups so we can pick it back up when
477  * we process commands.
478  */
479  sdio_release_host(ar_sdio->func);
480 
481  status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
482  sdio_claim_host(ar_sdio->func);
483 
484  atomic_set(&ar_sdio->irq_handling, 0);
485  wake_up(&ar_sdio->irq_wq);
486 
487  WARN_ON(status && status != -ECANCELED);
488 }
489 
490 static int ath6kl_sdio_power_on(struct ath6kl *ar)
491 {
492  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
493  struct sdio_func *func = ar_sdio->func;
494  int ret = 0;
495 
496  if (!ar_sdio->is_disabled)
497  return 0;
498 
499  ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
500 
501  sdio_claim_host(func);
502 
503  ret = sdio_enable_func(func);
504  if (ret) {
505  ath6kl_err("Unable to enable sdio func: %d)\n", ret);
506  sdio_release_host(func);
507  return ret;
508  }
509 
510  sdio_release_host(func);
511 
512  /*
513  * Wait for hardware to initialise. It should take a lot less than
514  * 10 ms but let's be conservative here.
515  */
516  msleep(10);
517 
518  ar_sdio->is_disabled = false;
519 
520  return ret;
521 }
522 
523 static int ath6kl_sdio_power_off(struct ath6kl *ar)
524 {
525  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
526  int ret;
527 
528  if (ar_sdio->is_disabled)
529  return 0;
530 
531  ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
532 
533  /* Disable the card */
534  sdio_claim_host(ar_sdio->func);
535  ret = sdio_disable_func(ar_sdio->func);
536  sdio_release_host(ar_sdio->func);
537 
538  if (ret)
539  return ret;
540 
541  ar_sdio->is_disabled = true;
542 
543  return ret;
544 }
545 
546 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
547  u32 length, u32 request,
548  struct htc_packet *packet)
549 {
550  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
551  struct bus_request *bus_req;
552 
553  bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
554 
555  if (WARN_ON_ONCE(!bus_req))
556  return -ENOMEM;
557 
558  bus_req->address = address;
559  bus_req->buffer = buffer;
560  bus_req->length = length;
561  bus_req->request = request;
562  bus_req->packet = packet;
563 
564  spin_lock_bh(&ar_sdio->wr_async_lock);
565  list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
566  spin_unlock_bh(&ar_sdio->wr_async_lock);
567  queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
568 
569  return 0;
570 }
571 
572 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
573 {
574  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
575  int ret;
576 
577  sdio_claim_host(ar_sdio->func);
578 
579  /* Register the isr */
580  ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
581  if (ret)
582  ath6kl_err("Failed to claim sdio irq: %d\n", ret);
583 
584  sdio_release_host(ar_sdio->func);
585 }
586 
587 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
588 {
589  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
590 
591  return !atomic_read(&ar_sdio->irq_handling);
592 }
593 
594 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
595 {
596  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
597  int ret;
598 
599  sdio_claim_host(ar_sdio->func);
600 
601  if (atomic_read(&ar_sdio->irq_handling)) {
602  sdio_release_host(ar_sdio->func);
603 
604  ret = wait_event_interruptible(ar_sdio->irq_wq,
605  ath6kl_sdio_is_on_irq(ar));
606  if (ret)
607  return;
608 
609  sdio_claim_host(ar_sdio->func);
610  }
611 
612  ret = sdio_release_irq(ar_sdio->func);
613  if (ret)
614  ath6kl_err("Failed to release sdio irq: %d\n", ret);
615 
616  sdio_release_host(ar_sdio->func);
617 }
618 
619 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
620 {
621  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
622  struct hif_scatter_req *node = NULL;
623 
624  spin_lock_bh(&ar_sdio->scat_lock);
625 
626  if (!list_empty(&ar_sdio->scat_req)) {
627  node = list_first_entry(&ar_sdio->scat_req,
628  struct hif_scatter_req, list);
629  list_del(&node->list);
630 
631  node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
632  }
633 
634  spin_unlock_bh(&ar_sdio->scat_lock);
635 
636  return node;
637 }
638 
639 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
640  struct hif_scatter_req *s_req)
641 {
642  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
643 
644  spin_lock_bh(&ar_sdio->scat_lock);
645 
646  list_add_tail(&s_req->list, &ar_sdio->scat_req);
647 
648  spin_unlock_bh(&ar_sdio->scat_lock);
649 
650 }
651 
652 /* scatter gather read write request */
653 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
654  struct hif_scatter_req *scat_req)
655 {
656  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
657  u32 request = scat_req->req;
658  int status = 0;
659 
660  if (!scat_req->len)
661  return -EINVAL;
662 
663  ath6kl_dbg(ATH6KL_DBG_SCATTER,
664  "hif-scatter: total len: %d scatter entries: %d\n",
665  scat_req->len, scat_req->scat_entries);
666 
667  if (request & HIF_SYNCHRONOUS)
668  status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
669  else {
670  spin_lock_bh(&ar_sdio->wr_async_lock);
671  list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
672  spin_unlock_bh(&ar_sdio->wr_async_lock);
673  queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
674  }
675 
676  return status;
677 }
678 
679 /* clean up scatter support */
680 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
681 {
682  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
683  struct hif_scatter_req *s_req, *tmp_req;
684 
685  /* empty the free list */
686  spin_lock_bh(&ar_sdio->scat_lock);
687  list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
688  list_del(&s_req->list);
689  spin_unlock_bh(&ar_sdio->scat_lock);
690 
691  /*
692  * FIXME: should we also call completion handler with
693  * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
694  * that the packet is properly freed?
695  */
696  if (s_req->busrequest)
697  ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
698  kfree(s_req->virt_dma_buf);
699  kfree(s_req->sgentries);
700  kfree(s_req);
701 
702  spin_lock_bh(&ar_sdio->scat_lock);
703  }
704  spin_unlock_bh(&ar_sdio->scat_lock);
705 }
706 
707 /* setup of HIF scatter resources */
708 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
709 {
710  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
711  struct htc_target *target = ar->htc_target;
712  int ret;
713  bool virt_scat = false;
714 
715  if (ar_sdio->scatter_enabled)
716  return 0;
717 
718  ar_sdio->scatter_enabled = true;
719 
720  /* check if host supports scatter and it meets our requirements */
721  if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
722  ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
723  ar_sdio->func->card->host->max_segs,
725  virt_scat = true;
726  }
727 
728  if (!virt_scat) {
729  ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
731  MAX_SCATTER_REQUESTS, virt_scat);
732 
733  if (!ret) {
734  ath6kl_dbg(ATH6KL_DBG_BOOT,
735  "hif-scatter enabled requests %d entries %d\n",
738 
740  target->max_xfer_szper_scatreq =
742  } else {
743  ath6kl_sdio_cleanup_scatter(ar);
744  ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
745  }
746  }
747 
748  if (virt_scat || ret) {
749  ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
751  ATH6KL_SCATTER_REQS, virt_scat);
752 
753  if (ret) {
754  ath6kl_err("failed to alloc virtual scatter resources !\n");
755  ath6kl_sdio_cleanup_scatter(ar);
756  return ret;
757  }
758 
759  ath6kl_dbg(ATH6KL_DBG_BOOT,
760  "virtual scatter enabled requests %d entries %d\n",
762 
764  target->max_xfer_szper_scatreq =
766  }
767 
768  return 0;
769 }
770 
771 static int ath6kl_sdio_config(struct ath6kl *ar)
772 {
773  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
774  struct sdio_func *func = ar_sdio->func;
775  int ret;
776 
777  sdio_claim_host(func);
778 
779  if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
781  /* enable 4-bit ASYNC interrupt on AR6003 or later */
782  ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
785  if (ret) {
786  ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
787  ret);
788  goto out;
789  }
790 
791  ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
792  }
793 
794  /* give us some time to enable, in ms */
795  func->enable_timeout = 100;
796 
798  if (ret) {
799  ath6kl_err("Set sdio block size %d failed: %d)\n",
800  HIF_MBOX_BLOCK_SIZE, ret);
801  goto out;
802  }
803 
804 out:
805  sdio_release_host(func);
806 
807  return ret;
808 }
809 
810 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
811 {
812  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
813  struct sdio_func *func = ar_sdio->func;
815  int ret;
816 
817  flags = sdio_get_host_pm_caps(func);
818 
819  ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
820 
821  if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
822  !(flags & MMC_PM_KEEP_POWER))
823  return -EINVAL;
824 
825  ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
826  if (ret) {
827  ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
828  return ret;
829  }
830 
831  /* sdio irq wakes up host */
832  ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
833  if (ret)
834  ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
835 
836  return ret;
837 }
838 
839 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
840 {
841  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
842  struct sdio_func *func = ar_sdio->func;
844  bool try_deepsleep = false;
845  int ret;
846 
847  if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
848  ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n");
849 
850  ret = ath6kl_set_sdio_pm_caps(ar);
851  if (ret)
852  goto cut_pwr;
853 
854  ret = ath6kl_cfg80211_suspend(ar,
856  NULL);
857  if (ret)
858  goto cut_pwr;
859 
860  return 0;
861  }
862 
863  if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
864  (!ar->suspend_mode && wow)) {
865 
866  ret = ath6kl_set_sdio_pm_caps(ar);
867  if (ret)
868  goto cut_pwr;
869 
871  if (ret && ret != -ENOTCONN)
872  ath6kl_err("wow suspend failed: %d\n", ret);
873 
874  if (ret &&
875  (!ar->wow_suspend_mode ||
877  try_deepsleep = true;
878  else if (ret &&
880  goto cut_pwr;
881  if (!ret)
882  return 0;
883  }
884 
886  !ar->suspend_mode || try_deepsleep) {
887 
888  flags = sdio_get_host_pm_caps(func);
889  if (!(flags & MMC_PM_KEEP_POWER))
890  goto cut_pwr;
891 
892  ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
893  if (ret)
894  goto cut_pwr;
895 
896  /*
897  * Workaround to support Deep Sleep with MSM, set the host pm
898  * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
899  * the sdc2_clock and internally allows MSM to enter
900  * TCXO shutdown properly.
901  */
902  if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
903  ret = sdio_set_host_pm_flags(func,
904  MMC_PM_WAKE_SDIO_IRQ);
905  if (ret)
906  goto cut_pwr;
907  }
908 
910  NULL);
911  if (ret)
912  goto cut_pwr;
913 
914  return 0;
915  }
916 
917 cut_pwr:
918  if (func->card && func->card->host)
919  func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
920 
922 }
923 
924 static int ath6kl_sdio_resume(struct ath6kl *ar)
925 {
926  switch (ar->state) {
927  case ATH6KL_STATE_OFF:
929  ath6kl_dbg(ATH6KL_DBG_SUSPEND,
930  "sdio resume configuring sdio\n");
931 
932  /* need to set sdio settings after power is cut from sdio */
933  ath6kl_sdio_config(ar);
934  break;
935 
936  case ATH6KL_STATE_ON:
937  break;
938 
940  break;
941 
942  case ATH6KL_STATE_WOW:
943  break;
944 
946  break;
947 
949  break;
950 
952  break;
953  }
954 
956 
957  return 0;
958 }
959 
960 /* set the window address register (using 4-byte register access ). */
961 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
962 {
963  int status;
964  u8 addr_val[4];
965  s32 i;
966 
967  /*
968  * Write bytes 1,2,3 of the register to set the upper address bytes,
969  * the LSB is written last to initiate the access cycle
970  */
971 
972  for (i = 1; i <= 3; i++) {
973  /*
974  * Fill the buffer with the address byte value we want to
975  * hit 4 times.
976  */
977  memset(addr_val, ((u8 *)&addr)[i], 4);
978 
979  /*
980  * Hit each byte of the register address with a 4-byte
981  * write operation to the same address, this is a harmless
982  * operation.
983  */
984  status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
986  if (status)
987  break;
988  }
989 
990  if (status) {
991  ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
992  __func__, addr, reg_addr);
993  return status;
994  }
995 
996  /*
997  * Write the address register again, this time write the whole
998  * 4-byte value. The effect here is that the LSB write causes the
999  * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1000  * effect since we are writing the same values again
1001  */
1002  status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1004 
1005  if (status) {
1006  ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1007  __func__, addr, reg_addr);
1008  return status;
1009  }
1010 
1011  return 0;
1012 }
1013 
1014 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1015 {
1016  int status;
1017 
1018  /* set window register to start read cycle */
1019  status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1020  address);
1021 
1022  if (status)
1023  return status;
1024 
1025  /* read the data */
1026  status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1027  (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1028  if (status) {
1029  ath6kl_err("%s: failed to read from window data addr\n",
1030  __func__);
1031  return status;
1032  }
1033 
1034  return status;
1035 }
1036 
1037 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1038  __le32 data)
1039 {
1040  int status;
1041  u32 val = (__force u32) data;
1042 
1043  /* set write data */
1044  status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1045  (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1046  if (status) {
1047  ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1048  __func__, data);
1049  return status;
1050  }
1051 
1052  /* set window register, which starts the write cycle */
1053  return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1054  address);
1055 }
1056 
1057 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1058 {
1059  u32 addr;
1060  unsigned long timeout;
1061  int ret;
1062 
1063  ar->bmi.cmd_credits = 0;
1064 
1065  /* Read the counter register to get the command credits */
1067 
1069  while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1070 
1071  /*
1072  * Hit the credit counter with a 4-byte access, the first byte
1073  * read will hit the counter and cause a decrement, while the
1074  * remaining 3 bytes has no effect. The rationale behind this
1075  * is to make all HIF accesses 4-byte aligned.
1076  */
1077  ret = ath6kl_sdio_read_write_sync(ar, addr,
1078  (u8 *)&ar->bmi.cmd_credits, 4,
1080  if (ret) {
1081  ath6kl_err("Unable to decrement the command credit count register: %d\n",
1082  ret);
1083  return ret;
1084  }
1085 
1086  /* The counter is only 8 bits.
1087  * Ignore anything in the upper 3 bytes
1088  */
1089  ar->bmi.cmd_credits &= 0xFF;
1090  }
1091 
1092  if (!ar->bmi.cmd_credits) {
1093  ath6kl_err("bmi communication timeout\n");
1094  return -ETIMEDOUT;
1095  }
1096 
1097  return 0;
1098 }
1099 
1100 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1101 {
1102  unsigned long timeout;
1103  u32 rx_word = 0;
1104  int ret = 0;
1105 
1107  while ((time_before(jiffies, timeout)) && !rx_word) {
1108  ret = ath6kl_sdio_read_write_sync(ar,
1110  (u8 *)&rx_word, sizeof(rx_word),
1112  if (ret) {
1113  ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1114  return ret;
1115  }
1116 
1117  /* all we really want is one bit */
1118  rx_word &= (1 << ENDPOINT1);
1119  }
1120 
1121  if (!rx_word) {
1122  ath6kl_err("bmi_recv_buf FIFO empty\n");
1123  return -EINVAL;
1124  }
1125 
1126  return ret;
1127 }
1128 
1129 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1130 {
1131  int ret;
1132  u32 addr;
1133 
1134  ret = ath6kl_sdio_bmi_credits(ar);
1135  if (ret)
1136  return ret;
1137 
1138  addr = ar->mbox_info.htc_addr;
1139 
1140  ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1142  if (ret)
1143  ath6kl_err("unable to send the bmi data to the device\n");
1144 
1145  return ret;
1146 }
1147 
1148 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1149 {
1150  int ret;
1151  u32 addr;
1152 
1153  /*
1154  * During normal bootup, small reads may be required.
1155  * Rather than issue an HIF Read and then wait as the Target
1156  * adds successive bytes to the FIFO, we wait here until
1157  * we know that response data is available.
1158  *
1159  * This allows us to cleanly timeout on an unexpected
1160  * Target failure rather than risk problems at the HIF level.
1161  * In particular, this avoids SDIO timeouts and possibly garbage
1162  * data on some host controllers. And on an interconnect
1163  * such as Compact Flash (as well as some SDIO masters) which
1164  * does not provide any indication on data timeout, it avoids
1165  * a potential hang or garbage response.
1166  *
1167  * Synchronization is more difficult for reads larger than the
1168  * size of the MBOX FIFO (128B), because the Target is unable
1169  * to push the 129th byte of data until AFTER the Host posts an
1170  * HIF Read and removes some FIFO data. So for large reads the
1171  * Host proceeds to post an HIF Read BEFORE all the data is
1172  * actually available to read. Fortunately, large BMI reads do
1173  * not occur in practice -- they're supported for debug/development.
1174  *
1175  * So Host/Target BMI synchronization is divided into these cases:
1176  * CASE 1: length < 4
1177  * Should not happen
1178  *
1179  * CASE 2: 4 <= length <= 128
1180  * Wait for first 4 bytes to be in FIFO
1181  * If CONSERVATIVE_BMI_READ is enabled, also wait for
1182  * a BMI command credit, which indicates that the ENTIRE
1183  * response is available in the the FIFO
1184  *
1185  * CASE 3: length > 128
1186  * Wait for the first 4 bytes to be in FIFO
1187  *
1188  * For most uses, a small timeout should be sufficient and we will
1189  * usually see a response quickly; but there may be some unusual
1190  * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1191  * For now, we use an unbounded busy loop while waiting for
1192  * BMI_EXECUTE.
1193  *
1194  * If BMI_EXECUTE ever needs to support longer-latency execution,
1195  * especially in production, this code needs to be enhanced to sleep
1196  * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1197  * a function of Host processor speed.
1198  */
1199  if (len >= 4) { /* NB: Currently, always true */
1200  ret = ath6kl_bmi_get_rx_lkahd(ar);
1201  if (ret)
1202  return ret;
1203  }
1204 
1205  addr = ar->mbox_info.htc_addr;
1206  ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1208  if (ret) {
1209  ath6kl_err("Unable to read the bmi data from the device: %d\n",
1210  ret);
1211  return ret;
1212  }
1213 
1214  return 0;
1215 }
1216 
1217 static void ath6kl_sdio_stop(struct ath6kl *ar)
1218 {
1219  struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1220  struct bus_request *req, *tmp_req;
1221  void *context;
1222 
1223  /* FIXME: make sure that wq is not queued again */
1224 
1225  cancel_work_sync(&ar_sdio->wr_async_work);
1226 
1227  spin_lock_bh(&ar_sdio->wr_async_lock);
1228 
1229  list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1230  list_del(&req->list);
1231 
1232  if (req->scat_req) {
1233  /* this is a scatter gather request */
1234  req->scat_req->status = -ECANCELED;
1235  req->scat_req->complete(ar_sdio->ar->htc_target,
1236  req->scat_req);
1237  } else {
1238  context = req->packet;
1239  ath6kl_sdio_free_bus_req(ar_sdio, req);
1241  }
1242  }
1243 
1244  spin_unlock_bh(&ar_sdio->wr_async_lock);
1245 
1246  WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1247 }
1248 
1249 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1250  .read_write_sync = ath6kl_sdio_read_write_sync,
1251  .write_async = ath6kl_sdio_write_async,
1252  .irq_enable = ath6kl_sdio_irq_enable,
1253  .irq_disable = ath6kl_sdio_irq_disable,
1254  .scatter_req_get = ath6kl_sdio_scatter_req_get,
1255  .scatter_req_add = ath6kl_sdio_scatter_req_add,
1256  .enable_scatter = ath6kl_sdio_enable_scatter,
1257  .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1258  .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1259  .suspend = ath6kl_sdio_suspend,
1260  .resume = ath6kl_sdio_resume,
1261  .diag_read32 = ath6kl_sdio_diag_read32,
1262  .diag_write32 = ath6kl_sdio_diag_write32,
1263  .bmi_read = ath6kl_sdio_bmi_read,
1264  .bmi_write = ath6kl_sdio_bmi_write,
1265  .power_on = ath6kl_sdio_power_on,
1266  .power_off = ath6kl_sdio_power_off,
1267  .stop = ath6kl_sdio_stop,
1268 };
1269 
1270 #ifdef CONFIG_PM_SLEEP
1271 
1272 /*
1273  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1274  * suspend. We instead follow cfg80211 suspend/resume handlers.
1275  */
1276 static int ath6kl_sdio_pm_suspend(struct device *device)
1277 {
1278  ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1279 
1280  return 0;
1281 }
1282 
1283 static int ath6kl_sdio_pm_resume(struct device *device)
1284 {
1285  ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1286 
1287  return 0;
1288 }
1289 
1290 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1291  ath6kl_sdio_pm_resume);
1292 
1293 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1294 
1295 #else
1296 
1297 #define ATH6KL_SDIO_PM_OPS NULL
1298 
1299 #endif /* CONFIG_PM_SLEEP */
1300 
1301 static int ath6kl_sdio_probe(struct sdio_func *func,
1302  const struct sdio_device_id *id)
1303 {
1304  int ret;
1305  struct ath6kl_sdio *ar_sdio;
1306  struct ath6kl *ar;
1307  int count;
1308 
1309  ath6kl_dbg(ATH6KL_DBG_BOOT,
1310  "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1311  func->num, func->vendor, func->device,
1312  func->max_blksize, func->cur_blksize);
1313 
1314  ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1315  if (!ar_sdio)
1316  return -ENOMEM;
1317 
1318  ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1319  if (!ar_sdio->dma_buffer) {
1320  ret = -ENOMEM;
1321  goto err_hif;
1322  }
1323 
1324  ar_sdio->func = func;
1325  sdio_set_drvdata(func, ar_sdio);
1326 
1327  ar_sdio->id = id;
1328  ar_sdio->is_disabled = true;
1329 
1330  spin_lock_init(&ar_sdio->lock);
1331  spin_lock_init(&ar_sdio->scat_lock);
1332  spin_lock_init(&ar_sdio->wr_async_lock);
1333  mutex_init(&ar_sdio->dma_buffer_mutex);
1334 
1335  INIT_LIST_HEAD(&ar_sdio->scat_req);
1336  INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1337  INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1338 
1339  INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1340 
1341  init_waitqueue_head(&ar_sdio->irq_wq);
1342 
1343  for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1344  ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1345 
1346  ar = ath6kl_core_create(&ar_sdio->func->dev);
1347  if (!ar) {
1348  ath6kl_err("Failed to alloc ath6kl core\n");
1349  ret = -ENOMEM;
1350  goto err_dma;
1351  }
1352 
1353  ar_sdio->ar = ar;
1355  ar->hif_priv = ar_sdio;
1356  ar->hif_ops = &ath6kl_sdio_ops;
1357  ar->bmi.max_data_size = 256;
1358 
1359  ath6kl_sdio_set_mbox_info(ar);
1360 
1361  ret = ath6kl_sdio_config(ar);
1362  if (ret) {
1363  ath6kl_err("Failed to config sdio: %d\n", ret);
1364  goto err_core_alloc;
1365  }
1366 
1368  if (ret) {
1369  ath6kl_err("Failed to init ath6kl core\n");
1370  goto err_core_alloc;
1371  }
1372 
1373  return ret;
1374 
1375 err_core_alloc:
1376  ath6kl_core_destroy(ar_sdio->ar);
1377 err_dma:
1378  kfree(ar_sdio->dma_buffer);
1379 err_hif:
1380  kfree(ar_sdio);
1381 
1382  return ret;
1383 }
1384 
1385 static void ath6kl_sdio_remove(struct sdio_func *func)
1386 {
1387  struct ath6kl_sdio *ar_sdio;
1388 
1389  ath6kl_dbg(ATH6KL_DBG_BOOT,
1390  "sdio removed func %d vendor 0x%x device 0x%x\n",
1391  func->num, func->vendor, func->device);
1392 
1393  ar_sdio = sdio_get_drvdata(func);
1394 
1395  ath6kl_stop_txrx(ar_sdio->ar);
1396  cancel_work_sync(&ar_sdio->wr_async_work);
1397 
1398  ath6kl_core_cleanup(ar_sdio->ar);
1399  ath6kl_core_destroy(ar_sdio->ar);
1400 
1401  kfree(ar_sdio->dma_buffer);
1402  kfree(ar_sdio);
1403 }
1404 
1405 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1410  {},
1411 };
1412 
1413 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1414 
1415 static struct sdio_driver ath6kl_sdio_driver = {
1416  .name = "ath6kl_sdio",
1417  .id_table = ath6kl_sdio_devices,
1418  .probe = ath6kl_sdio_probe,
1419  .remove = ath6kl_sdio_remove,
1420  .drv.pm = ATH6KL_SDIO_PM_OPS,
1421 };
1422 
1423 static int __init ath6kl_sdio_init(void)
1424 {
1425  int ret;
1426 
1427  ret = sdio_register_driver(&ath6kl_sdio_driver);
1428  if (ret)
1429  ath6kl_err("sdio driver registration failed: %d\n", ret);
1430 
1431  return ret;
1432 }
1433 
1434 static void __exit ath6kl_sdio_exit(void)
1435 {
1436  sdio_unregister_driver(&ath6kl_sdio_driver);
1437 }
1438 
1439 module_init(ath6kl_sdio_init);
1440 module_exit(ath6kl_sdio_exit);
1441 
1442 MODULE_AUTHOR("Atheros Communications, Inc.");
1443 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1444 MODULE_LICENSE("Dual BSD/GPL");
1445