Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pch_dma.c
Go to the documentation of this file.
1 /*
2  * Topcliff PCH DMA controller driver
3  * Copyright (c) 2010 Intel Corporation
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pch_dma.h>
27 
28 #include "dmaengine.h"
29 
30 #define DRV_NAME "pch-dma"
31 
32 #define DMA_CTL0_DISABLE 0x0
33 #define DMA_CTL0_SG 0x1
34 #define DMA_CTL0_ONESHOT 0x2
35 #define DMA_CTL0_MODE_MASK_BITS 0x3
36 #define DMA_CTL0_DIR_SHIFT_BITS 2
37 #define DMA_CTL0_BITS_PER_CH 4
38 
39 #define DMA_CTL2_START_SHIFT_BITS 8
40 #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
41 
42 #define DMA_STATUS_IDLE 0x0
43 #define DMA_STATUS_DESC_READ 0x1
44 #define DMA_STATUS_WAIT 0x2
45 #define DMA_STATUS_ACCESS 0x3
46 #define DMA_STATUS_BITS_PER_CH 2
47 #define DMA_STATUS_MASK_BITS 0x3
48 #define DMA_STATUS_SHIFT_BITS 16
49 #define DMA_STATUS_IRQ(x) (0x1 << (x))
50 #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
51 #define DMA_STATUS2_ERR(x) (0x1 << (x))
52 
53 #define DMA_DESC_WIDTH_SHIFT_BITS 12
54 #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
55 #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
56 #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
57 #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
58 #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
59 #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
60 #define DMA_DESC_END_WITHOUT_IRQ 0x0
61 #define DMA_DESC_END_WITH_IRQ 0x1
62 #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
63 #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
64 
65 #define MAX_CHAN_NR 12
66 
67 #define DMA_MASK_CTL0_MODE 0x33333333
68 #define DMA_MASK_CTL2_MODE 0x00003333
69 
70 static unsigned int init_nr_desc_per_channel = 64;
71 module_param(init_nr_desc_per_channel, uint, 0644);
72 MODULE_PARM_DESC(init_nr_desc_per_channel,
73  "initial descriptors per channel (default: 64)");
74 
80 };
81 
82 struct pch_dma_regs {
92 };
93 
94 struct pch_dma_desc {
99 };
100 
101 struct pch_dma_chan {
102  struct dma_chan chan;
106  unsigned long err_status;
107 
109 
111  struct list_head queue;
113  unsigned int descs_allocated;
114 };
115 
116 #define PDC_DEV_ADDR 0x00
117 #define PDC_MEM_ADDR 0x04
118 #define PDC_SIZE 0x08
119 #define PDC_NEXT 0x0C
120 
121 #define channel_readl(pdc, name) \
122  readl((pdc)->membase + PDC_##name)
123 #define channel_writel(pdc, name, val) \
124  writel((val), (pdc)->membase + PDC_##name)
125 
126 struct pch_dma {
127  struct dma_device dma;
129  struct pci_pool *pool;
133 };
134 
135 #define PCH_DMA_CTL0 0x00
136 #define PCH_DMA_CTL1 0x04
137 #define PCH_DMA_CTL2 0x08
138 #define PCH_DMA_CTL3 0x0C
139 #define PCH_DMA_STS0 0x10
140 #define PCH_DMA_STS1 0x14
141 #define PCH_DMA_STS2 0x18
142 
143 #define dma_readl(pd, name) \
144  readl((pd)->membase + PCH_DMA_##name)
145 #define dma_writel(pd, name, val) \
146  writel((val), (pd)->membase + PCH_DMA_##name)
147 
148 static inline
149 struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
150 {
151  return container_of(txd, struct pch_dma_desc, txd);
152 }
153 
154 static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
155 {
156  return container_of(chan, struct pch_dma_chan, chan);
157 }
158 
159 static inline struct pch_dma *to_pd(struct dma_device *ddev)
160 {
161  return container_of(ddev, struct pch_dma, dma);
162 }
163 
164 static inline struct device *chan2dev(struct dma_chan *chan)
165 {
166  return &chan->dev->device;
167 }
168 
169 static inline struct device *chan2parent(struct dma_chan *chan)
170 {
171  return chan->dev->device.parent;
172 }
173 
174 static inline
175 struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
176 {
177  return list_first_entry(&pd_chan->active_list,
178  struct pch_dma_desc, desc_node);
179 }
180 
181 static inline
182 struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
183 {
184  return list_first_entry(&pd_chan->queue,
185  struct pch_dma_desc, desc_node);
186 }
187 
188 static void pdc_enable_irq(struct dma_chan *chan, int enable)
189 {
190  struct pch_dma *pd = to_pd(chan->device);
191  u32 val;
192  int pos;
193 
194  if (chan->chan_id < 8)
195  pos = chan->chan_id;
196  else
197  pos = chan->chan_id + 8;
198 
199  val = dma_readl(pd, CTL2);
200 
201  if (enable)
202  val |= 0x1 << pos;
203  else
204  val &= ~(0x1 << pos);
205 
206  dma_writel(pd, CTL2, val);
207 
208  dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
209  chan->chan_id, val);
210 }
211 
212 static void pdc_set_dir(struct dma_chan *chan)
213 {
214  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
215  struct pch_dma *pd = to_pd(chan->device);
216  u32 val;
217  u32 mask_mode;
218  u32 mask_ctl;
219 
220  if (chan->chan_id < 8) {
221  val = dma_readl(pd, CTL0);
222 
223  mask_mode = DMA_CTL0_MODE_MASK_BITS <<
224  (DMA_CTL0_BITS_PER_CH * chan->chan_id);
226  (DMA_CTL0_BITS_PER_CH * chan->chan_id));
227  val &= mask_mode;
228  if (pd_chan->dir == DMA_MEM_TO_DEV)
229  val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
231  else
232  val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
234 
235  val |= mask_ctl;
236  dma_writel(pd, CTL0, val);
237  } else {
238  int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
239  val = dma_readl(pd, CTL3);
240 
241  mask_mode = DMA_CTL0_MODE_MASK_BITS <<
242  (DMA_CTL0_BITS_PER_CH * ch);
244  (DMA_CTL0_BITS_PER_CH * ch));
245  val &= mask_mode;
246  if (pd_chan->dir == DMA_MEM_TO_DEV)
247  val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
249  else
250  val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
252  val |= mask_ctl;
253  dma_writel(pd, CTL3, val);
254  }
255 
256  dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
257  chan->chan_id, val);
258 }
259 
260 static void pdc_set_mode(struct dma_chan *chan, u32 mode)
261 {
262  struct pch_dma *pd = to_pd(chan->device);
263  u32 val;
264  u32 mask_ctl;
265  u32 mask_dir;
266 
267  if (chan->chan_id < 8) {
269  (DMA_CTL0_BITS_PER_CH * chan->chan_id));
270  mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
271  DMA_CTL0_DIR_SHIFT_BITS);
272  val = dma_readl(pd, CTL0);
273  val &= mask_dir;
274  val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
275  val |= mask_ctl;
276  dma_writel(pd, CTL0, val);
277  } else {
278  int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
280  (DMA_CTL0_BITS_PER_CH * ch));
281  mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
282  DMA_CTL0_DIR_SHIFT_BITS);
283  val = dma_readl(pd, CTL3);
284  val &= mask_dir;
285  val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
286  val |= mask_ctl;
287  dma_writel(pd, CTL3, val);
288  }
289 
290  dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
291  chan->chan_id, val);
292 }
293 
294 static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
295 {
296  struct pch_dma *pd = to_pd(pd_chan->chan.device);
297  u32 val;
298 
299  val = dma_readl(pd, STS0);
300  return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
301  DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
302 }
303 
304 static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
305 {
306  struct pch_dma *pd = to_pd(pd_chan->chan.device);
307  u32 val;
308 
309  val = dma_readl(pd, STS2);
310  return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
311  DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
312 }
313 
314 static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
315 {
316  u32 sts;
317 
318  if (pd_chan->chan.chan_id < 8)
319  sts = pdc_get_status0(pd_chan);
320  else
321  sts = pdc_get_status2(pd_chan);
322 
323 
324  if (sts == DMA_STATUS_IDLE)
325  return true;
326  else
327  return false;
328 }
329 
330 static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
331 {
332  if (!pdc_is_idle(pd_chan)) {
333  dev_err(chan2dev(&pd_chan->chan),
334  "BUG: Attempt to start non-idle channel\n");
335  return;
336  }
337 
338  dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
339  pd_chan->chan.chan_id, desc->regs.dev_addr);
340  dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
341  pd_chan->chan.chan_id, desc->regs.mem_addr);
342  dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
343  pd_chan->chan.chan_id, desc->regs.size);
344  dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
345  pd_chan->chan.chan_id, desc->regs.next);
346 
347  if (list_empty(&desc->tx_list)) {
348  channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
349  channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
350  channel_writel(pd_chan, SIZE, desc->regs.size);
351  channel_writel(pd_chan, NEXT, desc->regs.next);
352  pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
353  } else {
354  channel_writel(pd_chan, NEXT, desc->txd.phys);
355  pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
356  }
357 }
358 
359 static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
360  struct pch_dma_desc *desc)
361 {
362  struct dma_async_tx_descriptor *txd = &desc->txd;
364  void *param = txd->callback_param;
365 
366  list_splice_init(&desc->tx_list, &pd_chan->free_list);
367  list_move(&desc->desc_node, &pd_chan->free_list);
368 
369  if (callback)
370  callback(param);
371 }
372 
373 static void pdc_complete_all(struct pch_dma_chan *pd_chan)
374 {
375  struct pch_dma_desc *desc, *_d;
376  LIST_HEAD(list);
377 
378  BUG_ON(!pdc_is_idle(pd_chan));
379 
380  if (!list_empty(&pd_chan->queue))
381  pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
382 
383  list_splice_init(&pd_chan->active_list, &list);
384  list_splice_init(&pd_chan->queue, &pd_chan->active_list);
385 
387  pdc_chain_complete(pd_chan, desc);
388 }
389 
390 static void pdc_handle_error(struct pch_dma_chan *pd_chan)
391 {
392  struct pch_dma_desc *bad_desc;
393 
394  bad_desc = pdc_first_active(pd_chan);
395  list_del(&bad_desc->desc_node);
396 
397  list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
398 
399  if (!list_empty(&pd_chan->active_list))
400  pdc_dostart(pd_chan, pdc_first_active(pd_chan));
401 
402  dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
403  dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
404  bad_desc->txd.cookie);
405 
406  pdc_chain_complete(pd_chan, bad_desc);
407 }
408 
409 static void pdc_advance_work(struct pch_dma_chan *pd_chan)
410 {
411  if (list_empty(&pd_chan->active_list) ||
412  list_is_singular(&pd_chan->active_list)) {
413  pdc_complete_all(pd_chan);
414  } else {
415  pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
416  pdc_dostart(pd_chan, pdc_first_active(pd_chan));
417  }
418 }
419 
420 static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
421 {
422  struct pch_dma_desc *desc = to_pd_desc(txd);
423  struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
425 
426  spin_lock(&pd_chan->lock);
427  cookie = dma_cookie_assign(txd);
428 
429  if (list_empty(&pd_chan->active_list)) {
430  list_add_tail(&desc->desc_node, &pd_chan->active_list);
431  pdc_dostart(pd_chan, desc);
432  } else {
433  list_add_tail(&desc->desc_node, &pd_chan->queue);
434  }
435 
436  spin_unlock(&pd_chan->lock);
437  return 0;
438 }
439 
440 static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
441 {
442  struct pch_dma_desc *desc = NULL;
443  struct pch_dma *pd = to_pd(chan->device);
445 
446  desc = pci_pool_alloc(pd->pool, flags, &addr);
447  if (desc) {
448  memset(desc, 0, sizeof(struct pch_dma_desc));
449  INIT_LIST_HEAD(&desc->tx_list);
450  dma_async_tx_descriptor_init(&desc->txd, chan);
451  desc->txd.tx_submit = pd_tx_submit;
452  desc->txd.flags = DMA_CTRL_ACK;
453  desc->txd.phys = addr;
454  }
455 
456  return desc;
457 }
458 
459 static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
460 {
461  struct pch_dma_desc *desc, *_d;
462  struct pch_dma_desc *ret = NULL;
463  int i = 0;
464 
465  spin_lock(&pd_chan->lock);
466  list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
467  i++;
468  if (async_tx_test_ack(&desc->txd)) {
469  list_del(&desc->desc_node);
470  ret = desc;
471  break;
472  }
473  dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
474  }
475  spin_unlock(&pd_chan->lock);
476  dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
477 
478  if (!ret) {
479  ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
480  if (ret) {
481  spin_lock(&pd_chan->lock);
482  pd_chan->descs_allocated++;
483  spin_unlock(&pd_chan->lock);
484  } else {
485  dev_err(chan2dev(&pd_chan->chan),
486  "failed to alloc desc\n");
487  }
488  }
489 
490  return ret;
491 }
492 
493 static void pdc_desc_put(struct pch_dma_chan *pd_chan,
494  struct pch_dma_desc *desc)
495 {
496  if (desc) {
497  spin_lock(&pd_chan->lock);
498  list_splice_init(&desc->tx_list, &pd_chan->free_list);
499  list_add(&desc->desc_node, &pd_chan->free_list);
500  spin_unlock(&pd_chan->lock);
501  }
502 }
503 
504 static int pd_alloc_chan_resources(struct dma_chan *chan)
505 {
506  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
507  struct pch_dma_desc *desc;
508  LIST_HEAD(tmp_list);
509  int i;
510 
511  if (!pdc_is_idle(pd_chan)) {
512  dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
513  return -EIO;
514  }
515 
516  if (!list_empty(&pd_chan->free_list))
517  return pd_chan->descs_allocated;
518 
519  for (i = 0; i < init_nr_desc_per_channel; i++) {
520  desc = pdc_alloc_desc(chan, GFP_KERNEL);
521 
522  if (!desc) {
523  dev_warn(chan2dev(chan),
524  "Only allocated %d initial descriptors\n", i);
525  break;
526  }
527 
528  list_add_tail(&desc->desc_node, &tmp_list);
529  }
530 
531  spin_lock_irq(&pd_chan->lock);
532  list_splice(&tmp_list, &pd_chan->free_list);
533  pd_chan->descs_allocated = i;
534  dma_cookie_init(chan);
535  spin_unlock_irq(&pd_chan->lock);
536 
537  pdc_enable_irq(chan, 1);
538 
539  return pd_chan->descs_allocated;
540 }
541 
542 static void pd_free_chan_resources(struct dma_chan *chan)
543 {
544  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
545  struct pch_dma *pd = to_pd(chan->device);
546  struct pch_dma_desc *desc, *_d;
547  LIST_HEAD(tmp_list);
548 
549  BUG_ON(!pdc_is_idle(pd_chan));
550  BUG_ON(!list_empty(&pd_chan->active_list));
551  BUG_ON(!list_empty(&pd_chan->queue));
552 
553  spin_lock_irq(&pd_chan->lock);
554  list_splice_init(&pd_chan->free_list, &tmp_list);
555  pd_chan->descs_allocated = 0;
556  spin_unlock_irq(&pd_chan->lock);
557 
558  list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
559  pci_pool_free(pd->pool, desc, desc->txd.phys);
560 
561  pdc_enable_irq(chan, 0);
562 }
563 
564 static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
565  struct dma_tx_state *txstate)
566 {
567  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
568  enum dma_status ret;
569 
570  spin_lock_irq(&pd_chan->lock);
571  ret = dma_cookie_status(chan, cookie, txstate);
572  spin_unlock_irq(&pd_chan->lock);
573 
574  return ret;
575 }
576 
577 static void pd_issue_pending(struct dma_chan *chan)
578 {
579  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
580 
581  if (pdc_is_idle(pd_chan)) {
582  spin_lock(&pd_chan->lock);
583  pdc_advance_work(pd_chan);
584  spin_unlock(&pd_chan->lock);
585  }
586 }
587 
588 static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
589  struct scatterlist *sgl, unsigned int sg_len,
590  enum dma_transfer_direction direction, unsigned long flags,
591  void *context)
592 {
593  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
594  struct pch_dma_slave *pd_slave = chan->private;
595  struct pch_dma_desc *first = NULL;
596  struct pch_dma_desc *prev = NULL;
597  struct pch_dma_desc *desc = NULL;
598  struct scatterlist *sg;
599  dma_addr_t reg;
600  int i;
601 
602  if (unlikely(!sg_len)) {
603  dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
604  return NULL;
605  }
606 
607  if (direction == DMA_DEV_TO_MEM)
608  reg = pd_slave->rx_reg;
609  else if (direction == DMA_MEM_TO_DEV)
610  reg = pd_slave->tx_reg;
611  else
612  return NULL;
613 
614  pd_chan->dir = direction;
615  pdc_set_dir(chan);
616 
617  for_each_sg(sgl, sg, sg_len, i) {
618  desc = pdc_desc_get(pd_chan);
619 
620  if (!desc)
621  goto err_desc_get;
622 
623  desc->regs.dev_addr = reg;
624  desc->regs.mem_addr = sg_dma_address(sg);
625  desc->regs.size = sg_dma_len(sg);
626  desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
627 
628  switch (pd_slave->width) {
630  if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
631  goto err_desc_get;
632  desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
633  break;
635  if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
636  goto err_desc_get;
637  desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
638  break;
640  if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
641  goto err_desc_get;
642  desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
643  break;
644  default:
645  goto err_desc_get;
646  }
647 
648  if (!first) {
649  first = desc;
650  } else {
651  prev->regs.next |= desc->txd.phys;
652  list_add_tail(&desc->desc_node, &first->tx_list);
653  }
654 
655  prev = desc;
656  }
657 
658  if (flags & DMA_PREP_INTERRUPT)
659  desc->regs.next = DMA_DESC_END_WITH_IRQ;
660  else
661  desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
662 
663  first->txd.cookie = -EBUSY;
664  desc->txd.flags = flags;
665 
666  return &first->txd;
667 
668 err_desc_get:
669  dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
670  pdc_desc_put(pd_chan, first);
671  return NULL;
672 }
673 
674 static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
675  unsigned long arg)
676 {
677  struct pch_dma_chan *pd_chan = to_pd_chan(chan);
678  struct pch_dma_desc *desc, *_d;
679  LIST_HEAD(list);
680 
681  if (cmd != DMA_TERMINATE_ALL)
682  return -ENXIO;
683 
684  spin_lock_irq(&pd_chan->lock);
685 
686  pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
687 
688  list_splice_init(&pd_chan->active_list, &list);
689  list_splice_init(&pd_chan->queue, &list);
690 
692  pdc_chain_complete(pd_chan, desc);
693 
694  spin_unlock_irq(&pd_chan->lock);
695 
696  return 0;
697 }
698 
699 static void pdc_tasklet(unsigned long data)
700 {
701  struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
702  unsigned long flags;
703 
704  if (!pdc_is_idle(pd_chan)) {
705  dev_err(chan2dev(&pd_chan->chan),
706  "BUG: handle non-idle channel in tasklet\n");
707  return;
708  }
709 
710  spin_lock_irqsave(&pd_chan->lock, flags);
711  if (test_and_clear_bit(0, &pd_chan->err_status))
712  pdc_handle_error(pd_chan);
713  else
714  pdc_advance_work(pd_chan);
715  spin_unlock_irqrestore(&pd_chan->lock, flags);
716 }
717 
718 static irqreturn_t pd_irq(int irq, void *devid)
719 {
720  struct pch_dma *pd = (struct pch_dma *)devid;
721  struct pch_dma_chan *pd_chan;
722  u32 sts0;
723  u32 sts2;
724  int i;
725  int ret0 = IRQ_NONE;
726  int ret2 = IRQ_NONE;
727 
728  sts0 = dma_readl(pd, STS0);
729  sts2 = dma_readl(pd, STS2);
730 
731  dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
732 
733  for (i = 0; i < pd->dma.chancnt; i++) {
734  pd_chan = &pd->channels[i];
735 
736  if (i < 8) {
737  if (sts0 & DMA_STATUS_IRQ(i)) {
738  if (sts0 & DMA_STATUS0_ERR(i))
739  set_bit(0, &pd_chan->err_status);
740 
741  tasklet_schedule(&pd_chan->tasklet);
742  ret0 = IRQ_HANDLED;
743  }
744  } else {
745  if (sts2 & DMA_STATUS_IRQ(i - 8)) {
746  if (sts2 & DMA_STATUS2_ERR(i))
747  set_bit(0, &pd_chan->err_status);
748 
749  tasklet_schedule(&pd_chan->tasklet);
750  ret2 = IRQ_HANDLED;
751  }
752  }
753  }
754 
755  /* clear interrupt bits in status register */
756  if (ret0)
757  dma_writel(pd, STS0, sts0);
758  if (ret2)
759  dma_writel(pd, STS2, sts2);
760 
761  return ret0 | ret2;
762 }
763 
764 #ifdef CONFIG_PM
765 static void pch_dma_save_regs(struct pch_dma *pd)
766 {
767  struct pch_dma_chan *pd_chan;
768  struct dma_chan *chan, *_c;
769  int i = 0;
770 
771  pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
772  pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
773  pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
774  pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
775 
776  list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
777  pd_chan = to_pd_chan(chan);
778 
779  pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
780  pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
781  pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
782  pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
783 
784  i++;
785  }
786 }
787 
788 static void pch_dma_restore_regs(struct pch_dma *pd)
789 {
790  struct pch_dma_chan *pd_chan;
791  struct dma_chan *chan, *_c;
792  int i = 0;
793 
794  dma_writel(pd, CTL0, pd->regs.dma_ctl0);
795  dma_writel(pd, CTL1, pd->regs.dma_ctl1);
796  dma_writel(pd, CTL2, pd->regs.dma_ctl2);
797  dma_writel(pd, CTL3, pd->regs.dma_ctl3);
798 
799  list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
800  pd_chan = to_pd_chan(chan);
801 
802  channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
803  channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
804  channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
805  channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
806 
807  i++;
808  }
809 }
810 
811 static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
812 {
813  struct pch_dma *pd = pci_get_drvdata(pdev);
814 
815  if (pd)
816  pch_dma_save_regs(pd);
817 
818  pci_save_state(pdev);
819  pci_disable_device(pdev);
820  pci_set_power_state(pdev, pci_choose_state(pdev, state));
821 
822  return 0;
823 }
824 
825 static int pch_dma_resume(struct pci_dev *pdev)
826 {
827  struct pch_dma *pd = pci_get_drvdata(pdev);
828  int err;
829 
831  pci_restore_state(pdev);
832 
833  err = pci_enable_device(pdev);
834  if (err) {
835  dev_dbg(&pdev->dev, "failed to enable device\n");
836  return err;
837  }
838 
839  if (pd)
840  pch_dma_restore_regs(pd);
841 
842  return 0;
843 }
844 #endif
845 
846 static int __devinit pch_dma_probe(struct pci_dev *pdev,
847  const struct pci_device_id *id)
848 {
849  struct pch_dma *pd;
850  struct pch_dma_regs *regs;
851  unsigned int nr_channels;
852  int err;
853  int i;
854 
855  nr_channels = id->driver_data;
856  pd = kzalloc(sizeof(*pd), GFP_KERNEL);
857  if (!pd)
858  return -ENOMEM;
859 
860  pci_set_drvdata(pdev, pd);
861 
862  err = pci_enable_device(pdev);
863  if (err) {
864  dev_err(&pdev->dev, "Cannot enable PCI device\n");
865  goto err_free_mem;
866  }
867 
868  if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
869  dev_err(&pdev->dev, "Cannot find proper base address\n");
870  goto err_disable_pdev;
871  }
872 
873  err = pci_request_regions(pdev, DRV_NAME);
874  if (err) {
875  dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
876  goto err_disable_pdev;
877  }
878 
879  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
880  if (err) {
881  dev_err(&pdev->dev, "Cannot set proper DMA config\n");
882  goto err_free_res;
883  }
884 
885  regs = pd->membase = pci_iomap(pdev, 1, 0);
886  if (!pd->membase) {
887  dev_err(&pdev->dev, "Cannot map MMIO registers\n");
888  err = -ENOMEM;
889  goto err_free_res;
890  }
891 
892  pci_set_master(pdev);
893 
894  err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
895  if (err) {
896  dev_err(&pdev->dev, "Failed to request IRQ\n");
897  goto err_iounmap;
898  }
899 
900  pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
901  sizeof(struct pch_dma_desc), 4, 0);
902  if (!pd->pool) {
903  dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
904  err = -ENOMEM;
905  goto err_free_irq;
906  }
907 
908  pd->dma.dev = &pdev->dev;
909 
910  INIT_LIST_HEAD(&pd->dma.channels);
911 
912  for (i = 0; i < nr_channels; i++) {
913  struct pch_dma_chan *pd_chan = &pd->channels[i];
914 
915  pd_chan->chan.device = &pd->dma;
916  dma_cookie_init(&pd_chan->chan);
917 
918  pd_chan->membase = &regs->desc[i];
919 
920  spin_lock_init(&pd_chan->lock);
921 
922  INIT_LIST_HEAD(&pd_chan->active_list);
923  INIT_LIST_HEAD(&pd_chan->queue);
924  INIT_LIST_HEAD(&pd_chan->free_list);
925 
926  tasklet_init(&pd_chan->tasklet, pdc_tasklet,
927  (unsigned long)pd_chan);
928  list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
929  }
930 
931  dma_cap_zero(pd->dma.cap_mask);
932  dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
933  dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
934 
935  pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
936  pd->dma.device_free_chan_resources = pd_free_chan_resources;
937  pd->dma.device_tx_status = pd_tx_status;
938  pd->dma.device_issue_pending = pd_issue_pending;
939  pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
940  pd->dma.device_control = pd_device_control;
941 
942  err = dma_async_device_register(&pd->dma);
943  if (err) {
944  dev_err(&pdev->dev, "Failed to register DMA device\n");
945  goto err_free_pool;
946  }
947 
948  return 0;
949 
950 err_free_pool:
951  pci_pool_destroy(pd->pool);
952 err_free_irq:
953  free_irq(pdev->irq, pd);
954 err_iounmap:
955  pci_iounmap(pdev, pd->membase);
956 err_free_res:
957  pci_release_regions(pdev);
958 err_disable_pdev:
959  pci_disable_device(pdev);
960 err_free_mem:
961  return err;
962 }
963 
964 static void __devexit pch_dma_remove(struct pci_dev *pdev)
965 {
966  struct pch_dma *pd = pci_get_drvdata(pdev);
967  struct pch_dma_chan *pd_chan;
968  struct dma_chan *chan, *_c;
969 
970  if (pd) {
972 
973  list_for_each_entry_safe(chan, _c, &pd->dma.channels,
974  device_node) {
975  pd_chan = to_pd_chan(chan);
976 
977  tasklet_disable(&pd_chan->tasklet);
978  tasklet_kill(&pd_chan->tasklet);
979  }
980 
981  pci_pool_destroy(pd->pool);
982  free_irq(pdev->irq, pd);
983  pci_iounmap(pdev, pd->membase);
984  pci_release_regions(pdev);
985  pci_disable_device(pdev);
986  kfree(pd);
987  }
988 }
989 
990 /* PCI Device ID of DMA device */
991 #define PCI_VENDOR_ID_ROHM 0x10DB
992 #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
993 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
994 #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
995 #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
996 #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
997 #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
998 #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
999 #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
1000 #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
1001 #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
1002 #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
1003 #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
1004 
1005 DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
1008  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
1009  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
1010  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
1011  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
1012  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
1013  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
1014  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
1015  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
1016  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
1017  { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
1018  { 0, },
1019 };
1020 
1021 static struct pci_driver pch_dma_driver = {
1022  .name = DRV_NAME,
1023  .id_table = pch_dma_id_table,
1024  .probe = pch_dma_probe,
1025  .remove = __devexit_p(pch_dma_remove),
1026 #ifdef CONFIG_PM
1027  .suspend = pch_dma_suspend,
1028  .resume = pch_dma_resume,
1029 #endif
1030 };
1031 
1032 static int __init pch_dma_init(void)
1033 {
1034  return pci_register_driver(&pch_dma_driver);
1035 }
1036 
1037 static void __exit pch_dma_exit(void)
1038 {
1039  pci_unregister_driver(&pch_dma_driver);
1040 }
1041 
1042 module_init(pch_dma_init);
1043 module_exit(pch_dma_exit);
1044 
1045 MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH "
1046  "DMA controller driver");
1047 MODULE_AUTHOR("Yong Wang <[email protected]>");
1048 MODULE_LICENSE("GPL v2");