Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pcmplc.c
Go to the documentation of this file.
1 /******************************************************************************
2  *
3  * (C)Copyright 1998,1999 SysKonnect,
4  * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5  *
6  * See the file "skfddi.c" for further information.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * The information in this file is provided "AS IS" without warranty.
14  *
15  ******************************************************************************/
16 
17 /*
18  PCM
19  Physical Connection Management
20 */
21 
22 /*
23  * Hardware independent state machine implemantation
24  * The following external SMT functions are referenced :
25  *
26  * queue_event()
27  * smt_timer_start()
28  * smt_timer_stop()
29  *
30  * The following external HW dependent functions are referenced :
31  * sm_pm_control()
32  * sm_ph_linestate()
33  * sm_pm_ls_latch()
34  *
35  * The following HW dependent events are required :
36  * PC_QLS
37  * PC_ILS
38  * PC_HLS
39  * PC_MLS
40  * PC_NSE
41  * PC_LEM
42  *
43  */
44 
45 
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
52 
53 #ifndef lint
54 static const char ID_sccs[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
55 #endif
56 
57 #ifdef FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef ANSIC
60 struct s_smc * smc, int type, int index
61 #endif
62 );
63 #endif
64 #ifdef CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
72 /*
73  * FSM Macros
74  */
75 #define AFLAG (0x20)
76 #define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x) (x|AFLAG)
79 
80 /*
81  * PCM states
82  */
83 #define PC0_OFF 0
84 #define PC1_BREAK 1
85 #define PC2_TRACE 2
86 #define PC3_CONNECT 3
87 #define PC4_NEXT 4
88 #define PC5_SIGNAL 5
89 #define PC6_JOIN 6
90 #define PC7_VERIFY 7
91 #define PC8_ACTIVE 8
92 #define PC9_MAINT 9
93 
94 #ifdef DEBUG
95 /*
96  * symbolic state names
97  */
98 static const char * const pcm_states[] = {
99  "PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
100  "PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
101 } ;
102 
103 /*
104  * symbolic event names
105  */
106 static const char * const pcm_events[] = {
107  "NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
108  "PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
109  "PC_ENABLE","PC_DISABLE",
110  "PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
111  "PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
112  "PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
113  "PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
114  "PC_NSE","PC_LEM"
115 } ;
116 #endif
117 
118 #ifdef MOT_ELM
119 /*
120  * PCL-S control register
121  * this register in the PLC-S controls the scrambling parameters
122  */
123 #define PLCS_CONTROL_C_U 0
124 #define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
125  PL_C_CIPHER_ENABLE)
126 #define PLCS_FASSERT_U 0
127 #define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
128 #define PLCS_FDEASSERT_U 0
129 #define PLCS_FDEASSERT_S 0
130 #else /* nMOT_ELM */
131 /*
132  * PCL-S control register
133  * this register in the PLC-S controls the scrambling parameters
134  * can be patched for ANSI compliance if standard changes
135  */
136 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
137 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
138 
139 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
140 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
141 #endif /* nMOT_ELM */
142 
143 /*
144  * external vars
145  */
146 /* struct definition see 'cmtdef.h' (also used by CFM) */
147 
148 #define PS_OFF 0
149 #define PS_BIT3 1
150 #define PS_BIT4 2
151 #define PS_BIT7 3
152 #define PS_LCT 4
153 #define PS_BIT8 5
154 #define PS_JOIN 6
155 #define PS_ACTIVE 7
156 
157 #define LCT_LEM_MAX 255
158 
159 /*
160  * PLC timing parameter
161  */
162 
163 #define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
164 #define SLOW_TL_MIN PLC_MS(6)
165 #define SLOW_C_MIN PLC_MS(10)
166 
167 static const struct plt {
168  int timer ; /* relative plc timer address */
169  int para ; /* default timing parameters */
170 } pltm[] = {
171  { PL_C_MIN, SLOW_C_MIN }, /* min t. to remain Connect State */
172  { PL_TL_MIN, SLOW_TL_MIN }, /* min t. to transmit a Line State */
173  { PL_TB_MIN, TP_TB_MIN }, /* min break time */
174  { PL_T_OUT, TP_T_OUT }, /* Signaling timeout */
175  { PL_LC_LENGTH, TP_LC_LENGTH }, /* Link Confidence Test Time */
176  { PL_T_SCRUB, TP_T_SCRUB }, /* Scrub Time == MAC TVX time ! */
177  { PL_NS_MAX, TP_NS_MAX }, /* max t. that noise is tolerated */
178  { 0,0 }
179 } ;
180 
181 /*
182  * interrupt mask
183  */
184 #ifdef SUPERNET_3
185 /*
186  * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
187  * PLL bug?
188  */
189 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
191 #else /* SUPERNET_3 */
192 /*
193  * We do NOT need the elasticity buffer error during signaling.
194  */
195 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
197 #endif /* SUPERNET_3 */
198 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
200 
201 /* internal functions */
202 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
203 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
204 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
205 static void reset_lem_struct(struct s_phy *phy);
206 static void plc_init(struct s_smc *smc, int p);
207 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
208 static void sm_ph_lem_stop(struct s_smc *smc, int np);
209 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
210 static void real_init_plc(struct s_smc *smc);
211 
212 /*
213  * SMT timer interface
214  * start PCM timer 0
215  */
216 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
217  struct s_phy *phy)
218 {
219  phy->timer0_exp = FALSE ; /* clear timer event flag */
220  smt_timer_start(smc,&phy->pcm_timer0,value,
221  EV_TOKEN(EVENT_PCM+phy->np,event)) ;
222 }
223 /*
224  * SMT timer interface
225  * stop PCM timer 0
226  */
227 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
228 {
229  if (phy->pcm_timer0.tm_active)
230  smt_timer_stop(smc,&phy->pcm_timer0) ;
231 }
232 
233 /*
234  init PCM state machine (called by driver)
235  clear all PCM vars and flags
236 */
237 void pcm_init(struct s_smc *smc)
238 {
239  int i ;
240  int np ;
241  struct s_phy *phy ;
242  struct fddi_mib_p *mib ;
243 
244  for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
245  /* Indicates the type of PHY being used */
246  mib = phy->mib ;
247  mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
248  phy->np = np ;
249  switch (smc->s.sas) {
250 #ifdef CONCENTRATOR
251  case SMT_SAS :
252  mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
253  break ;
254  case SMT_DAS :
255  mib->fddiPORTMy_Type = (np == PA) ? TA :
256  (np == PB) ? TB : TM ;
257  break ;
258  case SMT_NAC :
259  mib->fddiPORTMy_Type = TM ;
260  break;
261 #else
262  case SMT_SAS :
263  mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
264  mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
265  FALSE ;
266 #ifndef SUPERNET_3
267  smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
268 #else
269  smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
270 #endif
271  break ;
272  case SMT_DAS :
273  mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
274  break ;
275 #endif
276  }
277  /*
278  * set PMD-type
279  */
280  phy->pmd_scramble = 0 ;
281  switch (phy->pmd_type[PMD_SK_PMD]) {
282  case 'P' :
283  mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
284  break ;
285  case 'L' :
286  mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
287  break ;
288  case 'D' :
289  mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
290  break ;
291  case 'S' :
292  mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
293  phy->pmd_scramble = TRUE ;
294  break ;
295  case 'U' :
296  mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
297  phy->pmd_scramble = TRUE ;
298  break ;
299  case '1' :
300  mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
301  break ;
302  case '2' :
303  mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
304  break ;
305  case '3' :
306  mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
307  break ;
308  case '4' :
309  mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
310  break ;
311  case 'H' :
312  mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
313  break ;
314  case 'I' :
315  mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
316  break ;
317  case 'G' :
318  mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
319  break ;
320  default:
321  mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
322  break ;
323  }
324  /*
325  * A and B port can be on primary and secondary path
326  */
327  switch (mib->fddiPORTMy_Type) {
328  case TA :
329  mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
330  mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
331  mib->fddiPORTRequestedPaths[2] =
335  mib->fddiPORTRequestedPaths[3] =
340  break ;
341  case TB :
342  mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
343  mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
344  mib->fddiPORTRequestedPaths[2] =
347  mib->fddiPORTRequestedPaths[3] =
352  break ;
353  case TS :
354  mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
355  mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
356  mib->fddiPORTRequestedPaths[2] =
360  mib->fddiPORTRequestedPaths[3] =
364  break ;
365  case TM :
366  mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
367  mib->fddiPORTRequestedPaths[2] =
371  mib->fddiPORTRequestedPaths[3] = 0 ;
372  break ;
373  }
374 
375  phy->pc_lem_fail = FALSE ;
376  mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
377  mib->fddiPORTLCTFail_Ct = 0 ;
378  mib->fddiPORTBS_Flag = 0 ;
379  mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
380  mib->fddiPORTNeighborType = TNONE ;
381  phy->ls_flag = 0 ;
382  phy->rc_flag = 0 ;
383  phy->tc_flag = 0 ;
384  phy->td_flag = 0 ;
385  if (np >= PM)
386  phy->phy_name = '0' + np - PM ;
387  else
388  phy->phy_name = 'A' + np ;
389  phy->wc_flag = FALSE ; /* set by SMT */
390  memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
391  reset_lem_struct(phy) ;
392  memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
393  phy->plc.p_state = PS_OFF ;
394  for (i = 0 ; i < NUMBITS ; i++) {
395  phy->t_next[i] = 0 ;
396  }
397  }
398  real_init_plc(smc) ;
399 }
400 
401 void init_plc(struct s_smc *smc)
402 {
403  SK_UNUSED(smc) ;
404 
405  /*
406  * dummy
407  * this is an obsolete public entry point that has to remain
408  * for compat. It is used by various drivers.
409  * the work is now done in real_init_plc()
410  * which is called from pcm_init() ;
411  */
412 }
413 
414 static void real_init_plc(struct s_smc *smc)
415 {
416  int p ;
417 
418  for (p = 0 ; p < NUMPHYS ; p++)
419  plc_init(smc,p) ;
420 }
421 
422 static void plc_init(struct s_smc *smc, int p)
423 {
424  int i ;
425 #ifndef MOT_ELM
426  int rev ; /* Revision of PLC-x */
427 #endif /* MOT_ELM */
428 
429  /* transit PCM state machine to MAINT state */
430  outpw(PLC(p,PL_CNTRL_B),0) ;
432  outpw(PLC(p,PL_CNTRL_A),0) ;
433 
434  /*
435  * if PLC-S then set control register C
436  */
437 #ifndef MOT_ELM
438  rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
439  if (rev != PLC_REVISION_A)
440 #endif /* MOT_ELM */
441  {
442  if (smc->y[p].pmd_scramble) {
444 #ifdef MOT_ELM
445  outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
446  outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
447 #endif /* MOT_ELM */
448  }
449  else {
451 #ifdef MOT_ELM
452  outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
453  outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
454 #endif /* MOT_ELM */
455  }
456  }
457 
458  /*
459  * set timer register
460  */
461  for ( i = 0 ; pltm[i].timer; i++) /* set timer parameter reg */
462  outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
463 
464  (void)inpw(PLC(p,PL_INTR_EVENT)) ; /* clear interrupt event reg */
465  plc_clear_irq(smc,p) ;
466  outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
467 
468  /*
469  * if PCM is configured for class s, it will NOT go to the
470  * REMOVE state if offline (page 3-36;)
471  * in the concentrator, all inactive PHYS always must be in
472  * the remove state
473  * there's no real need to use this feature at all ..
474  */
475 #ifndef CONCENTRATOR
476  if ((smc->s.sas == SMT_SAS) && (p == PS)) {
478  }
479 #endif
480 }
481 
482 /*
483  * control PCM state machine
484  */
485 static void plc_go_state(struct s_smc *smc, int p, int state)
486 {
487  HW_PTR port ;
488  int val ;
489 
490  SK_UNUSED(smc) ;
491 
492  port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
493  val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
494  outpw(port,val) ;
495  outpw(port,val | state) ;
496 }
497 
498 /*
499  * read current line state (called by ECM & PCM)
500  */
501 int sm_pm_get_ls(struct s_smc *smc, int phy)
502 {
503  int state ;
504 
505 #ifdef CONCENTRATOR
506  if (!plc_is_installed(smc,phy))
507  return PC_QLS;
508 #endif
509 
510  state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
511  switch(state) {
512  case PL_L_QLS:
513  state = PC_QLS ;
514  break ;
515  case PL_L_MLS:
516  state = PC_MLS ;
517  break ;
518  case PL_L_HLS:
519  state = PC_HLS ;
520  break ;
521  case PL_L_ILS4:
522  case PL_L_ILS16:
523  state = PC_ILS ;
524  break ;
525  case PL_L_ALS:
526  state = PC_LS_PDR ;
527  break ;
528  default :
529  state = PC_LS_NONE ;
530  }
531  return state;
532 }
533 
534 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
535 {
536  int np = phy->np ; /* PHY index */
537  int n ;
538  int i ;
539 
540  SK_UNUSED(smc) ;
541 
542  /* create bit vector */
543  for (i = len-1,n = 0 ; i >= 0 ; i--) {
544  n = (n<<1) | phy->t_val[phy->bitn+i] ;
545  }
546  if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
547 #if 0
548  printf("PL_PCM_SIGNAL is set\n") ;
549 #endif
550  return 1;
551  }
552  /* write bit[n] & length = 1 to regs */
553  outpw(PLC(np,PL_VECTOR_LEN),len-1) ; /* len=nr-1 */
554  outpw(PLC(np,PL_XMIT_VECTOR),n) ;
555 #ifdef DEBUG
556 #if 1
557 #ifdef DEBUG_BRD
558  if (smc->debug.d_plc & 0x80)
559 #else
560  if (debug.d_plc & 0x80)
561 #endif
562  printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
563 #endif
564 #endif
565  return 0;
566 }
567 
568 /*
569  * config plc muxes
570  */
571 void plc_config_mux(struct s_smc *smc, int mux)
572 {
573  if (smc->s.sas != SMT_DAS)
574  return ;
575  if (mux == MUX_WRAPB) {
578  }
579  else {
582  }
585 }
586 
587 /*
588  PCM state machine
589  called by dispatcher & fddi_init() (driver)
590  do
591  display state change
592  process event
593  until SM is stable
594 */
595 void pcm(struct s_smc *smc, const int np, int event)
596 {
597  int state ;
598  int oldstate ;
599  struct s_phy *phy ;
600  struct fddi_mib_p *mib ;
601 
602 #ifndef CONCENTRATOR
603  /*
604  * ignore 2nd PHY if SAS
605  */
606  if ((np != PS) && (smc->s.sas == SMT_SAS))
607  return ;
608 #endif
609  phy = &smc->y[np] ;
610  mib = phy->mib ;
611  oldstate = mib->fddiPORTPCMState ;
612  do {
613  DB_PCM("PCM %c: state %s",
614  phy->phy_name,
615  (mib->fddiPORTPCMState & AFLAG) ? "ACTIONS " : "") ;
616  DB_PCM("%s, event %s\n",
617  pcm_states[mib->fddiPORTPCMState & ~AFLAG],
618  pcm_events[event]) ;
619  state = mib->fddiPORTPCMState ;
620  pcm_fsm(smc,phy,event) ;
621  event = 0 ;
622  } while (state != mib->fddiPORTPCMState) ;
623  /*
624  * because the PLC does the bit signaling for us,
625  * we're always in SIGNAL state
626  * the MIB want's to see CONNECT
627  * we therefore fake an entry in the MIB
628  */
629  if (state == PC5_SIGNAL)
630  mib->fddiPORTPCMStateX = PC3_CONNECT ;
631  else
632  mib->fddiPORTPCMStateX = state ;
633 
634 #ifndef SLIM_SMT
635  /*
636  * path change
637  */
638  if ( mib->fddiPORTPCMState != oldstate &&
639  ((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
641  (int) (INDEX_PORT+ phy->np),0) ;
642  }
643 #endif
644 
645 #ifdef FDDI_MIB
646  /* check whether a snmp-trap has to be sent */
647 
648  if ( mib->fddiPORTPCMState != oldstate ) {
649  /* a real state change took place */
650  DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
651  if ( mib->fddiPORTPCMState == PC0_OFF ) {
652  /* send first trap */
653  snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
654  } else if ( oldstate == PC0_OFF ) {
655  /* send second trap */
656  snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
657  } else if ( mib->fddiPORTPCMState != PC2_TRACE &&
658  oldstate == PC8_ACTIVE ) {
659  /* send third trap */
660  snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
661  } else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
662  /* send fourth trap */
663  snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
664  }
665  }
666 #endif
667 
668  pcm_state_change(smc,np,state) ;
669 }
670 
671 /*
672  * PCM state machine
673  */
674 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
675 {
676  int i ;
677  int np = phy->np ; /* PHY index */
678  struct s_plc *plc ;
679  struct fddi_mib_p *mib ;
680 #ifndef MOT_ELM
681  u_short plc_rev ; /* Revision of the plc */
682 #endif /* nMOT_ELM */
683 
684  plc = &phy->plc ;
685  mib = phy->mib ;
686 
687  /*
688  * general transitions independent of state
689  */
690  switch (cmd) {
691  case PC_STOP :
692  /*PC00-PC80*/
693  if (mib->fddiPORTPCMState != PC9_MAINT) {
694  GO_STATE(PC0_OFF) ;
695  AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
696  FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
697  smt_get_port_event_word(smc));
698  }
699  return ;
700  case PC_START :
701  /*PC01-PC81*/
702  if (mib->fddiPORTPCMState != PC9_MAINT)
704  return ;
705  case PC_DISABLE :
706  /* PC09-PC99 */
708  AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
709  FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
710  smt_get_port_event_word(smc));
711  return ;
712  case PC_TIMEOUT_LCT :
713  /* if long or extended LCT */
714  stop_pcm_timer0(smc,phy) ;
715  CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
716  /* end of LCT is indicate by PCM_CODE (initiate PCM event) */
717  return ;
718  }
719 
720  switch(mib->fddiPORTPCMState) {
721  case ACTIONS(PC0_OFF) :
722  stop_pcm_timer0(smc,phy) ;
723  outpw(PLC(np,PL_CNTRL_A),0) ;
725  CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
726  sm_ph_lem_stop(smc,np) ; /* disable LEM */
727  phy->cf_loop = FALSE ;
728  phy->cf_join = FALSE ;
729  queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
730  plc_go_state(smc,np,PL_PCM_STOP) ;
731  mib->fddiPORTConnectState = PCM_DISABLED ;
732  ACTIONS_DONE() ;
733  break ;
734  case PC0_OFF:
735  /*PC09*/
736  if (cmd == PC_MAINT) {
738  break ;
739  }
740  break ;
741  case ACTIONS(PC1_BREAK) :
742  /* Stop the LCT timer if we came from Signal state */
743  stop_pcm_timer0(smc,phy) ;
744  ACTIONS_DONE() ;
745  plc_go_state(smc,np,0) ;
747  CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
748  sm_ph_lem_stop(smc,np) ; /* disable LEM */
749  /*
750  * if vector is already loaded, go to OFF to clear PCM_SIGNAL
751  */
752 #if 0
753  if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
754  plc_go_state(smc,np,PL_PCM_STOP) ;
755  /* TB_MIN ? */
756  }
757 #endif
758  /*
759  * Go to OFF state in any case.
760  */
761  plc_go_state(smc,np,PL_PCM_STOP) ;
762 
763  if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
764  mib->fddiPORTConnectState = PCM_CONNECTING ;
765  phy->cf_loop = FALSE ;
766  phy->cf_join = FALSE ;
767  queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
768  phy->ls_flag = FALSE ;
769  phy->pc_mode = PM_NONE ; /* needed by CFM */
770  phy->bitn = 0 ; /* bit signaling start bit */
771  for (i = 0 ; i < 3 ; i++)
772  pc_tcode_actions(smc,i,phy) ;
773 
774  /* Set the non-active interrupt mask register */
775  outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
776 
777  /*
778  * If the LCT was stopped. There might be a
779  * PCM_CODE interrupt event present.
780  * This must be cleared.
781  */
782  (void)inpw(PLC(np,PL_INTR_EVENT)) ;
783 #ifndef MOT_ELM
784  /* Get the plc revision for revision dependent code */
785  plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
786 
787  if (plc_rev != PLC_REV_SN3)
788 #endif /* MOT_ELM */
789  {
790  /*
791  * No supernet III PLC, so set Xmit verctor and
792  * length BEFORE starting the state machine.
793  */
794  if (plc_send_bits(smc,phy,3)) {
795  return ;
796  }
797  }
798 
799  /*
800  * Now give the Start command.
801  * - The start command shall be done before setting the bits
802  * to be signaled. (In PLC-S description and PLCS in SN3.
803  * - The start command shall be issued AFTER setting the
804  * XMIT vector and the XMIT length register.
805  *
806  * We do it exactly according this specs for the old PLC and
807  * the new PLCS inside the SN3.
808  * For the usual PLCS we try it the way it is done for the
809  * old PLC and set the XMIT registers again, if the PLC is
810  * not in SIGNAL state. This is done according to an PLCS
811  * errata workaround.
812  */
813 
814  plc_go_state(smc,np,PL_PCM_START) ;
815 
816  /*
817  * workaround for PLC-S eng. sample errata
818  */
819 #ifdef MOT_ELM
820  if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
821 #else /* nMOT_ELM */
822  if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
823  PLC_REVISION_A) &&
824  !(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
825 #endif /* nMOT_ELM */
826  {
827  /*
828  * Set register again (PLCS errata) or the first time
829  * (new SN3 PLCS).
830  */
831  (void) plc_send_bits(smc,phy,3) ;
832  }
833  /*
834  * end of workaround
835  */
836 
838  plc->p_state = PS_BIT3 ;
839  plc->p_bits = 3 ;
840  plc->p_start = 0 ;
841 
842  break ;
843  case PC1_BREAK :
844  break ;
845  case ACTIONS(PC2_TRACE) :
846  plc_go_state(smc,np,PL_PCM_TRACE) ;
847  ACTIONS_DONE() ;
848  break ;
849  case PC2_TRACE :
850  break ;
851 
852  case PC3_CONNECT : /* these states are done by hardware */
853  case PC4_NEXT :
854  break ;
855 
856  case ACTIONS(PC5_SIGNAL) :
857  ACTIONS_DONE() ;
858  case PC5_SIGNAL :
859  if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
860  break ;
861  switch (plc->p_state) {
862  case PS_BIT3 :
863  for (i = 0 ; i <= 2 ; i++)
864  pc_rcode_actions(smc,i,phy) ;
865  pc_tcode_actions(smc,3,phy) ;
866  plc->p_state = PS_BIT4 ;
867  plc->p_bits = 1 ;
868  plc->p_start = 3 ;
869  phy->bitn = 3 ;
870  if (plc_send_bits(smc,phy,1)) {
871  return ;
872  }
873  break ;
874  case PS_BIT4 :
875  pc_rcode_actions(smc,3,phy) ;
876  for (i = 4 ; i <= 6 ; i++)
877  pc_tcode_actions(smc,i,phy) ;
878  plc->p_state = PS_BIT7 ;
879  plc->p_bits = 3 ;
880  plc->p_start = 4 ;
881  phy->bitn = 4 ;
882  if (plc_send_bits(smc,phy,3)) {
883  return ;
884  }
885  break ;
886  case PS_BIT7 :
887  for (i = 3 ; i <= 6 ; i++)
888  pc_rcode_actions(smc,i,phy) ;
889  plc->p_state = PS_LCT ;
890  plc->p_bits = 0 ;
891  plc->p_start = 7 ;
892  phy->bitn = 7 ;
893  sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
894  /* start LCT */
895  i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
896  outpw(PLC(np,PL_CNTRL_B),i) ; /* must be cleared */
897  outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
898  break ;
899  case PS_LCT :
900  /* check for local LCT failure */
901  pc_tcode_actions(smc,7,phy) ;
902  /*
903  * set tval[7]
904  */
905  plc->p_state = PS_BIT8 ;
906  plc->p_bits = 1 ;
907  plc->p_start = 7 ;
908  phy->bitn = 7 ;
909  if (plc_send_bits(smc,phy,1)) {
910  return ;
911  }
912  break ;
913  case PS_BIT8 :
914  /* check for remote LCT failure */
915  pc_rcode_actions(smc,7,phy) ;
916  if (phy->t_val[7] || phy->r_val[7]) {
917  plc_go_state(smc,np,PL_PCM_STOP) ;
919  break ;
920  }
921  for (i = 8 ; i <= 9 ; i++)
922  pc_tcode_actions(smc,i,phy) ;
923  plc->p_state = PS_JOIN ;
924  plc->p_bits = 2 ;
925  plc->p_start = 8 ;
926  phy->bitn = 8 ;
927  if (plc_send_bits(smc,phy,2)) {
928  return ;
929  }
930  break ;
931  case PS_JOIN :
932  for (i = 8 ; i <= 9 ; i++)
933  pc_rcode_actions(smc,i,phy) ;
934  plc->p_state = PS_ACTIVE ;
935  GO_STATE(PC6_JOIN) ;
936  break ;
937  }
938  break ;
939 
940  case ACTIONS(PC6_JOIN) :
941  /*
942  * prevent mux error when going from WRAP_A to WRAP_B
943  */
944  if (smc->s.sas == SMT_DAS && np == PB &&
945  (smc->y[PA].pc_mode == PM_TREE ||
946  smc->y[PB].pc_mode == PM_TREE)) {
947  SETMASK(PLC(np,PL_CNTRL_A),
949  SETMASK(PLC(np,PL_CNTRL_B),
951  }
954  ACTIONS_DONE() ;
955  cmd = 0 ;
956  /* fall thru */
957  case PC6_JOIN :
958  switch (plc->p_state) {
959  case PS_ACTIVE:
960  /*PC88b*/
961  if (!phy->cf_join) {
962  phy->cf_join = TRUE ;
963  queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
964  }
965  if (cmd == PC_JOIN)
967  /*PC82*/
968  if (cmd == PC_TRACE) {
970  break ;
971  }
972  break ;
973  }
974  break ;
975 
976  case PC7_VERIFY :
977  break ;
978 
979  case ACTIONS(PC8_ACTIVE) :
980  /*
981  * start LEM for SMT
982  */
983  sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
984 
985  phy->tr_flag = FALSE ;
986  mib->fddiPORTConnectState = PCM_ACTIVE ;
987 
988  /* Set the active interrupt mask register */
989  outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
990 
991  ACTIONS_DONE() ;
992  break ;
993  case PC8_ACTIVE :
994  /*PC81 is done by PL_TNE_EXPIRED irq */
995  /*PC82*/
996  if (cmd == PC_TRACE) {
998  break ;
999  }
1000  /*PC88c: is done by TRACE_PROP irq */
1001 
1002  break ;
1003  case ACTIONS(PC9_MAINT) :
1004  stop_pcm_timer0(smc,phy) ;
1006  CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1007  CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ; /* disable LEM int. */
1008  sm_ph_lem_stop(smc,np) ; /* disable LEM */
1009  phy->cf_loop = FALSE ;
1010  phy->cf_join = FALSE ;
1011  queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1012  plc_go_state(smc,np,PL_PCM_STOP) ;
1013  mib->fddiPORTConnectState = PCM_DISABLED ;
1015  sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1017  ACTIONS_DONE() ;
1018  break ;
1019  case PC9_MAINT :
1020  DB_PCMN(1,"PCM %c : MAINT\n",phy->phy_name,0) ;
1021  /*PC90*/
1022  if (cmd == PC_ENABLE) {
1023  GO_STATE(PC0_OFF) ;
1024  break ;
1025  }
1026  break ;
1027 
1028  default:
1030  break ;
1031  }
1032 }
1033 
1034 /*
1035  * force line state on a PHY output (only in MAINT state)
1036  */
1037 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1038 {
1039  int cntrl ;
1040 
1041  SK_UNUSED(smc) ;
1042 
1043  cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1044  PL_PCM_STOP | PL_MAINT ;
1045  switch(ls) {
1046  case PC_QLS: /* Force Quiet */
1047  cntrl |= PL_M_QUI0 ;
1048  break ;
1049  case PC_MLS: /* Force Master */
1050  cntrl |= PL_M_MASTR ;
1051  break ;
1052  case PC_HLS: /* Force Halt */
1053  cntrl |= PL_M_HALT ;
1054  break ;
1055  default :
1056  case PC_ILS: /* Force Idle */
1057  cntrl |= PL_M_IDLE ;
1058  break ;
1059  case PC_LS_PDR: /* Enable repeat filter */
1060  cntrl |= PL_M_TPDR ;
1061  break ;
1062  }
1063  outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1064 }
1065 
1066 static void reset_lem_struct(struct s_phy *phy)
1067 {
1068  struct lem_counter *lem = &phy->lem ;
1069 
1070  phy->mib->fddiPORTLer_Estimate = 15 ;
1071  lem->lem_float_ber = 15 * 100 ;
1072 }
1073 
1074 /*
1075  * link error monitor
1076  */
1077 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1078 {
1079  int ber ;
1080  u_long errors ;
1081  struct lem_counter *lem = &phy->lem ;
1082  struct fddi_mib_p *mib ;
1083  int cond ;
1084 
1085  mib = phy->mib ;
1086 
1087  if (!lem->lem_on)
1088  return ;
1089 
1090  errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1091  lem->lem_errors += errors ;
1092  mib->fddiPORTLem_Ct += errors ;
1093 
1094  errors = lem->lem_errors ;
1095  /*
1096  * calculation is called on a intervall of 8 seconds
1097  * -> this means, that one error in 8 sec. is one of 8*125*10E6
1098  * the same as BER = 10E-9
1099  * Please note:
1100  * -> 9 errors in 8 seconds mean:
1101  * BER = 9 * 10E-9 and this is
1102  * < 10E-8, so the limit of 10E-8 is not reached!
1103  */
1104 
1105  if (!errors) ber = 15 ;
1106  else if (errors <= 9) ber = 9 ;
1107  else if (errors <= 99) ber = 8 ;
1108  else if (errors <= 999) ber = 7 ;
1109  else if (errors <= 9999) ber = 6 ;
1110  else if (errors <= 99999) ber = 5 ;
1111  else if (errors <= 999999) ber = 4 ;
1112  else if (errors <= 9999999) ber = 3 ;
1113  else if (errors <= 99999999) ber = 2 ;
1114  else if (errors <= 999999999) ber = 1 ;
1115  else ber = 0 ;
1116 
1117  /*
1118  * weighted average
1119  */
1120  ber *= 100 ;
1121  lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1122  lem->lem_float_ber /= 10 ;
1123  mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1124  if (mib->fddiPORTLer_Estimate < 4) {
1125  mib->fddiPORTLer_Estimate = 4 ;
1126  }
1127 
1128  if (lem->lem_errors) {
1129  DB_PCMN(1,"LEM %c :\n",phy->np == PB? 'B' : 'A',0) ;
1130  DB_PCMN(1,"errors : %ld\n",lem->lem_errors,0) ;
1131  DB_PCMN(1,"sum_errors : %ld\n",mib->fddiPORTLem_Ct,0) ;
1132  DB_PCMN(1,"current BER : 10E-%d\n",ber/100,0) ;
1133  DB_PCMN(1,"float BER : 10E-(%d/100)\n",lem->lem_float_ber,0) ;
1134  DB_PCMN(1,"avg. BER : 10E-%d\n",
1135  mib->fddiPORTLer_Estimate,0) ;
1136  }
1137 
1138  lem->lem_errors = 0L ;
1139 
1140 #ifndef SLIM_SMT
1141  cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1142  TRUE : FALSE ;
1143 #ifdef SMT_EXT_CUTOFF
1144  smt_ler_alarm_check(smc,phy,cond) ;
1145 #endif /* nSMT_EXT_CUTOFF */
1146  if (cond != mib->fddiPORTLerFlag) {
1148  (int) (INDEX_PORT+ phy->np) ,cond) ;
1149  }
1150 #endif
1151 
1152  if ( mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1153  phy->pc_lem_fail = TRUE ; /* flag */
1154  mib->fddiPORTLem_Reject_Ct++ ;
1155  /*
1156  * "forgive 10e-2" if we cutoff so we can come
1157  * up again ..
1158  */
1159  lem->lem_float_ber += 2*100 ;
1160 
1161  /*PC81b*/
1162 #ifdef CONCENTRATOR
1163  DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
1164  phy->np, mib->fddiPORTLer_Cutoff) ;
1165 #endif
1166 #ifdef SMT_EXT_CUTOFF
1167  smt_port_off_event(smc,phy->np);
1168 #else /* nSMT_EXT_CUTOFF */
1169  queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1170 #endif /* nSMT_EXT_CUTOFF */
1171  }
1172 }
1173 
1174 /*
1175  * called by SMT to calculate LEM bit error rate
1176  */
1177 void sm_lem_evaluate(struct s_smc *smc)
1178 {
1179  int np ;
1180 
1181  for (np = 0 ; np < NUMPHYS ; np++)
1182  lem_evaluate(smc,&smc->y[np]) ;
1183 }
1184 
1185 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1186 {
1187  struct lem_counter *lem = &phy->lem ;
1188  struct fddi_mib_p *mib ;
1189  int errors ;
1190 
1191  mib = phy->mib ;
1192 
1193  phy->pc_lem_fail = FALSE ; /* flag */
1194  errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1195  lem->lem_errors += errors ;
1196  mib->fddiPORTLem_Ct += errors ;
1197  if (lem->lem_errors) {
1198  switch(phy->lc_test) {
1199  case LC_SHORT:
1200  if (lem->lem_errors >= smc->s.lct_short)
1201  phy->pc_lem_fail = TRUE ;
1202  break ;
1203  case LC_MEDIUM:
1204  if (lem->lem_errors >= smc->s.lct_medium)
1205  phy->pc_lem_fail = TRUE ;
1206  break ;
1207  case LC_LONG:
1208  if (lem->lem_errors >= smc->s.lct_long)
1209  phy->pc_lem_fail = TRUE ;
1210  break ;
1211  case LC_EXTENDED:
1212  if (lem->lem_errors >= smc->s.lct_extended)
1213  phy->pc_lem_fail = TRUE ;
1214  break ;
1215  }
1216  DB_PCMN(1," >>errors : %d\n",lem->lem_errors,0) ;
1217  }
1218  if (phy->pc_lem_fail) {
1219  mib->fddiPORTLCTFail_Ct++ ;
1220  mib->fddiPORTLem_Reject_Ct++ ;
1221  }
1222  else
1223  mib->fddiPORTLCTFail_Ct = 0 ;
1224 }
1225 
1226 /*
1227  * LEM functions
1228  */
1229 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1230 {
1231  struct lem_counter *lem = &smc->y[np].lem ;
1232 
1233  lem->lem_on = 1 ;
1234  lem->lem_errors = 0L ;
1235 
1236  /* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1237  * often.
1238  */
1239 
1240  outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1241  (void)inpw(PLC(np,PL_LINK_ERR_CTR)) ; /* clear error counter */
1242 
1243  /* enable LE INT */
1245 }
1246 
1247 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1248 {
1249  struct lem_counter *lem = &smc->y[np].lem ;
1250 
1251  lem->lem_on = 0 ;
1253 }
1254 
1255 /* ARGSUSED */
1256 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1257 /* int on_off; en- or disable ident. ls */
1258 {
1259  SK_UNUSED(smc) ;
1260 
1261  phy = phy ; on_off = on_off ;
1262 }
1263 
1264 
1265 /*
1266  * PCM pseudo code
1267  * receive actions are called AFTER the bit n is received,
1268  * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1269  */
1270 
1271 /*
1272  * PCM pseudo code 5.1 .. 6.1
1273  */
1274 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1275 {
1276  struct fddi_mib_p *mib ;
1277 
1278  mib = phy->mib ;
1279 
1280  DB_PCMN(1,"SIG rec %x %x:\n", bit,phy->r_val[bit] ) ;
1281  bit++ ;
1282 
1283  switch(bit) {
1284  case 0:
1285  case 1:
1286  case 2:
1287  break ;
1288  case 3 :
1289  if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1290  mib->fddiPORTNeighborType = TA ;
1291  else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1292  mib->fddiPORTNeighborType = TB ;
1293  else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1294  mib->fddiPORTNeighborType = TS ;
1295  else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1296  mib->fddiPORTNeighborType = TM ;
1297  break ;
1298  case 4:
1299  if (mib->fddiPORTMy_Type == TM &&
1300  mib->fddiPORTNeighborType == TM) {
1301  DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
1302  phy->phy_name,0) ;
1303  mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1304  RS_SET(smc,RS_EVENT) ;
1305  }
1306  else if (phy->t_val[3] || phy->r_val[3]) {
1307  mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1308  if (mib->fddiPORTMy_Type == TM ||
1309  mib->fddiPORTNeighborType == TM)
1310  phy->pc_mode = PM_TREE ;
1311  else
1312  phy->pc_mode = PM_PEER ;
1313 
1314  /* reevaluate the selection criteria (wc_flag) */
1315  all_selection_criteria (smc);
1316 
1317  if (phy->wc_flag) {
1318  mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1319  }
1320  }
1321  else {
1322  mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1323  RS_SET(smc,RS_EVENT) ;
1324  DB_PCMN(1,"PCM %c : E101 withhold other\n",
1325  phy->phy_name,0) ;
1326  }
1327  phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1328  (mib->fddiPORTMy_Type != TM) &&
1329  (mib->fddiPORTNeighborType ==
1330  mib->fddiPORTMy_Type)) ;
1331  if (phy->twisted) {
1332  DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
1333  phy->phy_name,0) ;
1334  }
1335  break ;
1336  case 5 :
1337  break ;
1338  case 6:
1339  if (phy->t_val[4] || phy->r_val[4]) {
1340  if ((phy->t_val[4] && phy->t_val[5]) ||
1341  (phy->r_val[4] && phy->r_val[5]) )
1342  phy->lc_test = LC_EXTENDED ;
1343  else
1344  phy->lc_test = LC_LONG ;
1345  }
1346  else if (phy->t_val[5] || phy->r_val[5])
1347  phy->lc_test = LC_MEDIUM ;
1348  else
1349  phy->lc_test = LC_SHORT ;
1350  switch (phy->lc_test) {
1351  case LC_SHORT : /* 50ms */
1352  outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1353  phy->t_next[7] = smc->s.pcm_lc_short ;
1354  break ;
1355  case LC_MEDIUM : /* 500ms */
1356  outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1357  phy->t_next[7] = smc->s.pcm_lc_medium ;
1358  break ;
1359  case LC_LONG :
1360  SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1361  phy->t_next[7] = smc->s.pcm_lc_long ;
1362  break ;
1363  case LC_EXTENDED :
1364  SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1365  phy->t_next[7] = smc->s.pcm_lc_extended ;
1366  break ;
1367  }
1368  if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1369  start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1370  }
1371  DB_PCMN(1,"LCT timer = %ld us\n", phy->t_next[7], 0) ;
1372  phy->t_next[9] = smc->s.pcm_t_next_9 ;
1373  break ;
1374  case 7:
1375  if (phy->t_val[6]) {
1376  phy->cf_loop = TRUE ;
1377  }
1378  phy->td_flag = TRUE ;
1379  break ;
1380  case 8:
1381  if (phy->t_val[7] || phy->r_val[7]) {
1382  DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
1383  phy->phy_name,phy->t_val[7]? "local":"remote") ;
1384  queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1385  }
1386  break ;
1387  case 9:
1388  if (phy->t_val[8] || phy->r_val[8]) {
1389  if (phy->t_val[8])
1390  phy->cf_loop = TRUE ;
1391  phy->td_flag = TRUE ;
1392  }
1393  break ;
1394  case 10:
1395  if (phy->r_val[9]) {
1396  /* neighbor intends to have MAC on output */ ;
1397  mib->fddiPORTMacIndicated.R_val = TRUE ;
1398  }
1399  else {
1400  /* neighbor does not intend to have MAC on output */ ;
1401  mib->fddiPORTMacIndicated.R_val = FALSE ;
1402  }
1403  break ;
1404  }
1405 }
1406 
1407 /*
1408  * PCM pseudo code 5.1 .. 6.1
1409  */
1410 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1411 {
1412  int np = phy->np ;
1413  struct fddi_mib_p *mib ;
1414 
1415  mib = phy->mib ;
1416 
1417  switch(bit) {
1418  case 0:
1419  phy->t_val[0] = 0 ; /* no escape used */
1420  break ;
1421  case 1:
1422  if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1423  phy->t_val[1] = 1 ;
1424  else
1425  phy->t_val[1] = 0 ;
1426  break ;
1427  case 2 :
1428  if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1429  phy->t_val[2] = 1 ;
1430  else
1431  phy->t_val[2] = 0 ;
1432  break ;
1433  case 3:
1434  {
1435  int type,ne ;
1436  int policy ;
1437 
1438  type = mib->fddiPORTMy_Type ;
1439  ne = mib->fddiPORTNeighborType ;
1440  policy = smc->mib.fddiSMTConnectionPolicy ;
1441 
1442  phy->t_val[3] = 1 ; /* Accept connection */
1443  switch (type) {
1444  case TA :
1445  if (
1446  ((policy & POLICY_AA) && ne == TA) ||
1447  ((policy & POLICY_AB) && ne == TB) ||
1448  ((policy & POLICY_AS) && ne == TS) ||
1449  ((policy & POLICY_AM) && ne == TM) )
1450  phy->t_val[3] = 0 ; /* Reject */
1451  break ;
1452  case TB :
1453  if (
1454  ((policy & POLICY_BA) && ne == TA) ||
1455  ((policy & POLICY_BB) && ne == TB) ||
1456  ((policy & POLICY_BS) && ne == TS) ||
1457  ((policy & POLICY_BM) && ne == TM) )
1458  phy->t_val[3] = 0 ; /* Reject */
1459  break ;
1460  case TS :
1461  if (
1462  ((policy & POLICY_SA) && ne == TA) ||
1463  ((policy & POLICY_SB) && ne == TB) ||
1464  ((policy & POLICY_SS) && ne == TS) ||
1465  ((policy & POLICY_SM) && ne == TM) )
1466  phy->t_val[3] = 0 ; /* Reject */
1467  break ;
1468  case TM :
1469  if ( ne == TM ||
1470  ((policy & POLICY_MA) && ne == TA) ||
1471  ((policy & POLICY_MB) && ne == TB) ||
1472  ((policy & POLICY_MS) && ne == TS) ||
1473  ((policy & POLICY_MM) && ne == TM) )
1474  phy->t_val[3] = 0 ; /* Reject */
1475  break ;
1476  }
1477 #ifndef SLIM_SMT
1478  /*
1479  * detect undesirable connection attempt event
1480  */
1481  if ( (type == TA && ne == TA ) ||
1482  (type == TA && ne == TS ) ||
1483  (type == TB && ne == TB ) ||
1484  (type == TB && ne == TS ) ||
1485  (type == TS && ne == TA ) ||
1486  (type == TS && ne == TB ) ) {
1488  (int) (INDEX_PORT+ phy->np) ,0) ;
1489  }
1490 #endif
1491  }
1492  break ;
1493  case 4:
1494  if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1495  if (phy->pc_lem_fail) {
1496  phy->t_val[4] = 1 ; /* long */
1497  phy->t_val[5] = 0 ;
1498  }
1499  else {
1500  phy->t_val[4] = 0 ;
1501  if (mib->fddiPORTLCTFail_Ct > 0)
1502  phy->t_val[5] = 1 ; /* medium */
1503  else
1504  phy->t_val[5] = 0 ; /* short */
1505 
1506  /*
1507  * Implementers choice: use medium
1508  * instead of short when undesired
1509  * connection attempt is made.
1510  */
1511  if (phy->wc_flag)
1512  phy->t_val[5] = 1 ; /* medium */
1513  }
1514  mib->fddiPORTConnectState = PCM_CONNECTING ;
1515  }
1516  else {
1517  mib->fddiPORTConnectState = PCM_STANDBY ;
1518  phy->t_val[4] = 1 ; /* extended */
1519  phy->t_val[5] = 1 ;
1520  }
1521  break ;
1522  case 5:
1523  break ;
1524  case 6:
1525  /* we do NOT have a MAC for LCT */
1526  phy->t_val[6] = 0 ;
1527  break ;
1528  case 7:
1529  phy->cf_loop = FALSE ;
1530  lem_check_lct(smc,phy) ;
1531  if (phy->pc_lem_fail) {
1532  DB_PCMN(1,"PCM %c : E104 LCT failed\n",
1533  phy->phy_name,0) ;
1534  phy->t_val[7] = 1 ;
1535  }
1536  else
1537  phy->t_val[7] = 0 ;
1538  break ;
1539  case 8:
1540  phy->t_val[8] = 0 ; /* Don't request MAC loopback */
1541  break ;
1542  case 9:
1543  phy->cf_loop = 0 ;
1544  if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1545  ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1546  queue_event(smc,EVENT_PCM+np,PC_START) ;
1547  break ;
1548  }
1549  phy->t_val[9] = FALSE ;
1550  switch (smc->s.sas) {
1551  case SMT_DAS :
1552  /*
1553  * MAC intended on output
1554  */
1555  if (phy->pc_mode == PM_TREE) {
1556  if ((np == PB) || ((np == PA) &&
1557  (smc->y[PB].mib->fddiPORTConnectState !=
1558  PCM_ACTIVE)))
1559  phy->t_val[9] = TRUE ;
1560  }
1561  else {
1562  if (np == PB)
1563  phy->t_val[9] = TRUE ;
1564  }
1565  break ;
1566  case SMT_SAS :
1567  if (np == PS)
1568  phy->t_val[9] = TRUE ;
1569  break ;
1570 #ifdef CONCENTRATOR
1571  case SMT_NAC :
1572  /*
1573  * MAC intended on output
1574  */
1575  if (np == PB)
1576  phy->t_val[9] = TRUE ;
1577  break ;
1578 #endif
1579  }
1580  mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1581  break ;
1582  }
1583  DB_PCMN(1,"SIG snd %x %x:\n", bit,phy->t_val[bit] ) ;
1584 }
1585 
1586 /*
1587  * return status twisted (called by SMT)
1588  */
1589 int pcm_status_twisted(struct s_smc *smc)
1590 {
1591  int twist = 0 ;
1592  if (smc->s.sas != SMT_DAS)
1593  return 0;
1594  if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1595  twist |= 1 ;
1596  if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1597  twist |= 2 ;
1598  return twist;
1599 }
1600 
1601 /*
1602  * return status (called by SMT)
1603  * type
1604  * state
1605  * remote phy type
1606  * remote mac yes/no
1607  */
1608 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1609  int *remote, int *mac)
1610 {
1611  struct s_phy *phy = &smc->y[np] ;
1612  struct fddi_mib_p *mib ;
1613 
1614  mib = phy->mib ;
1615 
1616  /* remote PHY type and MAC - set only if active */
1617  *mac = 0 ;
1618  *type = mib->fddiPORTMy_Type ; /* our PHY type */
1619  *state = mib->fddiPORTConnectState ;
1620  *remote = mib->fddiPORTNeighborType ;
1621 
1622  switch(mib->fddiPORTPCMState) {
1623  case PC8_ACTIVE :
1624  *mac = mib->fddiPORTMacIndicated.R_val ;
1625  break ;
1626  }
1627 }
1628 
1629 /*
1630  * return rooted station status (called by SMT)
1631  */
1632 int pcm_rooted_station(struct s_smc *smc)
1633 {
1634  int n ;
1635 
1636  for (n = 0 ; n < NUMPHYS ; n++) {
1637  if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1638  smc->y[n].mib->fddiPORTNeighborType == TM)
1639  return 0;
1640  }
1641  return 1;
1642 }
1643 
1644 /*
1645  * Interrupt actions for PLC & PCM events
1646  */
1647 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1648 /* int np; PHY index */
1649 {
1650  struct s_phy *phy = &smc->y[np] ;
1651  struct s_plc *plc = &phy->plc ;
1652  int n ;
1653 #ifdef SUPERNET_3
1654  int corr_mask ;
1655 #endif /* SUPERNET_3 */
1656  int i ;
1657 
1658  if (np >= smc->s.numphys) {
1659  plc->soft_err++ ;
1660  return ;
1661  }
1662  if (cmd & PL_EBUF_ERR) { /* elastic buff. det. over-|underflow*/
1663  /*
1664  * Check whether the SRF Condition occurred.
1665  */
1666  if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1667  /*
1668  * This is the real Elasticity Error.
1669  * More than one in a row are treated as a
1670  * single one.
1671  * Only count this in the active state.
1672  */
1673  phy->mib->fddiPORTEBError_Ct ++ ;
1674 
1675  }
1676 
1677  plc->ebuf_err++ ;
1678  if (plc->ebuf_cont <= 1000) {
1679  /*
1680  * Prevent counter from being wrapped after
1681  * hanging years in that interrupt.
1682  */
1683  plc->ebuf_cont++ ; /* Ebuf continuous error */
1684  }
1685 
1686 #ifdef SUPERNET_3
1687  if (plc->ebuf_cont == 1000 &&
1688  ((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1689  PLC_REV_SN3)) {
1690  /*
1691  * This interrupt remeained high for at least
1692  * 1000 consecutive interrupt calls.
1693  *
1694  * This is caused by a hardware error of the
1695  * ORION part of the Supernet III chipset.
1696  *
1697  * Disable this bit from the mask.
1698  */
1699  corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1700  outpw(PLC(np,PL_INTR_MASK),corr_mask);
1701 
1702  /*
1703  * Disconnect from the ring.
1704  * Call the driver with the reset indication.
1705  */
1707 
1708  /*
1709  * Make an error log entry.
1710  */
1712 
1713  /*
1714  * Indicate the Reset.
1715  */
1716  drv_reset_indication(smc) ;
1717  }
1718 #endif /* SUPERNET_3 */
1719  } else {
1720  /* Reset the continuous error variable */
1721  plc->ebuf_cont = 0 ; /* reset Ebuf continuous error */
1722  }
1723  if (cmd & PL_PHYINV) { /* physical layer invalid signal */
1724  plc->phyinv++ ;
1725  }
1726  if (cmd & PL_VSYM_CTR) { /* violation symbol counter has incr.*/
1727  plc->vsym_ctr++ ;
1728  }
1729  if (cmd & PL_MINI_CTR) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1730  plc->mini_ctr++ ;
1731  }
1732  if (cmd & PL_LE_CTR) { /* link error event counter */
1733  int j ;
1734 
1735  /*
1736  * note: PL_LINK_ERR_CTR MUST be read to clear it
1737  */
1738  j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1739  i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1740 
1741  if (i < j) {
1742  /* wrapped around */
1743  i += 256 ;
1744  }
1745 
1746  if (phy->lem.lem_on) {
1747  /* Note: Lem errors shall only be counted when
1748  * link is ACTIVE or LCT is active.
1749  */
1750  phy->lem.lem_errors += i ;
1751  phy->mib->fddiPORTLem_Ct += i ;
1752  }
1753  }
1754  if (cmd & PL_TPC_EXPIRED) { /* TPC timer reached zero */
1755  if (plc->p_state == PS_LCT) {
1756  /*
1757  * end of LCT
1758  */
1759  ;
1760  }
1761  plc->tpc_exp++ ;
1762  }
1763  if (cmd & PL_LS_MATCH) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1764  switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1765  case PL_I_IDLE : phy->curr_ls = PC_ILS ; break ;
1766  case PL_I_HALT : phy->curr_ls = PC_HLS ; break ;
1767  case PL_I_MASTR : phy->curr_ls = PC_MLS ; break ;
1768  case PL_I_QUIET : phy->curr_ls = PC_QLS ; break ;
1769  }
1770  }
1771  if (cmd & PL_PCM_BREAK) { /* PCM has entered the BREAK state */
1772  int reason;
1773 
1774  reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1775 
1776  switch (reason) {
1777  case PL_B_PCS : plc->b_pcs++ ; break ;
1778  case PL_B_TPC : plc->b_tpc++ ; break ;
1779  case PL_B_TNE : plc->b_tne++ ; break ;
1780  case PL_B_QLS : plc->b_qls++ ; break ;
1781  case PL_B_ILS : plc->b_ils++ ; break ;
1782  case PL_B_HLS : plc->b_hls++ ; break ;
1783  }
1784 
1785  /*jd 05-Aug-1999 changed: Bug #10419 */
1786  DB_PCMN(1,"PLC %d: MDcF = %x\n", np, smc->e.DisconnectFlag);
1787  if (smc->e.DisconnectFlag == FALSE) {
1788  DB_PCMN(1,"PLC %d: restart (reason %x)\n", np, reason);
1789  queue_event(smc,EVENT_PCM+np,PC_START) ;
1790  }
1791  else {
1792  DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np, reason);
1793  }
1794  return ;
1795  }
1796  /*
1797  * If both CODE & ENABLE are set ignore enable
1798  */
1799  if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1800  queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1801  n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1802  for (i = 0 ; i < plc->p_bits ; i++) {
1803  phy->r_val[plc->p_start+i] = n & 1 ;
1804  n >>= 1 ;
1805  }
1806  }
1807  else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1808  queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1809  }
1810  if (cmd & PL_TRACE_PROP) { /* MLS while PC8_ACTIV || PC2_TRACE */
1811  /*PC22b*/
1812  if (!phy->tr_flag) {
1813  DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
1814  np,smc->mib.fddiSMTECMState) ;
1815  phy->tr_flag = TRUE ;
1816  smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1818  }
1819  }
1820  /*
1821  * filter PLC glitch ???
1822  * QLS || HLS only while in PC2_TRACE state
1823  */
1824  if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1825  /*PC22a*/
1826  if (smc->e.path_test == PT_PASSED) {
1827  DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc,np),
1828  phy->mib->fddiPORTPCMState) ;
1829 
1830  smc->e.path_test = PT_PENDING ;
1832  }
1833  }
1834  if (cmd & PL_TNE_EXPIRED) { /* TNE: length of noise events */
1835  /* break_required (TNE > NS_Max) */
1836  if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1837  if (!phy->tr_flag) {
1838  DB_PCMN(1,"PCM %c : PC81 %s\n",phy->phy_name,"NSE");
1839  queue_event(smc,EVENT_PCM+np,PC_START) ;
1840  return ;
1841  }
1842  }
1843  }
1844 #if 0
1845  if (cmd & PL_NP_ERR) { /* NP has requested to r/w an inv reg*/
1846  /*
1847  * It's a bug by AMD
1848  */
1849  plc->np_err++ ;
1850  }
1851  /* pin inactiv (GND) */
1852  if (cmd & PL_PARITY_ERR) { /* p. error dedected on TX9-0 inp */
1853  plc->parity_err++ ;
1854  }
1855  if (cmd & PL_LSDO) { /* carrier detected */
1856  ;
1857  }
1858 #endif
1859 }
1860 
1861 #ifdef DEBUG
1862 /*
1863  * fill state struct
1864  */
1865 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1866 {
1867  struct s_phy *phy ;
1868  struct pcm_state *pcs ;
1869  int i ;
1870  int ii ;
1871  short rbits ;
1872  short tbits ;
1873  struct fddi_mib_p *mib ;
1874 
1875  for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1876  i++ , phy++, pcs++ ) {
1877  mib = phy->mib ;
1878  pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1879  pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1880  pcs->pcm_mode = phy->pc_mode ;
1881  pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1882  pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1883  pcs->pcm_lsf = phy->ls_flag ;
1884  pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1885  pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1886  for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1887  rbits <<= 1 ;
1888  tbits <<= 1 ;
1889  if (phy->r_val[NUMBITS-1-ii])
1890  rbits |= 1 ;
1891  if (phy->t_val[NUMBITS-1-ii])
1892  tbits |= 1 ;
1893  }
1894  pcs->pcm_r_val = rbits ;
1895  pcs->pcm_t_val = tbits ;
1896  }
1897 }
1898 
1899 int get_pcm_state(struct s_smc *smc, int np)
1900 {
1901  int pcs ;
1902 
1903  SK_UNUSED(smc) ;
1904 
1905  switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1906  case PL_PC0 : pcs = PC_STOP ; break ;
1907  case PL_PC1 : pcs = PC_START ; break ;
1908  case PL_PC2 : pcs = PC_TRACE ; break ;
1909  case PL_PC3 : pcs = PC_SIGNAL ; break ;
1910  case PL_PC4 : pcs = PC_SIGNAL ; break ;
1911  case PL_PC5 : pcs = PC_SIGNAL ; break ;
1912  case PL_PC6 : pcs = PC_JOIN ; break ;
1913  case PL_PC7 : pcs = PC_JOIN ; break ;
1914  case PL_PC8 : pcs = PC_ENABLE ; break ;
1915  case PL_PC9 : pcs = PC_MAINT ; break ;
1916  default : pcs = PC_DISABLE ; break ;
1917  }
1918  return pcs;
1919 }
1920 
1921 char *get_linestate(struct s_smc *smc, int np)
1922 {
1923  char *ls = "" ;
1924 
1925  SK_UNUSED(smc) ;
1926 
1927  switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1928  case PL_L_NLS : ls = "NOISE" ; break ;
1929  case PL_L_ALS : ls = "ACTIV" ; break ;
1930  case PL_L_UND : ls = "UNDEF" ; break ;
1931  case PL_L_ILS4: ls = "ILS 4" ; break ;
1932  case PL_L_QLS : ls = "QLS" ; break ;
1933  case PL_L_MLS : ls = "MLS" ; break ;
1934  case PL_L_HLS : ls = "HLS" ; break ;
1935  case PL_L_ILS16:ls = "ILS16" ; break ;
1936 #ifdef lint
1937  default: ls = "unknown" ; break ;
1938 #endif
1939  }
1940  return ls;
1941 }
1942 
1943 char *get_pcmstate(struct s_smc *smc, int np)
1944 {
1945  char *pcs ;
1946 
1947  SK_UNUSED(smc) ;
1948 
1949  switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1950  case PL_PC0 : pcs = "OFF" ; break ;
1951  case PL_PC1 : pcs = "BREAK" ; break ;
1952  case PL_PC2 : pcs = "TRACE" ; break ;
1953  case PL_PC3 : pcs = "CONNECT"; break ;
1954  case PL_PC4 : pcs = "NEXT" ; break ;
1955  case PL_PC5 : pcs = "SIGNAL" ; break ;
1956  case PL_PC6 : pcs = "JOIN" ; break ;
1957  case PL_PC7 : pcs = "VERIFY" ; break ;
1958  case PL_PC8 : pcs = "ACTIV" ; break ;
1959  case PL_PC9 : pcs = "MAINT" ; break ;
1960  default : pcs = "UNKNOWN" ; break ;
1961  }
1962  return pcs;
1963 }
1964 
1965 void list_phy(struct s_smc *smc)
1966 {
1967  struct s_plc *plc ;
1968  int np ;
1969 
1970  for (np = 0 ; np < NUMPHYS ; np++) {
1971  plc = &smc->y[np].plc ;
1972  printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1973  printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1974  plc->soft_err,plc->b_pcs);
1975  printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1976  plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1977  printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1978  plc->ebuf_err,plc->b_tne) ;
1979  printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1980  plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1981  printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1982  plc->vsym_ctr,plc->b_ils) ;
1983  printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1984  plc->mini_ctr,plc->b_hls) ;
1985  printf("\tnodepr_err: %ld\n",plc->np_err) ;
1986  printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1987  printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1988  }
1989 }
1990 
1991 
1992 #ifdef CONCENTRATOR
1993 void pcm_lem_dump(struct s_smc *smc)
1994 {
1995  int i ;
1996  struct s_phy *phy ;
1997  struct fddi_mib_p *mib ;
1998 
1999  char *entostring() ;
2000 
2001  printf("PHY errors BER\n") ;
2002  printf("----------------------\n") ;
2003  for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
2004  if (!plc_is_installed(smc,i))
2005  continue ;
2006  mib = phy->mib ;
2007  printf("%s\t%ld\t10E-%d\n",
2008  entostring(smc,ENTITY_PHY(i)),
2009  mib->fddiPORTLem_Ct,
2010  mib->fddiPORTLer_Estimate) ;
2011  }
2012 }
2013 #endif
2014 #endif