Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
picoxcell_crypto.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
45 
46 #include "picoxcell_crypto_regs.h"
47 
48 /*
49  * The threshold for the number of entries in the CMD FIFO available before
50  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51  * number of interrupts raised to the CPU.
52  */
53 #define CMD0_IRQ_THRESHOLD 1
54 
55 /*
56  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58  * When there are packets in flight but lower than the threshold, we enable
59  * the timer and at expiry, attempt to remove any processed packets from the
60  * queue and if there are still packets left, schedule the timer again.
61  */
62 #define PACKET_TIMEOUT 1
63 
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY 10000
66 
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
74 #define SPACC_CRYPTO_L2_MAX_CTXS 128
75 #define SPACC_CRYPTO_L2_FIFO_SZ 128
76 
77 #define MAX_DDT_LEN 16
78 
79 /* DDT format. This must match the hardware DDT format exactly. */
80 struct spacc_ddt {
83 };
84 
85 /*
86  * Asynchronous crypto request structure.
87  *
88  * This structure defines a request that is either queued for processing or
89  * being processed.
90  */
91 struct spacc_req {
92  struct list_head list;
95  int result;
96  bool is_encrypt;
97  unsigned ctx_id;
100  void (*complete)(struct spacc_req *req);
101 
102  /* AEAD specific bits. */
103  u8 *giv;
104  size_t giv_len;
106 };
107 
108 struct spacc_engine {
109  void __iomem *regs;
111  int next_ctx;
117  unsigned long fifo_sz;
120  struct spacc_alg *algs;
121  unsigned num_algs;
123  size_t cipher_pg_sz;
124  size_t hash_pg_sz;
125  const char *name;
126  struct clk *clk;
127  struct device *dev;
128  unsigned max_ctxs;
130  unsigned stat_irq_thresh;
132 };
133 
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK 0x7
136 
137 /* SPACC definition of a crypto algorithm. */
138 struct spacc_alg {
139  unsigned long ctrl_default;
140  unsigned long type;
141  struct crypto_alg alg;
143  struct list_head entry;
144  int key_offs;
145  int iv_offs;
146 };
147 
148 /* Generic context structure for any algorithm type. */
151  int flags;
152  int key_offs;
153  int iv_offs;
154 };
155 
156 /* Block cipher context. */
161  /*
162  * The fallback cipher. If the operation can't be done in hardware,
163  * fallback to a software version.
164  */
166 };
167 
168 /* AEAD cipher context. */
176  size_t auth_size;
178 };
179 
180 static int spacc_ablk_submit(struct spacc_req *req);
181 
182 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
183 {
184  return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
185 }
186 
187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
188 {
189  u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
190 
191  return fifo_stat & SPA_FIFO_CMD_FULL;
192 }
193 
194 /*
195  * Given a cipher context, and a context number, get the base address of the
196  * context page.
197  *
198  * Returns the address of the context page where the key/context may
199  * be written.
200  */
201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202  unsigned indx,
203  bool is_cipher_ctx)
204 {
205  return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206  (indx * ctx->engine->cipher_pg_sz) :
207  ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
208 }
209 
210 /* The context pages can only be written with 32-bit accesses. */
211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212  unsigned count)
213 {
214  const u32 *src32 = (const u32 *) src;
215 
216  while (count--)
217  writel(*src32++, dst++);
218 }
219 
220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221  void __iomem *page_addr, const u8 *key,
222  size_t key_len, const u8 *iv, size_t iv_len)
223 {
224  void __iomem *key_ptr = page_addr + ctx->key_offs;
225  void __iomem *iv_ptr = page_addr + ctx->iv_offs;
226 
227  memcpy_toio32(key_ptr, key, key_len / 4);
228  memcpy_toio32(iv_ptr, iv, iv_len / 4);
229 }
230 
231 /*
232  * Load a context into the engines context memory.
233  *
234  * Returns the index of the context page where the context was loaded.
235  */
236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237  const u8 *ciph_key, size_t ciph_len,
238  const u8 *iv, size_t ivlen, const u8 *hash_key,
239  size_t hash_len)
240 {
241  unsigned indx = ctx->engine->next_ctx++;
242  void __iomem *ciph_page_addr, *hash_page_addr;
243 
244  ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245  hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
246 
247  ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248  spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249  ivlen);
250  writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
252  ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
253 
254  if (hash_key) {
255  memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256  writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257  ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
258  }
259 
260  return indx;
261 }
262 
263 /* Count the number of scatterlist entries in a scatterlist. */
264 static int sg_count(struct scatterlist *sg_list, int nbytes)
265 {
266  struct scatterlist *sg = sg_list;
267  int sg_nents = 0;
268 
269  while (nbytes > 0) {
270  ++sg_nents;
271  nbytes -= sg->length;
272  sg = sg_next(sg);
273  }
274 
275  return sg_nents;
276 }
277 
278 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
279 {
280  ddt->p = phys;
281  ddt->len = len;
282 }
283 
284 /*
285  * Take a crypto request and scatterlists for the data and turn them into DDTs
286  * for passing to the crypto engines. This also DMA maps the data so that the
287  * crypto engines can DMA to/from them.
288  */
289 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290  struct scatterlist *payload,
291  unsigned nbytes,
292  enum dma_data_direction dir,
293  dma_addr_t *ddt_phys)
294 {
295  unsigned nents, mapped_ents;
296  struct scatterlist *cur;
297  struct spacc_ddt *ddt;
298  int i;
299 
300  nents = sg_count(payload, nbytes);
301  mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
302 
303  if (mapped_ents + 1 > MAX_DDT_LEN)
304  goto out;
305 
306  ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307  if (!ddt)
308  goto out;
309 
310  for_each_sg(payload, cur, mapped_ents, i)
311  ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312  ddt_set(&ddt[mapped_ents], 0, 0);
313 
314  return ddt;
315 
316 out:
317  dma_unmap_sg(engine->dev, payload, nents, dir);
318  return NULL;
319 }
320 
321 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
322 {
323  struct aead_request *areq = container_of(req->req, struct aead_request,
324  base);
325  struct spacc_engine *engine = req->engine;
326  struct spacc_ddt *src_ddt, *dst_ddt;
327  unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328  unsigned nents = sg_count(areq->src, areq->cryptlen);
329  dma_addr_t iv_addr;
330  struct scatterlist *cur;
331  int i, dst_ents, src_ents, assoc_ents;
332  u8 *iv = giv ? giv : areq->iv;
333 
334  src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335  if (!src_ddt)
336  return -ENOMEM;
337 
338  dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339  if (!dst_ddt) {
340  dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341  return -ENOMEM;
342  }
343 
344  req->src_ddt = src_ddt;
345  req->dst_ddt = dst_ddt;
346 
347  assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348  sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349  if (areq->src != areq->dst) {
350  src_ents = dma_map_sg(engine->dev, areq->src, nents,
351  DMA_TO_DEVICE);
352  dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
354  } else {
355  src_ents = dma_map_sg(engine->dev, areq->src, nents,
357  dst_ents = 0;
358  }
359 
360  /*
361  * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362  * formed by the crypto block and sent as the ESP IV for IPSEC.
363  */
364  iv_addr = dma_map_single(engine->dev, iv, ivsize,
366  req->giv_pa = iv_addr;
367 
368  /*
369  * Map the associated data. For decryption we don't copy the
370  * associated data.
371  */
372  for_each_sg(areq->assoc, cur, assoc_ents, i) {
373  ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374  if (req->is_encrypt)
375  ddt_set(dst_ddt++, sg_dma_address(cur),
376  sg_dma_len(cur));
377  }
378  ddt_set(src_ddt++, iv_addr, ivsize);
379 
380  if (giv || req->is_encrypt)
381  ddt_set(dst_ddt++, iv_addr, ivsize);
382 
383  /*
384  * Now map in the payload for the source and destination and terminate
385  * with the NULL pointers.
386  */
387  for_each_sg(areq->src, cur, src_ents, i) {
388  ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389  if (areq->src == areq->dst)
390  ddt_set(dst_ddt++, sg_dma_address(cur),
391  sg_dma_len(cur));
392  }
393 
394  for_each_sg(areq->dst, cur, dst_ents, i)
395  ddt_set(dst_ddt++, sg_dma_address(cur),
396  sg_dma_len(cur));
397 
398  ddt_set(src_ddt, 0, 0);
399  ddt_set(dst_ddt, 0, 0);
400 
401  return 0;
402 }
403 
404 static void spacc_aead_free_ddts(struct spacc_req *req)
405 {
406  struct aead_request *areq = container_of(req->req, struct aead_request,
407  base);
408  struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409  struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410  struct spacc_engine *engine = aead_ctx->generic.engine;
411  unsigned ivsize = alg->alg.cra_aead.ivsize;
412  unsigned nents = sg_count(areq->src, areq->cryptlen);
413 
414  if (areq->src != areq->dst) {
415  dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416  dma_unmap_sg(engine->dev, areq->dst,
417  sg_count(areq->dst, areq->cryptlen),
419  } else
420  dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
421 
422  dma_unmap_sg(engine->dev, areq->assoc,
423  sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
424 
425  dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
426 
427  dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428  dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
429 }
430 
431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432  dma_addr_t ddt_addr, struct scatterlist *payload,
433  unsigned nbytes, enum dma_data_direction dir)
434 {
435  unsigned nents = sg_count(payload, nbytes);
436 
437  dma_unmap_sg(req->engine->dev, payload, nents, dir);
438  dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
439 }
440 
441 /*
442  * Set key for a DES operation in an AEAD cipher. This also performs weak key
443  * checking if required.
444  */
445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446  unsigned int len)
447 {
448  struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
451 
452  if (unlikely(!des_ekey(tmp, key)) &&
453  (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
455  return -EINVAL;
456  }
457 
458  memcpy(ctx->cipher_key, key, len);
459  ctx->cipher_key_len = len;
460 
461  return 0;
462 }
463 
464 /* Set the key for the AES block cipher component of the AEAD transform. */
465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466  unsigned int len)
467 {
468  struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
470 
471  /*
472  * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473  * request for any other size (192 bits) then we need to do a software
474  * fallback.
475  */
476  if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
477  /*
478  * Set the fallback transform to use the same request flags as
479  * the hardware transform.
480  */
481  ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482  ctx->sw_cipher->base.crt_flags |=
484  return crypto_aead_setkey(ctx->sw_cipher, key, len);
485  }
486 
487  memcpy(ctx->cipher_key, key, len);
488  ctx->cipher_key_len = len;
489 
490  return 0;
491 }
492 
493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494  unsigned int keylen)
495 {
496  struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497  struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498  struct rtattr *rta = (void *)key;
500  unsigned int authkeylen, enckeylen;
501  int err = -EINVAL;
502 
503  if (!RTA_OK(rta, keylen))
504  goto badkey;
505 
507  goto badkey;
508 
509  if (RTA_PAYLOAD(rta) < sizeof(*param))
510  goto badkey;
511 
512  param = RTA_DATA(rta);
513  enckeylen = be32_to_cpu(param->enckeylen);
514 
515  key += RTA_ALIGN(rta->rta_len);
516  keylen -= RTA_ALIGN(rta->rta_len);
517 
518  if (keylen < enckeylen)
519  goto badkey;
520 
521  authkeylen = keylen - enckeylen;
522 
523  if (enckeylen > AES_MAX_KEY_SIZE)
524  goto badkey;
525 
526  if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
528  err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
529  else
530  err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
531 
532  if (err)
533  goto badkey;
534 
535  memcpy(ctx->hash_ctx, key, authkeylen);
536  ctx->hash_key_len = authkeylen;
537 
538  return 0;
539 
540 badkey:
541  crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
542  return -EINVAL;
543 }
544 
545 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
546  unsigned int authsize)
547 {
548  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
549 
550  ctx->auth_size = authsize;
551 
552  return 0;
553 }
554 
555 /*
556  * Check if an AEAD request requires a fallback operation. Some requests can't
557  * be completed in hardware because the hardware may not support certain key
558  * sizes. In these cases we need to complete the request in software.
559  */
560 static int spacc_aead_need_fallback(struct spacc_req *req)
561 {
562  struct aead_request *aead_req;
563  struct crypto_tfm *tfm = req->req->tfm;
564  struct crypto_alg *alg = req->req->tfm->__crt_alg;
565  struct spacc_alg *spacc_alg = to_spacc_alg(alg);
566  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
567 
568  aead_req = container_of(req->req, struct aead_request, base);
569  /*
570  * If we have a non-supported key-length, then we need to do a
571  * software fallback.
572  */
573  if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
577  return 1;
578 
579  return 0;
580 }
581 
582 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
583  bool is_encrypt)
584 {
585  struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
586  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
587  int err;
588 
589  if (ctx->sw_cipher) {
590  /*
591  * Change the request to use the software fallback transform,
592  * and once the ciphering has completed, put the old transform
593  * back into the request.
594  */
595  aead_request_set_tfm(req, ctx->sw_cipher);
596  err = is_encrypt ? crypto_aead_encrypt(req) :
597  crypto_aead_decrypt(req);
598  aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
599  } else
600  err = -EINVAL;
601 
602  return err;
603 }
604 
605 static void spacc_aead_complete(struct spacc_req *req)
606 {
607  spacc_aead_free_ddts(req);
608  req->req->complete(req->req, req->result);
609 }
610 
611 static int spacc_aead_submit(struct spacc_req *req)
612 {
613  struct crypto_tfm *tfm = req->req->tfm;
614  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
615  struct crypto_alg *alg = req->req->tfm->__crt_alg;
616  struct spacc_alg *spacc_alg = to_spacc_alg(alg);
617  struct spacc_engine *engine = ctx->generic.engine;
618  u32 ctrl, proc_len, assoc_len;
619  struct aead_request *aead_req =
620  container_of(req->req, struct aead_request, base);
621 
622  req->result = -EINPROGRESS;
623  req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
624  ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
625  ctx->hash_ctx, ctx->hash_key_len);
626 
627  /* Set the source and destination DDT pointers. */
628  writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
629  writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
630  writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
631 
632  assoc_len = aead_req->assoclen;
633  proc_len = aead_req->cryptlen + assoc_len;
634 
635  /*
636  * If we aren't generating an IV, then we need to include the IV in the
637  * associated data so that it is included in the hash.
638  */
639  if (!req->giv) {
640  assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
641  proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
642  } else
643  proc_len += req->giv_len;
644 
645  /*
646  * If we are decrypting, we need to take the length of the ICV out of
647  * the processing length.
648  */
649  if (!req->is_encrypt)
650  proc_len -= ctx->auth_size;
651 
652  writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
653  writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
654  writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
655  writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
656  writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
657 
658  ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
659  (1 << SPA_CTRL_ICV_APPEND);
660  if (req->is_encrypt)
661  ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
662  else
663  ctrl |= (1 << SPA_CTRL_KEY_EXP);
664 
665  mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
666 
667  writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
668 
669  return -EINPROGRESS;
670 }
671 
672 static int spacc_req_submit(struct spacc_req *req);
673 
674 static void spacc_push(struct spacc_engine *engine)
675 {
676  struct spacc_req *req;
677 
678  while (!list_empty(&engine->pending) &&
679  engine->in_flight + 1 <= engine->fifo_sz) {
680 
681  ++engine->in_flight;
682  req = list_first_entry(&engine->pending, struct spacc_req,
683  list);
684  list_move_tail(&req->list, &engine->in_progress);
685 
686  req->result = spacc_req_submit(req);
687  }
688 }
689 
690 /*
691  * Setup an AEAD request for processing. This will configure the engine, load
692  * the context and then start the packet processing.
693  *
694  * @giv Pointer to destination address for a generated IV. If the
695  * request does not need to generate an IV then this should be set to NULL.
696  */
697 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
698  unsigned alg_type, bool is_encrypt)
699 {
700  struct crypto_alg *alg = req->base.tfm->__crt_alg;
701  struct spacc_engine *engine = to_spacc_alg(alg)->engine;
702  struct spacc_req *dev_req = aead_request_ctx(req);
703  int err = -EINPROGRESS;
704  unsigned long flags;
705  unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
706 
707  dev_req->giv = giv;
708  dev_req->giv_len = ivsize;
709  dev_req->req = &req->base;
710  dev_req->is_encrypt = is_encrypt;
711  dev_req->result = -EBUSY;
712  dev_req->engine = engine;
713  dev_req->complete = spacc_aead_complete;
714 
715  if (unlikely(spacc_aead_need_fallback(dev_req)))
716  return spacc_aead_do_fallback(req, alg_type, is_encrypt);
717 
718  spacc_aead_make_ddts(dev_req, dev_req->giv);
719 
720  err = -EINPROGRESS;
721  spin_lock_irqsave(&engine->hw_lock, flags);
722  if (unlikely(spacc_fifo_cmd_full(engine)) ||
723  engine->in_flight + 1 > engine->fifo_sz) {
724  if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
725  err = -EBUSY;
726  spin_unlock_irqrestore(&engine->hw_lock, flags);
727  goto out_free_ddts;
728  }
729  list_add_tail(&dev_req->list, &engine->pending);
730  } else {
731  list_add_tail(&dev_req->list, &engine->pending);
732  spacc_push(engine);
733  }
734  spin_unlock_irqrestore(&engine->hw_lock, flags);
735 
736  goto out;
737 
738 out_free_ddts:
739  spacc_aead_free_ddts(dev_req);
740 out:
741  return err;
742 }
743 
744 static int spacc_aead_encrypt(struct aead_request *req)
745 {
746  struct crypto_aead *aead = crypto_aead_reqtfm(req);
747  struct crypto_tfm *tfm = crypto_aead_tfm(aead);
748  struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
749 
750  return spacc_aead_setup(req, NULL, alg->type, 1);
751 }
752 
753 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
754 {
755  struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
756  struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
757  size_t ivsize = crypto_aead_ivsize(tfm);
758  struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
759  unsigned len;
760  __be64 seq;
761 
762  memcpy(req->areq.iv, ctx->salt, ivsize);
763  len = ivsize;
764  if (ivsize > sizeof(u64)) {
765  memset(req->giv, 0, ivsize - sizeof(u64));
766  len = sizeof(u64);
767  }
768  seq = cpu_to_be64(req->seq);
769  memcpy(req->giv + ivsize - len, &seq, len);
770 
771  return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
772 }
773 
774 static int spacc_aead_decrypt(struct aead_request *req)
775 {
776  struct crypto_aead *aead = crypto_aead_reqtfm(req);
777  struct crypto_tfm *tfm = crypto_aead_tfm(aead);
778  struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
779 
780  return spacc_aead_setup(req, NULL, alg->type, 0);
781 }
782 
783 /*
784  * Initialise a new AEAD context. This is responsible for allocating the
785  * fallback cipher and initialising the context.
786  */
787 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
788 {
789  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
790  struct crypto_alg *alg = tfm->__crt_alg;
791  struct spacc_alg *spacc_alg = to_spacc_alg(alg);
792  struct spacc_engine *engine = spacc_alg->engine;
793 
794  ctx->generic.flags = spacc_alg->type;
795  ctx->generic.engine = engine;
796  ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
799  if (IS_ERR(ctx->sw_cipher)) {
800  dev_warn(engine->dev, "failed to allocate fallback for %s\n",
801  alg->cra_name);
802  ctx->sw_cipher = NULL;
803  }
804  ctx->generic.key_offs = spacc_alg->key_offs;
805  ctx->generic.iv_offs = spacc_alg->iv_offs;
806 
807  get_random_bytes(ctx->salt, sizeof(ctx->salt));
808 
809  tfm->crt_aead.reqsize = sizeof(struct spacc_req);
810 
811  return 0;
812 }
813 
814 /*
815  * Destructor for an AEAD context. This is called when the transform is freed
816  * and must free the fallback cipher.
817  */
818 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
819 {
820  struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
821 
822  if (ctx->sw_cipher)
823  crypto_free_aead(ctx->sw_cipher);
824  ctx->sw_cipher = NULL;
825 }
826 
827 /*
828  * Set the DES key for a block cipher transform. This also performs weak key
829  * checking if the transform has requested it.
830  */
831 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
832  unsigned int len)
833 {
834  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
835  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
836  u32 tmp[DES_EXPKEY_WORDS];
837 
838  if (len > DES3_EDE_KEY_SIZE) {
839  crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
840  return -EINVAL;
841  }
842 
843  if (unlikely(!des_ekey(tmp, key)) &&
844  (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
846  return -EINVAL;
847  }
848 
849  memcpy(ctx->key, key, len);
850  ctx->key_len = len;
851 
852  return 0;
853 }
854 
855 /*
856  * Set the key for an AES block cipher. Some key lengths are not supported in
857  * hardware so this must also check whether a fallback is needed.
858  */
859 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
860  unsigned int len)
861 {
862  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
863  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
864  int err = 0;
865 
866  if (len > AES_MAX_KEY_SIZE) {
867  crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
868  return -EINVAL;
869  }
870 
871  /*
872  * IPSec engine only supports 128 and 256 bit AES keys. If we get a
873  * request for any other size (192 bits) then we need to do a software
874  * fallback.
875  */
876  if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
877  ctx->sw_cipher) {
878  /*
879  * Set the fallback transform to use the same request flags as
880  * the hardware transform.
881  */
882  ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
883  ctx->sw_cipher->base.crt_flags |=
884  cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
885 
886  err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
887  if (err)
888  goto sw_setkey_failed;
889  } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
890  !ctx->sw_cipher)
891  err = -EINVAL;
892 
893  memcpy(ctx->key, key, len);
894  ctx->key_len = len;
895 
896 sw_setkey_failed:
897  if (err && ctx->sw_cipher) {
899  tfm->crt_flags |=
900  ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
901  }
902 
903  return err;
904 }
905 
906 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
907  const u8 *key, unsigned int len)
908 {
909  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
910  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
911  int err = 0;
912 
913  if (len > AES_MAX_KEY_SIZE) {
914  crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
915  err = -EINVAL;
916  goto out;
917  }
918 
919  memcpy(ctx->key, key, len);
920  ctx->key_len = len;
921 
922 out:
923  return err;
924 }
925 
926 static int spacc_ablk_need_fallback(struct spacc_req *req)
927 {
928  struct spacc_ablk_ctx *ctx;
929  struct crypto_tfm *tfm = req->req->tfm;
930  struct crypto_alg *alg = req->req->tfm->__crt_alg;
931  struct spacc_alg *spacc_alg = to_spacc_alg(alg);
932 
933  ctx = crypto_tfm_ctx(tfm);
934 
935  return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
937  ctx->key_len != AES_KEYSIZE_128 &&
938  ctx->key_len != AES_KEYSIZE_256;
939 }
940 
941 static void spacc_ablk_complete(struct spacc_req *req)
942 {
943  struct ablkcipher_request *ablk_req =
944  container_of(req->req, struct ablkcipher_request, base);
945 
946  if (ablk_req->src != ablk_req->dst) {
947  spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
948  ablk_req->nbytes, DMA_TO_DEVICE);
949  spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
950  ablk_req->nbytes, DMA_FROM_DEVICE);
951  } else
952  spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
953  ablk_req->nbytes, DMA_BIDIRECTIONAL);
954 
955  req->req->complete(req->req, req->result);
956 }
957 
958 static int spacc_ablk_submit(struct spacc_req *req)
959 {
960  struct crypto_tfm *tfm = req->req->tfm;
961  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
962  struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
963  struct crypto_alg *alg = req->req->tfm->__crt_alg;
964  struct spacc_alg *spacc_alg = to_spacc_alg(alg);
965  struct spacc_engine *engine = ctx->generic.engine;
966  u32 ctrl;
967 
968  req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
969  ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
970  NULL, 0);
971 
972  writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
973  writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
974  writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
975 
976  writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
977  writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
978  writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
979  writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
980 
981  ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
982  (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
983  (1 << SPA_CTRL_KEY_EXP));
984 
985  mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
986 
987  writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
988 
989  return -EINPROGRESS;
990 }
991 
992 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
993  unsigned alg_type, bool is_encrypt)
994 {
995  struct crypto_tfm *old_tfm =
996  crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
997  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
998  int err;
999 
1000  if (!ctx->sw_cipher)
1001  return -EINVAL;
1002 
1003  /*
1004  * Change the request to use the software fallback transform, and once
1005  * the ciphering has completed, put the old transform back into the
1006  * request.
1007  */
1008  ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1009  err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1010  crypto_ablkcipher_decrypt(req);
1011  ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1012 
1013  return err;
1014 }
1015 
1016 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1017  bool is_encrypt)
1018 {
1019  struct crypto_alg *alg = req->base.tfm->__crt_alg;
1020  struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1021  struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1022  unsigned long flags;
1023  int err = -ENOMEM;
1024 
1025  dev_req->req = &req->base;
1026  dev_req->is_encrypt = is_encrypt;
1027  dev_req->engine = engine;
1028  dev_req->complete = spacc_ablk_complete;
1029  dev_req->result = -EINPROGRESS;
1030 
1031  if (unlikely(spacc_ablk_need_fallback(dev_req)))
1032  return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1033 
1034  /*
1035  * Create the DDT's for the engine. If we share the same source and
1036  * destination then we can optimize by reusing the DDT's.
1037  */
1038  if (req->src != req->dst) {
1039  dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1040  req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1041  if (!dev_req->src_ddt)
1042  goto out;
1043 
1044  dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1045  req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1046  if (!dev_req->dst_ddt)
1047  goto out_free_src;
1048  } else {
1049  dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1050  req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1051  if (!dev_req->dst_ddt)
1052  goto out;
1053 
1054  dev_req->src_ddt = NULL;
1055  dev_req->src_addr = dev_req->dst_addr;
1056  }
1057 
1058  err = -EINPROGRESS;
1059  spin_lock_irqsave(&engine->hw_lock, flags);
1060  /*
1061  * Check if the engine will accept the operation now. If it won't then
1062  * we either stick it on the end of a pending list if we can backlog,
1063  * or bailout with an error if not.
1064  */
1065  if (unlikely(spacc_fifo_cmd_full(engine)) ||
1066  engine->in_flight + 1 > engine->fifo_sz) {
1067  if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1068  err = -EBUSY;
1069  spin_unlock_irqrestore(&engine->hw_lock, flags);
1070  goto out_free_ddts;
1071  }
1072  list_add_tail(&dev_req->list, &engine->pending);
1073  } else {
1074  list_add_tail(&dev_req->list, &engine->pending);
1075  spacc_push(engine);
1076  }
1077  spin_unlock_irqrestore(&engine->hw_lock, flags);
1078 
1079  goto out;
1080 
1081 out_free_ddts:
1082  spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1083  req->nbytes, req->src == req->dst ?
1085 out_free_src:
1086  if (req->src != req->dst)
1087  spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1088  req->src, req->nbytes, DMA_TO_DEVICE);
1089 out:
1090  return err;
1091 }
1092 
1093 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1094 {
1095  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1096  struct crypto_alg *alg = tfm->__crt_alg;
1097  struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1098  struct spacc_engine *engine = spacc_alg->engine;
1099 
1100  ctx->generic.flags = spacc_alg->type;
1101  ctx->generic.engine = engine;
1102  if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1105  if (IS_ERR(ctx->sw_cipher)) {
1106  dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1107  alg->cra_name);
1108  ctx->sw_cipher = NULL;
1109  }
1110  }
1111  ctx->generic.key_offs = spacc_alg->key_offs;
1112  ctx->generic.iv_offs = spacc_alg->iv_offs;
1113 
1114  tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1115 
1116  return 0;
1117 }
1118 
1119 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1120 {
1121  struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1122 
1123  if (ctx->sw_cipher)
1124  crypto_free_ablkcipher(ctx->sw_cipher);
1125  ctx->sw_cipher = NULL;
1126 }
1127 
1128 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1129 {
1130  struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1131  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1132  struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1133 
1134  return spacc_ablk_setup(req, alg->type, 1);
1135 }
1136 
1137 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1138 {
1139  struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1140  struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1141  struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1142 
1143  return spacc_ablk_setup(req, alg->type, 0);
1144 }
1145 
1146 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1147 {
1148  return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1150 }
1151 
1152 static void spacc_process_done(struct spacc_engine *engine)
1153 {
1154  struct spacc_req *req;
1155  unsigned long flags;
1156 
1157  spin_lock_irqsave(&engine->hw_lock, flags);
1158 
1159  while (!spacc_fifo_stat_empty(engine)) {
1160  req = list_first_entry(&engine->in_progress, struct spacc_req,
1161  list);
1162  list_move_tail(&req->list, &engine->completed);
1163  --engine->in_flight;
1164 
1165  /* POP the status register. */
1166  writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1167  req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1169 
1170  /*
1171  * Convert the SPAcc error status into the standard POSIX error
1172  * codes.
1173  */
1174  if (unlikely(req->result)) {
1175  switch (req->result) {
1176  case SPA_STATUS_ICV_FAIL:
1177  req->result = -EBADMSG;
1178  break;
1179 
1181  dev_warn(engine->dev,
1182  "memory error triggered\n");
1183  req->result = -EFAULT;
1184  break;
1185 
1187  dev_warn(engine->dev,
1188  "block error triggered\n");
1189  req->result = -EIO;
1190  break;
1191  }
1192  }
1193  }
1194 
1195  tasklet_schedule(&engine->complete);
1196 
1197  spin_unlock_irqrestore(&engine->hw_lock, flags);
1198 }
1199 
1200 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1201 {
1202  struct spacc_engine *engine = (struct spacc_engine *)dev;
1203  u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1204 
1205  writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1206  spacc_process_done(engine);
1207 
1208  return IRQ_HANDLED;
1209 }
1210 
1211 static void spacc_packet_timeout(unsigned long data)
1212 {
1213  struct spacc_engine *engine = (struct spacc_engine *)data;
1214 
1215  spacc_process_done(engine);
1216 }
1217 
1218 static int spacc_req_submit(struct spacc_req *req)
1219 {
1220  struct crypto_alg *alg = req->req->tfm->__crt_alg;
1221 
1223  return spacc_aead_submit(req);
1224  else
1225  return spacc_ablk_submit(req);
1226 }
1227 
1228 static void spacc_spacc_complete(unsigned long data)
1229 {
1230  struct spacc_engine *engine = (struct spacc_engine *)data;
1231  struct spacc_req *req, *tmp;
1232  unsigned long flags;
1234 
1235  spin_lock_irqsave(&engine->hw_lock, flags);
1236 
1237  list_splice_init(&engine->completed, &completed);
1238  spacc_push(engine);
1239  if (engine->in_flight)
1240  mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1241 
1242  spin_unlock_irqrestore(&engine->hw_lock, flags);
1243 
1244  list_for_each_entry_safe(req, tmp, &completed, list) {
1245  list_del(&req->list);
1246  req->complete(req);
1247  }
1248 }
1249 
1250 #ifdef CONFIG_PM
1251 static int spacc_suspend(struct device *dev)
1252 {
1253  struct platform_device *pdev = to_platform_device(dev);
1254  struct spacc_engine *engine = platform_get_drvdata(pdev);
1255 
1256  /*
1257  * We only support standby mode. All we have to do is gate the clock to
1258  * the spacc. The hardware will preserve state until we turn it back
1259  * on again.
1260  */
1261  clk_disable(engine->clk);
1262 
1263  return 0;
1264 }
1265 
1266 static int spacc_resume(struct device *dev)
1267 {
1268  struct platform_device *pdev = to_platform_device(dev);
1269  struct spacc_engine *engine = platform_get_drvdata(pdev);
1270 
1271  return clk_enable(engine->clk);
1272 }
1273 
1274 static const struct dev_pm_ops spacc_pm_ops = {
1275  .suspend = spacc_suspend,
1276  .resume = spacc_resume,
1277 };
1278 #endif /* CONFIG_PM */
1279 
1280 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1281 {
1282  return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1283 }
1284 
1285 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1286  struct device_attribute *attr,
1287  char *buf)
1288 {
1289  struct spacc_engine *engine = spacc_dev_to_engine(dev);
1290 
1291  return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1292 }
1293 
1294 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1295  struct device_attribute *attr,
1296  const char *buf, size_t len)
1297 {
1298  struct spacc_engine *engine = spacc_dev_to_engine(dev);
1299  unsigned long thresh;
1300 
1301  if (strict_strtoul(buf, 0, &thresh))
1302  return -EINVAL;
1303 
1304  thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1305 
1306  engine->stat_irq_thresh = thresh;
1308  engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1309 
1310  return len;
1311 }
1312 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1313  spacc_stat_irq_thresh_store);
1314 
1315 static struct spacc_alg ipsec_engine_algs[] = {
1316  {
1318  .key_offs = 0,
1319  .iv_offs = AES_MAX_KEY_SIZE,
1320  .alg = {
1321  .cra_name = "cbc(aes)",
1322  .cra_driver_name = "cbc-aes-picoxcell",
1323  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1324  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1328  .cra_blocksize = AES_BLOCK_SIZE,
1329  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1330  .cra_type = &crypto_ablkcipher_type,
1331  .cra_module = THIS_MODULE,
1332  .cra_ablkcipher = {
1333  .setkey = spacc_aes_setkey,
1334  .encrypt = spacc_ablk_encrypt,
1335  .decrypt = spacc_ablk_decrypt,
1336  .min_keysize = AES_MIN_KEY_SIZE,
1337  .max_keysize = AES_MAX_KEY_SIZE,
1338  .ivsize = AES_BLOCK_SIZE,
1339  },
1340  .cra_init = spacc_ablk_cra_init,
1341  .cra_exit = spacc_ablk_cra_exit,
1342  },
1343  },
1344  {
1345  .key_offs = 0,
1346  .iv_offs = AES_MAX_KEY_SIZE,
1348  .alg = {
1349  .cra_name = "ecb(aes)",
1350  .cra_driver_name = "ecb-aes-picoxcell",
1351  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1352  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1355  .cra_blocksize = AES_BLOCK_SIZE,
1356  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1357  .cra_type = &crypto_ablkcipher_type,
1358  .cra_module = THIS_MODULE,
1359  .cra_ablkcipher = {
1360  .setkey = spacc_aes_setkey,
1361  .encrypt = spacc_ablk_encrypt,
1362  .decrypt = spacc_ablk_decrypt,
1363  .min_keysize = AES_MIN_KEY_SIZE,
1364  .max_keysize = AES_MAX_KEY_SIZE,
1365  },
1366  .cra_init = spacc_ablk_cra_init,
1367  .cra_exit = spacc_ablk_cra_exit,
1368  },
1369  },
1370  {
1371  .key_offs = DES_BLOCK_SIZE,
1372  .iv_offs = 0,
1374  .alg = {
1375  .cra_name = "cbc(des)",
1376  .cra_driver_name = "cbc-des-picoxcell",
1377  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1378  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1381  .cra_blocksize = DES_BLOCK_SIZE,
1382  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1383  .cra_type = &crypto_ablkcipher_type,
1384  .cra_module = THIS_MODULE,
1385  .cra_ablkcipher = {
1386  .setkey = spacc_des_setkey,
1387  .encrypt = spacc_ablk_encrypt,
1388  .decrypt = spacc_ablk_decrypt,
1389  .min_keysize = DES_KEY_SIZE,
1390  .max_keysize = DES_KEY_SIZE,
1391  .ivsize = DES_BLOCK_SIZE,
1392  },
1393  .cra_init = spacc_ablk_cra_init,
1394  .cra_exit = spacc_ablk_cra_exit,
1395  },
1396  },
1397  {
1398  .key_offs = DES_BLOCK_SIZE,
1399  .iv_offs = 0,
1401  .alg = {
1402  .cra_name = "ecb(des)",
1403  .cra_driver_name = "ecb-des-picoxcell",
1404  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1405  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1408  .cra_blocksize = DES_BLOCK_SIZE,
1409  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1410  .cra_type = &crypto_ablkcipher_type,
1411  .cra_module = THIS_MODULE,
1412  .cra_ablkcipher = {
1413  .setkey = spacc_des_setkey,
1414  .encrypt = spacc_ablk_encrypt,
1415  .decrypt = spacc_ablk_decrypt,
1416  .min_keysize = DES_KEY_SIZE,
1417  .max_keysize = DES_KEY_SIZE,
1418  },
1419  .cra_init = spacc_ablk_cra_init,
1420  .cra_exit = spacc_ablk_cra_exit,
1421  },
1422  },
1423  {
1424  .key_offs = DES_BLOCK_SIZE,
1425  .iv_offs = 0,
1427  .alg = {
1428  .cra_name = "cbc(des3_ede)",
1429  .cra_driver_name = "cbc-des3-ede-picoxcell",
1430  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1431  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1434  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1435  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1436  .cra_type = &crypto_ablkcipher_type,
1437  .cra_module = THIS_MODULE,
1438  .cra_ablkcipher = {
1439  .setkey = spacc_des_setkey,
1440  .encrypt = spacc_ablk_encrypt,
1441  .decrypt = spacc_ablk_decrypt,
1442  .min_keysize = DES3_EDE_KEY_SIZE,
1443  .max_keysize = DES3_EDE_KEY_SIZE,
1444  .ivsize = DES3_EDE_BLOCK_SIZE,
1445  },
1446  .cra_init = spacc_ablk_cra_init,
1447  .cra_exit = spacc_ablk_cra_exit,
1448  },
1449  },
1450  {
1451  .key_offs = DES_BLOCK_SIZE,
1452  .iv_offs = 0,
1454  .alg = {
1455  .cra_name = "ecb(des3_ede)",
1456  .cra_driver_name = "ecb-des3-ede-picoxcell",
1457  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1458  .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1461  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1462  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1463  .cra_type = &crypto_ablkcipher_type,
1464  .cra_module = THIS_MODULE,
1465  .cra_ablkcipher = {
1466  .setkey = spacc_des_setkey,
1467  .encrypt = spacc_ablk_encrypt,
1468  .decrypt = spacc_ablk_decrypt,
1469  .min_keysize = DES3_EDE_KEY_SIZE,
1470  .max_keysize = DES3_EDE_KEY_SIZE,
1471  },
1472  .cra_init = spacc_ablk_cra_init,
1473  .cra_exit = spacc_ablk_cra_exit,
1474  },
1475  },
1476  {
1477  .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1479  .key_offs = 0,
1480  .iv_offs = AES_MAX_KEY_SIZE,
1481  .alg = {
1482  .cra_name = "authenc(hmac(sha1),cbc(aes))",
1483  .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1484  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1485  .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1488  .cra_blocksize = AES_BLOCK_SIZE,
1489  .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1490  .cra_type = &crypto_aead_type,
1491  .cra_module = THIS_MODULE,
1492  .cra_aead = {
1493  .setkey = spacc_aead_setkey,
1494  .setauthsize = spacc_aead_setauthsize,
1495  .encrypt = spacc_aead_encrypt,
1496  .decrypt = spacc_aead_decrypt,
1497  .givencrypt = spacc_aead_givencrypt,
1498  .ivsize = AES_BLOCK_SIZE,
1499  .maxauthsize = SHA1_DIGEST_SIZE,
1500  },
1501  .cra_init = spacc_aead_cra_init,
1502  .cra_exit = spacc_aead_cra_exit,
1503  },
1504  },
1505  {
1506  .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1509  .key_offs = 0,
1510  .iv_offs = AES_MAX_KEY_SIZE,
1511  .alg = {
1512  .cra_name = "authenc(hmac(sha256),cbc(aes))",
1513  .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1514  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515  .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1518  .cra_blocksize = AES_BLOCK_SIZE,
1519  .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1520  .cra_type = &crypto_aead_type,
1521  .cra_module = THIS_MODULE,
1522  .cra_aead = {
1523  .setkey = spacc_aead_setkey,
1524  .setauthsize = spacc_aead_setauthsize,
1525  .encrypt = spacc_aead_encrypt,
1526  .decrypt = spacc_aead_decrypt,
1527  .givencrypt = spacc_aead_givencrypt,
1528  .ivsize = AES_BLOCK_SIZE,
1529  .maxauthsize = SHA256_DIGEST_SIZE,
1530  },
1531  .cra_init = spacc_aead_cra_init,
1532  .cra_exit = spacc_aead_cra_exit,
1533  },
1534  },
1535  {
1536  .key_offs = 0,
1537  .iv_offs = AES_MAX_KEY_SIZE,
1538  .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1540  .alg = {
1541  .cra_name = "authenc(hmac(md5),cbc(aes))",
1542  .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1543  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1544  .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1547  .cra_blocksize = AES_BLOCK_SIZE,
1548  .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1549  .cra_type = &crypto_aead_type,
1550  .cra_module = THIS_MODULE,
1551  .cra_aead = {
1552  .setkey = spacc_aead_setkey,
1553  .setauthsize = spacc_aead_setauthsize,
1554  .encrypt = spacc_aead_encrypt,
1555  .decrypt = spacc_aead_decrypt,
1556  .givencrypt = spacc_aead_givencrypt,
1557  .ivsize = AES_BLOCK_SIZE,
1558  .maxauthsize = MD5_DIGEST_SIZE,
1559  },
1560  .cra_init = spacc_aead_cra_init,
1561  .cra_exit = spacc_aead_cra_exit,
1562  },
1563  },
1564  {
1565  .key_offs = DES_BLOCK_SIZE,
1566  .iv_offs = 0,
1567  .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1569  .alg = {
1570  .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1571  .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1572  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1573  .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1576  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1577  .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1578  .cra_type = &crypto_aead_type,
1579  .cra_module = THIS_MODULE,
1580  .cra_aead = {
1581  .setkey = spacc_aead_setkey,
1582  .setauthsize = spacc_aead_setauthsize,
1583  .encrypt = spacc_aead_encrypt,
1584  .decrypt = spacc_aead_decrypt,
1585  .givencrypt = spacc_aead_givencrypt,
1586  .ivsize = DES3_EDE_BLOCK_SIZE,
1587  .maxauthsize = SHA1_DIGEST_SIZE,
1588  },
1589  .cra_init = spacc_aead_cra_init,
1590  .cra_exit = spacc_aead_cra_exit,
1591  },
1592  },
1593  {
1594  .key_offs = DES_BLOCK_SIZE,
1595  .iv_offs = 0,
1596  .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1599  .alg = {
1600  .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1601  .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1602  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1603  .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1606  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1607  .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1608  .cra_type = &crypto_aead_type,
1609  .cra_module = THIS_MODULE,
1610  .cra_aead = {
1611  .setkey = spacc_aead_setkey,
1612  .setauthsize = spacc_aead_setauthsize,
1613  .encrypt = spacc_aead_encrypt,
1614  .decrypt = spacc_aead_decrypt,
1615  .givencrypt = spacc_aead_givencrypt,
1616  .ivsize = DES3_EDE_BLOCK_SIZE,
1617  .maxauthsize = SHA256_DIGEST_SIZE,
1618  },
1619  .cra_init = spacc_aead_cra_init,
1620  .cra_exit = spacc_aead_cra_exit,
1621  },
1622  },
1623  {
1624  .key_offs = DES_BLOCK_SIZE,
1625  .iv_offs = 0,
1626  .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1628  .alg = {
1629  .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1630  .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1631  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1632  .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1635  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1636  .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1637  .cra_type = &crypto_aead_type,
1638  .cra_module = THIS_MODULE,
1639  .cra_aead = {
1640  .setkey = spacc_aead_setkey,
1641  .setauthsize = spacc_aead_setauthsize,
1642  .encrypt = spacc_aead_encrypt,
1643  .decrypt = spacc_aead_decrypt,
1644  .givencrypt = spacc_aead_givencrypt,
1645  .ivsize = DES3_EDE_BLOCK_SIZE,
1646  .maxauthsize = MD5_DIGEST_SIZE,
1647  },
1648  .cra_init = spacc_aead_cra_init,
1649  .cra_exit = spacc_aead_cra_exit,
1650  },
1651  },
1652 };
1653 
1654 static struct spacc_alg l2_engine_algs[] = {
1655  {
1656  .key_offs = 0,
1657  .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1658  .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1660  .alg = {
1661  .cra_name = "f8(kasumi)",
1662  .cra_driver_name = "f8-kasumi-picoxcell",
1663  .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1664  .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1667  .cra_blocksize = 8,
1668  .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1669  .cra_type = &crypto_ablkcipher_type,
1670  .cra_module = THIS_MODULE,
1671  .cra_ablkcipher = {
1672  .setkey = spacc_kasumi_f8_setkey,
1673  .encrypt = spacc_ablk_encrypt,
1674  .decrypt = spacc_ablk_decrypt,
1675  .min_keysize = 16,
1676  .max_keysize = 16,
1677  .ivsize = 8,
1678  },
1679  .cra_init = spacc_ablk_cra_init,
1680  .cra_exit = spacc_ablk_cra_exit,
1681  },
1682  },
1683 };
1684 
1685 #ifdef CONFIG_OF
1686 static const struct of_device_id spacc_of_id_table[] = {
1687  { .compatible = "picochip,spacc-ipsec" },
1688  { .compatible = "picochip,spacc-l2" },
1689  {}
1690 };
1691 #else /* CONFIG_OF */
1692 #define spacc_of_id_table NULL
1693 #endif /* CONFIG_OF */
1694 
1695 static bool spacc_is_compatible(struct platform_device *pdev,
1696  const char *spacc_type)
1697 {
1698  const struct platform_device_id *platid = platform_get_device_id(pdev);
1699 
1700  if (platid && !strcmp(platid->name, spacc_type))
1701  return true;
1702 
1703 #ifdef CONFIG_OF
1704  if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1705  return true;
1706 #endif /* CONFIG_OF */
1707 
1708  return false;
1709 }
1710 
1711 static int __devinit spacc_probe(struct platform_device *pdev)
1712 {
1713  int i, err, ret = -EINVAL;
1714  struct resource *mem, *irq;
1715  struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1716  GFP_KERNEL);
1717  if (!engine)
1718  return -ENOMEM;
1719 
1720  if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1725  engine->algs = ipsec_engine_algs;
1726  engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1727  } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1731  engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1732  engine->algs = l2_engine_algs;
1733  engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1734  } else {
1735  return -EINVAL;
1736  }
1737 
1738  engine->name = dev_name(&pdev->dev);
1739 
1740  mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1741  irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1742  if (!mem || !irq) {
1743  dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1744  return -ENXIO;
1745  }
1746 
1747  if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1748  engine->name))
1749  return -ENOMEM;
1750 
1751  engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1752  if (!engine->regs) {
1753  dev_err(&pdev->dev, "memory map failed\n");
1754  return -ENOMEM;
1755  }
1756 
1757  if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1758  engine->name, engine)) {
1759  dev_err(engine->dev, "failed to request IRQ\n");
1760  return -EBUSY;
1761  }
1762 
1763  engine->dev = &pdev->dev;
1765  engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1766 
1767  engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1768  MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1769  if (!engine->req_pool)
1770  return -ENOMEM;
1771 
1772  spin_lock_init(&engine->hw_lock);
1773 
1774  engine->clk = clk_get(&pdev->dev, "ref");
1775  if (IS_ERR(engine->clk)) {
1776  dev_info(&pdev->dev, "clk unavailable\n");
1777  device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1778  return PTR_ERR(engine->clk);
1779  }
1780 
1781  if (clk_enable(engine->clk)) {
1782  dev_info(&pdev->dev, "unable to enable clk\n");
1783  clk_put(engine->clk);
1784  return -EIO;
1785  }
1786 
1787  err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1788  if (err) {
1789  clk_disable(engine->clk);
1790  clk_put(engine->clk);
1791  return err;
1792  }
1793 
1794 
1795  /*
1796  * Use an IRQ threshold of 50% as a default. This seems to be a
1797  * reasonable trade off of latency against throughput but can be
1798  * changed at runtime.
1799  */
1800  engine->stat_irq_thresh = (engine->fifo_sz / 2);
1801 
1802  /*
1803  * Configure the interrupts. We only use the STAT_CNT interrupt as we
1804  * only submit a new packet for processing when we complete another in
1805  * the queue. This minimizes time spent in the interrupt handler.
1806  */
1808  engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1810  engine->regs + SPA_IRQ_EN_REG_OFFSET);
1811 
1812  setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1813  (unsigned long)engine);
1814 
1815  INIT_LIST_HEAD(&engine->pending);
1816  INIT_LIST_HEAD(&engine->completed);
1817  INIT_LIST_HEAD(&engine->in_progress);
1818  engine->in_flight = 0;
1819  tasklet_init(&engine->complete, spacc_spacc_complete,
1820  (unsigned long)engine);
1821 
1822  platform_set_drvdata(pdev, engine);
1823 
1824  INIT_LIST_HEAD(&engine->registered_algs);
1825  for (i = 0; i < engine->num_algs; ++i) {
1826  engine->algs[i].engine = engine;
1827  err = crypto_register_alg(&engine->algs[i].alg);
1828  if (!err) {
1829  list_add_tail(&engine->algs[i].entry,
1830  &engine->registered_algs);
1831  ret = 0;
1832  }
1833  if (err)
1834  dev_err(engine->dev, "failed to register alg \"%s\"\n",
1835  engine->algs[i].alg.cra_name);
1836  else
1837  dev_dbg(engine->dev, "registered alg \"%s\"\n",
1838  engine->algs[i].alg.cra_name);
1839  }
1840 
1841  return ret;
1842 }
1843 
1844 static int __devexit spacc_remove(struct platform_device *pdev)
1845 {
1846  struct spacc_alg *alg, *next;
1847  struct spacc_engine *engine = platform_get_drvdata(pdev);
1848 
1849  del_timer_sync(&engine->packet_timeout);
1850  device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1851 
1852  list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1853  list_del(&alg->entry);
1854  crypto_unregister_alg(&alg->alg);
1855  }
1856 
1857  clk_disable(engine->clk);
1858  clk_put(engine->clk);
1859 
1860  return 0;
1861 }
1862 
1863 static const struct platform_device_id spacc_id_table[] = {
1864  { "picochip,spacc-ipsec", },
1865  { "picochip,spacc-l2", },
1866 };
1867 
1868 static struct platform_driver spacc_driver = {
1869  .probe = spacc_probe,
1870  .remove = __devexit_p(spacc_remove),
1871  .driver = {
1872  .name = "picochip,spacc",
1873 #ifdef CONFIG_PM
1874  .pm = &spacc_pm_ops,
1875 #endif /* CONFIG_PM */
1876  .of_match_table = spacc_of_id_table,
1877  },
1878  .id_table = spacc_id_table,
1879 };
1880 
1881 module_platform_driver(spacc_driver);
1882 
1883 MODULE_LICENSE("GPL");
1884 MODULE_AUTHOR("Jamie Iles");