Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
qla_sup.c
Go to the documentation of this file.
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c) 2003-2012 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25  uint16_t data;
26  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28  if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29  data = RD_REG_WORD(&reg->nvram);
30  while (data & NVR_BUSY) {
31  udelay(100);
32  data = RD_REG_WORD(&reg->nvram);
33  }
34 
35  /* Lock resource */
36  WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37  RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38  udelay(5);
39  data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40  while ((data & BIT_0) == 0) {
41  /* Lock failed */
42  udelay(100);
43  WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44  RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45  udelay(5);
46  data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47  }
48  }
49 }
50 
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60  if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61  WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62  RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63  }
64 }
65 
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
77  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78  NVRAM_DELAY();
79  WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
81  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82  NVRAM_DELAY();
84  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85  NVRAM_DELAY();
86 }
87 
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106  uint8_t cnt;
107  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108  uint16_t data = 0;
110 
111  /* Send command to NVRAM. */
112  nv_cmd <<= 5;
113  for (cnt = 0; cnt < 11; cnt++) {
114  if (nv_cmd & BIT_31)
115  qla2x00_nv_write(ha, NVR_DATA_OUT);
116  else
117  qla2x00_nv_write(ha, 0);
118  nv_cmd <<= 1;
119  }
120 
121  /* Read data from NVRAM. */
122  for (cnt = 0; cnt < 16; cnt++) {
124  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125  NVRAM_DELAY();
126  data <<= 1;
127  reg_data = RD_REG_WORD(&reg->nvram);
128  if (reg_data & NVR_DATA_IN)
129  data |= BIT_0;
130  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132  NVRAM_DELAY();
133  }
134 
135  /* Deselect chip. */
137  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138  NVRAM_DELAY();
139 
140  return data;
141 }
142 
143 
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155  uint16_t data;
156  uint32_t nv_cmd;
157 
158  nv_cmd = addr << 16;
159  nv_cmd |= NV_READ_OP;
160  data = qla2x00_nvram_request(ha, nv_cmd);
161 
162  return (data);
163 }
164 
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
175  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176  NVRAM_DELAY();
177 }
178 
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188  int count;
189  uint16_t word;
190  uint32_t nv_cmd, wait_cnt;
191  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192  scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194  qla2x00_nv_write(ha, NVR_DATA_OUT);
195  qla2x00_nv_write(ha, 0);
196  qla2x00_nv_write(ha, 0);
197 
198  for (word = 0; word < 8; word++)
199  qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201  qla2x00_nv_deselect(ha);
202 
203  /* Write data */
204  nv_cmd = (addr << 16) | NV_WRITE_OP;
205  nv_cmd |= data;
206  nv_cmd <<= 5;
207  for (count = 0; count < 27; count++) {
208  if (nv_cmd & BIT_31)
209  qla2x00_nv_write(ha, NVR_DATA_OUT);
210  else
211  qla2x00_nv_write(ha, 0);
212 
213  nv_cmd <<= 1;
214  }
215 
216  qla2x00_nv_deselect(ha);
217 
218  /* Wait for NVRAM to become ready */
219  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
221  wait_cnt = NVR_WAIT_CNT;
222  do {
223  if (!--wait_cnt) {
224  ql_dbg(ql_dbg_user, vha, 0x708d,
225  "NVRAM didn't go ready...\n");
226  break;
227  }
228  NVRAM_DELAY();
229  word = RD_REG_WORD(&reg->nvram);
230  } while ((word & NVR_DATA_IN) == 0);
231 
232  qla2x00_nv_deselect(ha);
233 
234  /* Disable writes */
235  qla2x00_nv_write(ha, NVR_DATA_OUT);
236  for (count = 0; count < 10; count++)
237  qla2x00_nv_write(ha, 0);
238 
239  qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244  uint16_t data, uint32_t tmo)
245 {
246  int ret, count;
247  uint16_t word;
248  uint32_t nv_cmd;
249  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251  ret = QLA_SUCCESS;
252 
253  qla2x00_nv_write(ha, NVR_DATA_OUT);
254  qla2x00_nv_write(ha, 0);
255  qla2x00_nv_write(ha, 0);
256 
257  for (word = 0; word < 8; word++)
258  qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260  qla2x00_nv_deselect(ha);
261 
262  /* Write data */
263  nv_cmd = (addr << 16) | NV_WRITE_OP;
264  nv_cmd |= data;
265  nv_cmd <<= 5;
266  for (count = 0; count < 27; count++) {
267  if (nv_cmd & BIT_31)
268  qla2x00_nv_write(ha, NVR_DATA_OUT);
269  else
270  qla2x00_nv_write(ha, 0);
271 
272  nv_cmd <<= 1;
273  }
274 
275  qla2x00_nv_deselect(ha);
276 
277  /* Wait for NVRAM to become ready */
278  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
280  do {
281  NVRAM_DELAY();
282  word = RD_REG_WORD(&reg->nvram);
283  if (!--tmo) {
284  ret = QLA_FUNCTION_FAILED;
285  break;
286  }
287  } while ((word & NVR_DATA_IN) == 0);
288 
289  qla2x00_nv_deselect(ha);
290 
291  /* Disable writes */
292  qla2x00_nv_write(ha, NVR_DATA_OUT);
293  for (count = 0; count < 10; count++)
294  qla2x00_nv_write(ha, 0);
295 
296  qla2x00_nv_deselect(ha);
297 
298  return ret;
299 }
300 
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308  int ret, stat;
309  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310  uint32_t word, wait_cnt;
311  uint16_t wprot, wprot_old;
312  scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314  /* Clear NVRAM write protection. */
315  ret = QLA_FUNCTION_FAILED;
316 
317  wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318  stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319  __constant_cpu_to_le16(0x1234), 100000);
320  wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321  if (stat != QLA_SUCCESS || wprot != 0x1234) {
322  /* Write enable. */
323  qla2x00_nv_write(ha, NVR_DATA_OUT);
324  qla2x00_nv_write(ha, 0);
325  qla2x00_nv_write(ha, 0);
326  for (word = 0; word < 8; word++)
327  qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329  qla2x00_nv_deselect(ha);
330 
331  /* Enable protection register. */
332  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333  qla2x00_nv_write(ha, NVR_PR_ENABLE);
334  qla2x00_nv_write(ha, NVR_PR_ENABLE);
335  for (word = 0; word < 8; word++)
336  qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338  qla2x00_nv_deselect(ha);
339 
340  /* Clear protection register (ffff is cleared). */
341  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344  for (word = 0; word < 8; word++)
345  qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347  qla2x00_nv_deselect(ha);
348 
349  /* Wait for NVRAM to become ready. */
350  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352  wait_cnt = NVR_WAIT_CNT;
353  do {
354  if (!--wait_cnt) {
355  ql_dbg(ql_dbg_user, vha, 0x708e,
356  "NVRAM didn't go ready...\n");
357  break;
358  }
359  NVRAM_DELAY();
360  word = RD_REG_WORD(&reg->nvram);
361  } while ((word & NVR_DATA_IN) == 0);
362 
363  if (wait_cnt)
364  ret = QLA_SUCCESS;
365  } else
366  qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368  return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375  uint32_t word, wait_cnt;
376  scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378  if (stat != QLA_SUCCESS)
379  return;
380 
381  /* Set NVRAM write protection. */
382  /* Write enable. */
383  qla2x00_nv_write(ha, NVR_DATA_OUT);
384  qla2x00_nv_write(ha, 0);
385  qla2x00_nv_write(ha, 0);
386  for (word = 0; word < 8; word++)
387  qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389  qla2x00_nv_deselect(ha);
390 
391  /* Enable protection register. */
392  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393  qla2x00_nv_write(ha, NVR_PR_ENABLE);
394  qla2x00_nv_write(ha, NVR_PR_ENABLE);
395  for (word = 0; word < 8; word++)
396  qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398  qla2x00_nv_deselect(ha);
399 
400  /* Enable protection register. */
401  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402  qla2x00_nv_write(ha, NVR_PR_ENABLE);
403  qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404  for (word = 0; word < 8; word++)
405  qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407  qla2x00_nv_deselect(ha);
408 
409  /* Wait for NVRAM to become ready. */
410  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412  wait_cnt = NVR_WAIT_CNT;
413  do {
414  if (!--wait_cnt) {
415  ql_dbg(ql_dbg_user, vha, 0x708f,
416  "NVRAM didn't go ready...\n");
417  break;
418  }
419  NVRAM_DELAY();
420  word = RD_REG_WORD(&reg->nvram);
421  } while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432  return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438  return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444  return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450  return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456  int rval;
457  uint32_t cnt, data;
458  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460  WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461  /* Wait for READ cycle to complete. */
462  rval = QLA_SUCCESS;
463  for (cnt = 3000;
464  (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465  rval == QLA_SUCCESS; cnt--) {
466  if (cnt)
467  udelay(10);
468  else
469  rval = QLA_FUNCTION_TIMEOUT;
470  cond_resched();
471  }
472 
473  /* TODO: What happens if we time out? */
474  data = 0xDEADDEAD;
475  if (rval == QLA_SUCCESS)
476  data = RD_REG_DWORD(&reg->flash_data);
477 
478  return data;
479 }
480 
481 uint32_t *
483  uint32_t dwords)
484 {
485  uint32_t i;
486  struct qla_hw_data *ha = vha->hw;
487 
488  /* Dword reads to flash. */
489  for (i = 0; i < dwords; i++, faddr++)
490  dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491  flash_data_addr(ha, faddr)));
492 
493  return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499  int rval;
500  uint32_t cnt;
501  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503  WRT_REG_DWORD(&reg->flash_data, data);
504  RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
505  WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506  /* Wait for Write cycle to complete. */
507  rval = QLA_SUCCESS;
508  for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509  rval == QLA_SUCCESS; cnt--) {
510  if (cnt)
511  udelay(10);
512  else
513  rval = QLA_FUNCTION_TIMEOUT;
514  cond_resched();
515  }
516  return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521  uint8_t *flash_id)
522 {
523  uint32_t ids;
524 
525  ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526  *man_id = LSB(ids);
527  *flash_id = MSB(ids);
528 
529  /* Check if man_id and flash_id are valid. */
530  if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531  /* Read information using 0x9f opcode
532  * Device ID, Mfg ID would be read in the format:
533  * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534  * Example: ATMEL 0x00 01 45 1F
535  * Extract MFG and Dev ID from last two bytes.
536  */
537  ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538  *man_id = LSB(ids);
539  *flash_id = MSB(ids);
540  }
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546  const char *loc, *locations[] = { "DEF", "PCI" };
547  uint32_t pcihdr, pcids;
548  uint32_t *dcode;
549  uint8_t *buf, *bcode, last_image;
550  uint16_t cnt, chksum, *wptr;
551  struct qla_flt_location *fltl;
552  struct qla_hw_data *ha = vha->hw;
553  struct req_que *req = ha->req_q_map[0];
554 
555  /*
556  * FLT-location structure resides after the last PCI region.
557  */
558 
559  /* Begin with sane defaults. */
560  loc = locations[0];
561  *start = 0;
562  if (IS_QLA24XX_TYPE(ha))
563  *start = FA_FLASH_LAYOUT_ADDR_24;
564  else if (IS_QLA25XX(ha))
565  *start = FA_FLASH_LAYOUT_ADDR;
566  else if (IS_QLA81XX(ha))
567  *start = FA_FLASH_LAYOUT_ADDR_81;
568  else if (IS_QLA82XX(ha)) {
569  *start = FA_FLASH_LAYOUT_ADDR_82;
570  goto end;
571  } else if (IS_QLA83XX(ha)) {
572  *start = FA_FLASH_LAYOUT_ADDR_83;
573  goto end;
574  }
575  /* Begin with first PCI expansion ROM header. */
576  buf = (uint8_t *)req->ring;
577  dcode = (uint32_t *)req->ring;
578  pcihdr = 0;
579  last_image = 1;
580  do {
581  /* Verify PCI expansion ROM header. */
582  qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583  bcode = buf + (pcihdr % 4);
584  if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585  goto end;
586 
587  /* Locate PCI data structure. */
588  pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589  qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590  bcode = buf + (pcihdr % 4);
591 
592  /* Validate signature of PCI data structure. */
593  if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594  bcode[0x2] != 'I' || bcode[0x3] != 'R')
595  goto end;
596 
597  last_image = bcode[0x15] & BIT_7;
598 
599  /* Locate next PCI expansion ROM. */
600  pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601  } while (!last_image);
602 
603  /* Now verify FLT-location structure. */
604  fltl = (struct qla_flt_location *)req->ring;
605  qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606  sizeof(struct qla_flt_location) >> 2);
607  if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608  fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609  goto end;
610 
611  wptr = (uint16_t *)req->ring;
612  cnt = sizeof(struct qla_flt_location) >> 1;
613  for (chksum = 0; cnt; cnt--)
614  chksum += le16_to_cpu(*wptr++);
615  if (chksum) {
616  ql_log(ql_log_fatal, vha, 0x0045,
617  "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
619  buf, sizeof(struct qla_flt_location));
620  return QLA_FUNCTION_FAILED;
621  }
622 
623  /* Good data. Use specified location. */
624  loc = locations[1];
625  *start = (le16_to_cpu(fltl->start_hi) << 16 |
626  le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628  ql_dbg(ql_dbg_init, vha, 0x0046,
629  "FLTL[%s] = 0x%x.\n",
630  loc, *start);
631  return QLA_SUCCESS;
632 }
633 
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637  const char *loc, *locations[] = { "DEF", "FLT" };
638  const uint32_t def_fw[] =
640  const uint32_t def_boot[] =
642  const uint32_t def_vpd_nvram[] =
644  const uint32_t def_vpd0[] =
645  { 0, 0, FA_VPD0_ADDR_81 };
646  const uint32_t def_vpd1[] =
647  { 0, 0, FA_VPD1_ADDR_81 };
648  const uint32_t def_nvram0[] =
649  { 0, 0, FA_NVRAM0_ADDR_81 };
650  const uint32_t def_nvram1[] =
651  { 0, 0, FA_NVRAM1_ADDR_81 };
652  const uint32_t def_fdt[] =
655  const uint32_t def_npiv_conf0[] =
658  const uint32_t def_npiv_conf1[] =
661  const uint32_t fcp_prio_cfg0[] =
663  0 };
664  const uint32_t fcp_prio_cfg1[] =
666  0 };
667  uint32_t def;
668  uint16_t *wptr;
670  uint32_t start;
671  struct qla_flt_header *flt;
672  struct qla_flt_region *region;
673  struct qla_hw_data *ha = vha->hw;
674  struct req_que *req = ha->req_q_map[0];
675 
676  def = 0;
677  if (IS_QLA25XX(ha))
678  def = 1;
679  else if (IS_QLA81XX(ha))
680  def = 2;
681 
682  /* Assign FCP prio region since older adapters may not have FLT, or
683  FCP prio region in it's FLT.
684  */
685  ha->flt_region_fcp_prio = ha->flags.port0 ?
686  fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688  ha->flt_region_flt = flt_addr;
689  wptr = (uint16_t *)req->ring;
690  flt = (struct qla_flt_header *)req->ring;
691  region = (struct qla_flt_region *)&flt[1];
692  ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693  flt_addr << 2, OPTROM_BURST_SIZE);
694  if (*wptr == __constant_cpu_to_le16(0xffff))
695  goto no_flash_data;
696  if (flt->version != __constant_cpu_to_le16(1)) {
697  ql_log(ql_log_warn, vha, 0x0047,
698  "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699  le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700  le16_to_cpu(flt->checksum));
701  goto no_flash_data;
702  }
703 
704  cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705  for (chksum = 0; cnt; cnt--)
706  chksum += le16_to_cpu(*wptr++);
707  if (chksum) {
708  ql_log(ql_log_fatal, vha, 0x0048,
709  "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710  le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711  le16_to_cpu(flt->checksum));
712  goto no_flash_data;
713  }
714 
715  loc = locations[1];
716  cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717  for ( ; cnt; cnt--, region++) {
718  /* Store addresses as DWORD offsets. */
719  start = le32_to_cpu(region->start) >> 2;
720  ql_dbg(ql_dbg_init, vha, 0x0049,
721  "FLT[%02x]: start=0x%x "
722  "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
723  start, le32_to_cpu(region->end) >> 2,
724  le32_to_cpu(region->size));
725 
726  switch (le32_to_cpu(region->code) & 0xff) {
727  case FLT_REG_FCOE_FW:
728  if (!IS_QLA8031(ha))
729  break;
730  ha->flt_region_fw = start;
731  break;
732  case FLT_REG_FW:
733  if (IS_QLA8031(ha))
734  break;
735  ha->flt_region_fw = start;
736  break;
737  case FLT_REG_BOOT_CODE:
738  ha->flt_region_boot = start;
739  break;
740  case FLT_REG_VPD_0:
741  if (IS_QLA8031(ha))
742  break;
744  if (IS_QLA82XX(ha))
745  break;
746  if (ha->flags.port0)
747  ha->flt_region_vpd = start;
748  break;
749  case FLT_REG_VPD_1:
750  if (IS_QLA82XX(ha) || IS_QLA8031(ha))
751  break;
752  if (!ha->flags.port0)
753  ha->flt_region_vpd = start;
754  break;
755  case FLT_REG_NVRAM_0:
756  if (IS_QLA8031(ha))
757  break;
758  if (ha->flags.port0)
759  ha->flt_region_nvram = start;
760  break;
761  case FLT_REG_NVRAM_1:
762  if (IS_QLA8031(ha))
763  break;
764  if (!ha->flags.port0)
765  ha->flt_region_nvram = start;
766  break;
767  case FLT_REG_FDT:
768  ha->flt_region_fdt = start;
769  break;
770  case FLT_REG_NPIV_CONF_0:
771  if (ha->flags.port0)
773  break;
774  case FLT_REG_NPIV_CONF_1:
775  if (!ha->flags.port0)
777  break;
778  case FLT_REG_GOLD_FW:
780  break;
781  case FLT_REG_FCP_PRIO_0:
782  if (ha->flags.port0)
784  break;
785  case FLT_REG_FCP_PRIO_1:
786  if (!ha->flags.port0)
788  break;
790  ha->flt_region_boot = start;
791  break;
792  case FLT_REG_FW_82XX:
793  ha->flt_region_fw = start;
794  break;
797  break;
800  break;
801  case FLT_REG_VPD_82XX:
802  ha->flt_region_vpd = start;
803  break;
804  case FLT_REG_FCOE_VPD_0:
805  if (!IS_QLA8031(ha))
806  break;
808  if (ha->flags.port0)
809  ha->flt_region_vpd = start;
810  break;
811  case FLT_REG_FCOE_VPD_1:
812  if (!IS_QLA8031(ha))
813  break;
814  if (!ha->flags.port0)
815  ha->flt_region_vpd = start;
816  break;
818  if (!IS_QLA8031(ha))
819  break;
820  if (ha->flags.port0)
821  ha->flt_region_nvram = start;
822  break;
824  if (!IS_QLA8031(ha))
825  break;
826  if (!ha->flags.port0)
827  ha->flt_region_nvram = start;
828  break;
829  }
830  }
831  goto done;
832 
833 no_flash_data:
834  /* Use hardcoded defaults. */
835  loc = locations[0];
836  ha->flt_region_fw = def_fw[def];
837  ha->flt_region_boot = def_boot[def];
838  ha->flt_region_vpd_nvram = def_vpd_nvram[def];
839  ha->flt_region_vpd = ha->flags.port0 ?
840  def_vpd0[def] : def_vpd1[def];
841  ha->flt_region_nvram = ha->flags.port0 ?
842  def_nvram0[def] : def_nvram1[def];
843  ha->flt_region_fdt = def_fdt[def];
844  ha->flt_region_npiv_conf = ha->flags.port0 ?
845  def_npiv_conf0[def] : def_npiv_conf1[def];
846 done:
847  ql_dbg(ql_dbg_init, vha, 0x004a,
848  "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
849  "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
850  loc, ha->flt_region_boot, ha->flt_region_fw,
853  ha->flt_region_fcp_prio);
854 }
855 
856 static void
857 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
858 {
859 #define FLASH_BLK_SIZE_4K 0x1000
860 #define FLASH_BLK_SIZE_32K 0x8000
861 #define FLASH_BLK_SIZE_64K 0x10000
862  const char *loc, *locations[] = { "MID", "FDT" };
864  uint16_t *wptr;
865  struct qla_fdt_layout *fdt;
866  uint8_t man_id, flash_id;
867  uint16_t mid = 0, fid = 0;
868  struct qla_hw_data *ha = vha->hw;
869  struct req_que *req = ha->req_q_map[0];
870 
871  wptr = (uint16_t *)req->ring;
872  fdt = (struct qla_fdt_layout *)req->ring;
873  ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
875  if (*wptr == __constant_cpu_to_le16(0xffff))
876  goto no_flash_data;
877  if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
878  fdt->sig[3] != 'D')
879  goto no_flash_data;
880 
881  for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
882  cnt++)
883  chksum += le16_to_cpu(*wptr++);
884  if (chksum) {
885  ql_dbg(ql_dbg_init, vha, 0x004c,
886  "Inconsistent FDT detected:"
887  " checksum=0x%x id=%c version0x%x.\n", chksum,
888  fdt->sig[0], le16_to_cpu(fdt->version));
890  (uint8_t *)fdt, sizeof(*fdt));
891  goto no_flash_data;
892  }
893 
894  loc = locations[1];
895  mid = le16_to_cpu(fdt->man_id);
896  fid = le16_to_cpu(fdt->id);
898  ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
900  if (fdt->unprotect_sec_cmd) {
901  ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
902  fdt->unprotect_sec_cmd);
904  flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
905  flash_conf_addr(ha, 0x0336);
906  }
907  goto done;
908 no_flash_data:
909  loc = locations[0];
910  if (IS_QLA82XX(ha)) {
912  goto done;
913  }
914  qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
915  mid = man_id;
916  fid = flash_id;
917  ha->fdt_wrt_disable = 0x9c;
918  ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
919  switch (man_id) {
920  case 0xbf: /* STT flash. */
921  if (flash_id == 0x8e)
923  else
925 
926  if (flash_id == 0x80)
927  ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
928  break;
929  case 0x13: /* ST M25P80. */
931  break;
932  case 0x1f: /* Atmel 26DF081A. */
934  ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
935  ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
936  ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
937  break;
938  default:
939  /* Default to 64 kb sector size. */
941  break;
942  }
943 done:
944  ql_dbg(ql_dbg_init, vha, 0x004d,
945  "FDT[%s]: (0x%x/0x%x) erase=0x%x "
946  "pr=%x wrtd=0x%x blk=0x%x.\n",
947  loc, mid, fid,
950 
951 }
952 
953 static void
954 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
955 {
956 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
957  uint32_t *wptr;
958  struct qla_hw_data *ha = vha->hw;
959  struct req_que *req = ha->req_q_map[0];
960 
961  if (!IS_QLA82XX(ha))
962  return;
963 
964  wptr = (uint32_t *)req->ring;
965  ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
966  QLA82XX_IDC_PARAM_ADDR , 8);
967 
968  if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
971  } else {
972  ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
973  ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
974  }
975  ql_dbg(ql_dbg_init, vha, 0x004e,
976  "fcoe_dev_init_timeout=%d "
977  "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
978  ha->fcoe_reset_timeout);
979  return;
980 }
981 
982 int
984 {
985  int ret;
986  uint32_t flt_addr;
987  struct qla_hw_data *ha = vha->hw;
988 
989  if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
990  !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
991  return QLA_SUCCESS;
992 
993  ret = qla2xxx_find_flt_start(vha, &flt_addr);
994  if (ret != QLA_SUCCESS)
995  return ret;
996 
997  qla2xxx_get_flt_info(vha, flt_addr);
998  qla2xxx_get_fdt_info(vha);
999  qla2xxx_get_idc_param(vha);
1000 
1001  return QLA_SUCCESS;
1002 }
1003 
1004 void
1006 {
1007 #define NPIV_CONFIG_SIZE (16*1024)
1008  void *data;
1009  uint16_t *wptr;
1010  uint16_t cnt, chksum;
1011  int i;
1012  struct qla_npiv_header hdr;
1013  struct qla_npiv_entry *entry;
1014  struct qla_hw_data *ha = vha->hw;
1015 
1016  if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1017  !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1018  return;
1019 
1020  if (ha->flags.nic_core_reset_hdlr_active)
1021  return;
1022 
1023  ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1024  ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1025  if (hdr.version == __constant_cpu_to_le16(0xffff))
1026  return;
1027  if (hdr.version != __constant_cpu_to_le16(1)) {
1028  ql_dbg(ql_dbg_user, vha, 0x7090,
1029  "Unsupported NPIV-Config "
1030  "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1032  le16_to_cpu(hdr.checksum));
1033  return;
1034  }
1035 
1037  if (!data) {
1038  ql_log(ql_log_warn, vha, 0x7091,
1039  "Unable to allocate memory for data.\n");
1040  return;
1041  }
1042 
1043  ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1045 
1046  cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1047  sizeof(struct qla_npiv_entry)) >> 1;
1048  for (wptr = data, chksum = 0; cnt; cnt--)
1049  chksum += le16_to_cpu(*wptr++);
1050  if (chksum) {
1051  ql_dbg(ql_dbg_user, vha, 0x7092,
1052  "Inconsistent NPIV-Config "
1053  "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1054  le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1055  le16_to_cpu(hdr.checksum));
1056  goto done;
1057  }
1058 
1059  entry = data + sizeof(struct qla_npiv_header);
1060  cnt = le16_to_cpu(hdr.entries);
1061  for (i = 0; cnt; cnt--, entry++, i++) {
1062  uint16_t flags;
1063  struct fc_vport_identifiers vid;
1064  struct fc_vport *vport;
1065 
1066  memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1067 
1068  flags = le16_to_cpu(entry->flags);
1069  if (flags == 0xffff)
1070  continue;
1071  if ((flags & BIT_0) == 0)
1072  continue;
1073 
1074  memset(&vid, 0, sizeof(vid));
1077  vid.disable = false;
1078  vid.port_name = wwn_to_u64(entry->port_name);
1079  vid.node_name = wwn_to_u64(entry->node_name);
1080 
1081  ql_dbg(ql_dbg_user, vha, 0x7093,
1082  "NPIV[%02x]: wwpn=%llx "
1083  "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1084  (unsigned long long)vid.port_name,
1085  (unsigned long long)vid.node_name,
1086  le16_to_cpu(entry->vf_id),
1087  entry->q_qos, entry->f_qos);
1088 
1089  if (i < QLA_PRECONFIG_VPORTS) {
1090  vport = fc_vport_create(vha->host, 0, &vid);
1091  if (!vport)
1092  ql_log(ql_log_warn, vha, 0x7094,
1093  "NPIV-Config Failed to create vport [%02x]: "
1094  "wwpn=%llx wwnn=%llx.\n", cnt,
1095  (unsigned long long)vid.port_name,
1096  (unsigned long long)vid.node_name);
1097  }
1098  }
1099 done:
1100  kfree(data);
1101 }
1102 
1103 static int
1104 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1105 {
1106  struct qla_hw_data *ha = vha->hw;
1107  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1108 
1109  if (ha->flags.fac_supported)
1110  return qla81xx_fac_do_write_enable(vha, 1);
1111 
1112  /* Enable flash write. */
1113  WRT_REG_DWORD(&reg->ctrl_status,
1115  RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1116 
1117  if (!ha->fdt_wrt_disable)
1118  goto done;
1119 
1120  /* Disable flash write-protection, first clear SR protection bit */
1121  qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1122  /* Then write zero again to clear remaining SR bits.*/
1123  qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1124 done:
1125  return QLA_SUCCESS;
1126 }
1127 
1128 static int
1129 qla24xx_protect_flash(scsi_qla_host_t *vha)
1130 {
1131  uint32_t cnt;
1132  struct qla_hw_data *ha = vha->hw;
1133  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1134 
1135  if (ha->flags.fac_supported)
1136  return qla81xx_fac_do_write_enable(vha, 0);
1137 
1138  if (!ha->fdt_wrt_disable)
1139  goto skip_wrt_protect;
1140 
1141  /* Enable flash write-protection and wait for completion. */
1142  qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1143  ha->fdt_wrt_disable);
1144  for (cnt = 300; cnt &&
1145  qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1146  cnt--) {
1147  udelay(10);
1148  }
1149 
1150 skip_wrt_protect:
1151  /* Disable flash write. */
1152  WRT_REG_DWORD(&reg->ctrl_status,
1154  RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1155 
1156  return QLA_SUCCESS;
1157 }
1158 
1159 static int
1160 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1161 {
1162  struct qla_hw_data *ha = vha->hw;
1163  uint32_t start, finish;
1164 
1165  if (ha->flags.fac_supported) {
1166  start = fdata >> 2;
1167  finish = start + (ha->fdt_block_size >> 2) - 1;
1168  return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1169  start), flash_data_addr(ha, finish));
1170  }
1171 
1172  return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1173  (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1174  ((fdata >> 16) & 0xff));
1175 }
1176 
1177 static int
1178 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1179  uint32_t dwords)
1180 {
1181  int ret;
1182  uint32_t liter;
1183  uint32_t sec_mask, rest_addr;
1184  uint32_t fdata;
1185  dma_addr_t optrom_dma;
1186  void *optrom = NULL;
1187  struct qla_hw_data *ha = vha->hw;
1188 
1189  /* Prepare burst-capable write on supported ISPs. */
1190  if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) &&
1191  !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1192  optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1193  &optrom_dma, GFP_KERNEL);
1194  if (!optrom) {
1195  ql_log(ql_log_warn, vha, 0x7095,
1196  "Unable to allocate "
1197  "memory for optrom burst write (%x KB).\n",
1198  OPTROM_BURST_SIZE / 1024);
1199  }
1200  }
1201 
1202  rest_addr = (ha->fdt_block_size >> 2) - 1;
1203  sec_mask = ~rest_addr;
1204 
1205  ret = qla24xx_unprotect_flash(vha);
1206  if (ret != QLA_SUCCESS) {
1207  ql_log(ql_log_warn, vha, 0x7096,
1208  "Unable to unprotect flash for update.\n");
1209  goto done;
1210  }
1211 
1212  for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1213  fdata = (faddr & sec_mask) << 2;
1214 
1215  /* Are we at the beginning of a sector? */
1216  if ((faddr & rest_addr) == 0) {
1217  /* Do sector unprotect. */
1218  if (ha->fdt_unprotect_sec_cmd)
1219  qla24xx_write_flash_dword(ha,
1221  (fdata & 0xff00) | ((fdata << 16) &
1222  0xff0000) | ((fdata >> 16) & 0xff));
1223  ret = qla24xx_erase_sector(vha, fdata);
1224  if (ret != QLA_SUCCESS) {
1225  ql_dbg(ql_dbg_user, vha, 0x7007,
1226  "Unable to erase erase sector: address=%x.\n",
1227  faddr);
1228  break;
1229  }
1230  }
1231 
1232  /* Go with burst-write. */
1233  if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1234  /* Copy data to DMA'ble buffer. */
1235  memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1236 
1237  ret = qla2x00_load_ram(vha, optrom_dma,
1238  flash_data_addr(ha, faddr),
1240  if (ret != QLA_SUCCESS) {
1241  ql_log(ql_log_warn, vha, 0x7097,
1242  "Unable to burst-write optrom segment "
1243  "(%x/%x/%llx).\n", ret,
1244  flash_data_addr(ha, faddr),
1245  (unsigned long long)optrom_dma);
1246  ql_log(ql_log_warn, vha, 0x7098,
1247  "Reverting to slow-write.\n");
1248 
1249  dma_free_coherent(&ha->pdev->dev,
1250  OPTROM_BURST_SIZE, optrom, optrom_dma);
1251  optrom = NULL;
1252  } else {
1253  liter += OPTROM_BURST_DWORDS - 1;
1254  faddr += OPTROM_BURST_DWORDS - 1;
1255  dwptr += OPTROM_BURST_DWORDS - 1;
1256  continue;
1257  }
1258  }
1259 
1260  ret = qla24xx_write_flash_dword(ha,
1261  flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1262  if (ret != QLA_SUCCESS) {
1263  ql_dbg(ql_dbg_user, vha, 0x7006,
1264  "Unable to program flash address=%x data=%x.\n",
1265  faddr, *dwptr);
1266  break;
1267  }
1268 
1269  /* Do sector protect. */
1270  if (ha->fdt_unprotect_sec_cmd &&
1271  ((faddr & rest_addr) == rest_addr))
1272  qla24xx_write_flash_dword(ha,
1273  ha->fdt_protect_sec_cmd,
1274  (fdata & 0xff00) | ((fdata << 16) &
1275  0xff0000) | ((fdata >> 16) & 0xff));
1276  }
1277 
1278  ret = qla24xx_protect_flash(vha);
1279  if (ret != QLA_SUCCESS)
1280  ql_log(ql_log_warn, vha, 0x7099,
1281  "Unable to protect flash after update.\n");
1282 done:
1283  if (optrom)
1284  dma_free_coherent(&ha->pdev->dev,
1285  OPTROM_BURST_SIZE, optrom, optrom_dma);
1286 
1287  return ret;
1288 }
1289 
1290 uint8_t *
1292  uint32_t bytes)
1293 {
1294  uint32_t i;
1295  uint16_t *wptr;
1296  struct qla_hw_data *ha = vha->hw;
1297 
1298  /* Word reads to NVRAM via registers. */
1299  wptr = (uint16_t *)buf;
1300  qla2x00_lock_nvram_access(ha);
1301  for (i = 0; i < bytes >> 1; i++, naddr++)
1302  wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1303  naddr));
1304  qla2x00_unlock_nvram_access(ha);
1305 
1306  return buf;
1307 }
1308 
1309 uint8_t *
1311  uint32_t bytes)
1312 {
1313  uint32_t i;
1314  uint32_t *dwptr;
1315  struct qla_hw_data *ha = vha->hw;
1316 
1317  if (IS_QLA82XX(ha))
1318  return buf;
1319 
1320  /* Dword reads to flash. */
1321  dwptr = (uint32_t *)buf;
1322  for (i = 0; i < bytes >> 2; i++, naddr++)
1323  dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1324  nvram_data_addr(ha, naddr)));
1325 
1326  return buf;
1327 }
1328 
1329 int
1331  uint32_t bytes)
1332 {
1333  int ret, stat;
1334  uint32_t i;
1335  uint16_t *wptr;
1336  unsigned long flags;
1337  struct qla_hw_data *ha = vha->hw;
1338 
1339  ret = QLA_SUCCESS;
1340 
1341  spin_lock_irqsave(&ha->hardware_lock, flags);
1342  qla2x00_lock_nvram_access(ha);
1343 
1344  /* Disable NVRAM write-protection. */
1345  stat = qla2x00_clear_nvram_protection(ha);
1346 
1347  wptr = (uint16_t *)buf;
1348  for (i = 0; i < bytes >> 1; i++, naddr++) {
1349  qla2x00_write_nvram_word(ha, naddr,
1350  cpu_to_le16(*wptr));
1351  wptr++;
1352  }
1353 
1354  /* Enable NVRAM write-protection. */
1355  qla2x00_set_nvram_protection(ha, stat);
1356 
1357  qla2x00_unlock_nvram_access(ha);
1358  spin_unlock_irqrestore(&ha->hardware_lock, flags);
1359 
1360  return ret;
1361 }
1362 
1363 int
1365  uint32_t bytes)
1366 {
1367  int ret;
1368  uint32_t i;
1369  uint32_t *dwptr;
1370  struct qla_hw_data *ha = vha->hw;
1371  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1372 
1373  ret = QLA_SUCCESS;
1374 
1375  if (IS_QLA82XX(ha))
1376  return ret;
1377 
1378  /* Enable flash write. */
1379  WRT_REG_DWORD(&reg->ctrl_status,
1381  RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1382 
1383  /* Disable NVRAM write-protection. */
1384  qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1385  qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1386 
1387  /* Dword writes to flash. */
1388  dwptr = (uint32_t *)buf;
1389  for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1390  ret = qla24xx_write_flash_dword(ha,
1391  nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1392  if (ret != QLA_SUCCESS) {
1393  ql_dbg(ql_dbg_user, vha, 0x709a,
1394  "Unable to program nvram address=%x data=%x.\n",
1395  naddr, *dwptr);
1396  break;
1397  }
1398  }
1399 
1400  /* Enable NVRAM write-protection. */
1401  qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1402 
1403  /* Disable flash write. */
1404  WRT_REG_DWORD(&reg->ctrl_status,
1406  RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1407 
1408  return ret;
1409 }
1410 
1411 uint8_t *
1413  uint32_t bytes)
1414 {
1415  uint32_t i;
1416  uint32_t *dwptr;
1417  struct qla_hw_data *ha = vha->hw;
1418 
1419  /* Dword reads to flash. */
1420  dwptr = (uint32_t *)buf;
1421  for (i = 0; i < bytes >> 2; i++, naddr++)
1422  dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1423  flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1424 
1425  return buf;
1426 }
1427 
1428 int
1430  uint32_t bytes)
1431 {
1432  struct qla_hw_data *ha = vha->hw;
1433 #define RMW_BUFFER_SIZE (64 * 1024)
1434  uint8_t *dbuf;
1435 
1436  dbuf = vmalloc(RMW_BUFFER_SIZE);
1437  if (!dbuf)
1438  return QLA_MEMORY_ALLOC_FAILED;
1439  ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1440  RMW_BUFFER_SIZE);
1441  memcpy(dbuf + (naddr << 2), buf, bytes);
1442  ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1443  RMW_BUFFER_SIZE);
1444  vfree(dbuf);
1445 
1446  return QLA_SUCCESS;
1447 }
1448 
1449 static inline void
1450 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1451 {
1452  if (IS_QLA2322(ha)) {
1453  /* Flip all colors. */
1454  if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1455  /* Turn off. */
1456  ha->beacon_color_state = 0;
1457  *pflags = GPIO_LED_ALL_OFF;
1458  } else {
1459  /* Turn on. */
1461  *pflags = GPIO_LED_RGA_ON;
1462  }
1463  } else {
1464  /* Flip green led only. */
1465  if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1466  /* Turn off. */
1467  ha->beacon_color_state = 0;
1468  *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1469  } else {
1470  /* Turn on. */
1472  *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1473  }
1474  }
1475 }
1476 
1477 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1478 
1479 void
1481 {
1482  uint16_t gpio_enable;
1483  uint16_t gpio_data;
1484  uint16_t led_color = 0;
1485  unsigned long flags;
1486  struct qla_hw_data *ha = vha->hw;
1487  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1488 
1489  if (IS_QLA82XX(ha))
1490  return;
1491 
1492  spin_lock_irqsave(&ha->hardware_lock, flags);
1493 
1494  /* Save the Original GPIOE. */
1495  if (ha->pio_address) {
1496  gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1497  gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1498  } else {
1499  gpio_enable = RD_REG_WORD(&reg->gpioe);
1500  gpio_data = RD_REG_WORD(&reg->gpiod);
1501  }
1502 
1503  /* Set the modified gpio_enable values */
1504  gpio_enable |= GPIO_LED_MASK;
1505 
1506  if (ha->pio_address) {
1507  WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1508  } else {
1509  WRT_REG_WORD(&reg->gpioe, gpio_enable);
1510  RD_REG_WORD(&reg->gpioe);
1511  }
1512 
1513  qla2x00_flip_colors(ha, &led_color);
1514 
1515  /* Clear out any previously set LED color. */
1516  gpio_data &= ~GPIO_LED_MASK;
1517 
1518  /* Set the new input LED color to GPIOD. */
1519  gpio_data |= led_color;
1520 
1521  /* Set the modified gpio_data values */
1522  if (ha->pio_address) {
1523  WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1524  } else {
1525  WRT_REG_WORD(&reg->gpiod, gpio_data);
1526  RD_REG_WORD(&reg->gpiod);
1527  }
1528 
1529  spin_unlock_irqrestore(&ha->hardware_lock, flags);
1530 }
1531 
1532 int
1534 {
1535  uint16_t gpio_enable;
1536  uint16_t gpio_data;
1537  unsigned long flags;
1538  struct qla_hw_data *ha = vha->hw;
1539  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1540 
1542  ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1543 
1544  if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1545  ql_log(ql_log_warn, vha, 0x709b,
1546  "Unable to update fw options (beacon on).\n");
1547  return QLA_FUNCTION_FAILED;
1548  }
1549 
1550  /* Turn off LEDs. */
1551  spin_lock_irqsave(&ha->hardware_lock, flags);
1552  if (ha->pio_address) {
1553  gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1554  gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1555  } else {
1556  gpio_enable = RD_REG_WORD(&reg->gpioe);
1557  gpio_data = RD_REG_WORD(&reg->gpiod);
1558  }
1559  gpio_enable |= GPIO_LED_MASK;
1560 
1561  /* Set the modified gpio_enable values. */
1562  if (ha->pio_address) {
1563  WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1564  } else {
1565  WRT_REG_WORD(&reg->gpioe, gpio_enable);
1566  RD_REG_WORD(&reg->gpioe);
1567  }
1568 
1569  /* Clear out previously set LED colour. */
1570  gpio_data &= ~GPIO_LED_MASK;
1571  if (ha->pio_address) {
1572  WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1573  } else {
1574  WRT_REG_WORD(&reg->gpiod, gpio_data);
1575  RD_REG_WORD(&reg->gpiod);
1576  }
1577  spin_unlock_irqrestore(&ha->hardware_lock, flags);
1578 
1579  /*
1580  * Let the per HBA timer kick off the blinking process based on
1581  * the following flags. No need to do anything else now.
1582  */
1583  ha->beacon_blink_led = 1;
1584  ha->beacon_color_state = 0;
1585 
1586  return QLA_SUCCESS;
1587 }
1588 
1589 int
1591 {
1592  int rval = QLA_SUCCESS;
1593  struct qla_hw_data *ha = vha->hw;
1594 
1595  ha->beacon_blink_led = 0;
1596 
1597  /* Set the on flag so when it gets flipped it will be off. */
1598  if (IS_QLA2322(ha))
1600  else
1602 
1603  ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1604 
1606  ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1607 
1608  rval = qla2x00_set_fw_options(vha, ha->fw_options);
1609  if (rval != QLA_SUCCESS)
1610  ql_log(ql_log_warn, vha, 0x709c,
1611  "Unable to update fw options (beacon off).\n");
1612  return rval;
1613 }
1614 
1615 
1616 static inline void
1617 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1618 {
1619  /* Flip all colors. */
1620  if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1621  /* Turn off. */
1622  ha->beacon_color_state = 0;
1623  *pflags = 0;
1624  } else {
1625  /* Turn on. */
1628  }
1629 }
1630 
1631 void
1633 {
1634  uint16_t led_color = 0;
1635  uint32_t gpio_data;
1636  unsigned long flags;
1637  struct qla_hw_data *ha = vha->hw;
1638  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1639 
1640  /* Save the Original GPIOD. */
1641  spin_lock_irqsave(&ha->hardware_lock, flags);
1642  gpio_data = RD_REG_DWORD(&reg->gpiod);
1643 
1644  /* Enable the gpio_data reg for update. */
1645  gpio_data |= GPDX_LED_UPDATE_MASK;
1646 
1647  WRT_REG_DWORD(&reg->gpiod, gpio_data);
1648  gpio_data = RD_REG_DWORD(&reg->gpiod);
1649 
1650  /* Set the color bits. */
1651  qla24xx_flip_colors(ha, &led_color);
1652 
1653  /* Clear out any previously set LED color. */
1654  gpio_data &= ~GPDX_LED_COLOR_MASK;
1655 
1656  /* Set the new input LED color to GPIOD. */
1657  gpio_data |= led_color;
1658 
1659  /* Set the modified gpio_data values. */
1660  WRT_REG_DWORD(&reg->gpiod, gpio_data);
1661  gpio_data = RD_REG_DWORD(&reg->gpiod);
1662  spin_unlock_irqrestore(&ha->hardware_lock, flags);
1663 }
1664 
1665 static uint32_t
1666 qla83xx_select_led_port(struct qla_hw_data *ha)
1667 {
1668  uint32_t led_select_value = 0;
1669 
1670  if (!IS_QLA83XX(ha))
1671  goto out;
1672 
1673  if (ha->flags.port0)
1674  led_select_value = QLA83XX_LED_PORT0;
1675  else
1676  led_select_value = QLA83XX_LED_PORT1;
1677 
1678 out:
1679  return led_select_value;
1680 }
1681 
1682 void
1684 {
1685  uint32_t led_select_value;
1686  struct qla_hw_data *ha = vha->hw;
1687  uint16_t led_cfg[6];
1688  uint16_t orig_led_cfg[6];
1689  uint32_t led_10_value, led_43_value;
1690 
1691  if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
1692  return;
1693 
1694  if (!ha->beacon_blink_led)
1695  return;
1696 
1697  if (IS_QLA2031(ha)) {
1698  led_select_value = qla83xx_select_led_port(ha);
1699 
1700  qla83xx_wr_reg(vha, led_select_value, 0x40002000);
1701  qla83xx_wr_reg(vha, led_select_value + 4, 0x40002000);
1702  msleep(1000);
1703  qla83xx_wr_reg(vha, led_select_value, 0x40004000);
1704  qla83xx_wr_reg(vha, led_select_value + 4, 0x40004000);
1705  } else if (IS_QLA8031(ha)) {
1706  led_select_value = qla83xx_select_led_port(ha);
1707 
1708  qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1709  qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1710  qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1711  msleep(500);
1712  qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1713  msleep(1000);
1714  qla83xx_wr_reg(vha, led_select_value, led_10_value);
1715  qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1716  } else if (IS_QLA81XX(ha)) {
1717  int rval;
1718 
1719  /* Save Current */
1720  rval = qla81xx_get_led_config(vha, orig_led_cfg);
1721  /* Do the blink */
1722  if (rval == QLA_SUCCESS) {
1723  if (IS_QLA81XX(ha)) {
1724  led_cfg[0] = 0x4000;
1725  led_cfg[1] = 0x2000;
1726  led_cfg[2] = 0;
1727  led_cfg[3] = 0;
1728  led_cfg[4] = 0;
1729  led_cfg[5] = 0;
1730  } else {
1731  led_cfg[0] = 0x4000;
1732  led_cfg[1] = 0x4000;
1733  led_cfg[2] = 0x4000;
1734  led_cfg[3] = 0x2000;
1735  led_cfg[4] = 0;
1736  led_cfg[5] = 0x2000;
1737  }
1738  rval = qla81xx_set_led_config(vha, led_cfg);
1739  msleep(1000);
1740  if (IS_QLA81XX(ha)) {
1741  led_cfg[0] = 0x4000;
1742  led_cfg[1] = 0x2000;
1743  led_cfg[2] = 0;
1744  } else {
1745  led_cfg[0] = 0x4000;
1746  led_cfg[1] = 0x2000;
1747  led_cfg[2] = 0x4000;
1748  led_cfg[3] = 0x4000;
1749  led_cfg[4] = 0;
1750  led_cfg[5] = 0x2000;
1751  }
1752  rval = qla81xx_set_led_config(vha, led_cfg);
1753  }
1754  /* On exit, restore original (presumes no status change) */
1755  qla81xx_set_led_config(vha, orig_led_cfg);
1756  }
1757 }
1758 
1759 int
1761 {
1762  uint32_t gpio_data;
1763  unsigned long flags;
1764  struct qla_hw_data *ha = vha->hw;
1765  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1766 
1767  if (IS_QLA82XX(ha))
1768  return QLA_SUCCESS;
1769 
1770  if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1771  goto skip_gpio; /* let blink handle it */
1772 
1773  if (ha->beacon_blink_led == 0) {
1774  /* Enable firmware for update */
1776 
1778  return QLA_FUNCTION_FAILED;
1779 
1780  if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1781  QLA_SUCCESS) {
1782  ql_log(ql_log_warn, vha, 0x7009,
1783  "Unable to update fw options (beacon on).\n");
1784  return QLA_FUNCTION_FAILED;
1785  }
1786 
1787  if (IS_QLA2031(ha))
1788  goto skip_gpio;
1789 
1790  spin_lock_irqsave(&ha->hardware_lock, flags);
1791  gpio_data = RD_REG_DWORD(&reg->gpiod);
1792 
1793  /* Enable the gpio_data reg for update. */
1794  gpio_data |= GPDX_LED_UPDATE_MASK;
1795  WRT_REG_DWORD(&reg->gpiod, gpio_data);
1796  RD_REG_DWORD(&reg->gpiod);
1797 
1798  spin_unlock_irqrestore(&ha->hardware_lock, flags);
1799  }
1800 
1801  /* So all colors blink together. */
1802  ha->beacon_color_state = 0;
1803 
1804 skip_gpio:
1805  /* Let the per HBA timer kick off the blinking process. */
1806  ha->beacon_blink_led = 1;
1807 
1808  return QLA_SUCCESS;
1809 }
1810 
1811 int
1813 {
1814  uint32_t gpio_data;
1815  unsigned long flags;
1816  struct qla_hw_data *ha = vha->hw;
1817  struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1818 
1819  if (IS_QLA82XX(ha))
1820  return QLA_SUCCESS;
1821 
1822  ha->beacon_blink_led = 0;
1823 
1824  if (IS_QLA2031(ha))
1825  goto set_fw_options;
1826 
1827  if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1828  return QLA_SUCCESS;
1829 
1831 
1832  ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1833 
1834  /* Give control back to firmware. */
1835  spin_lock_irqsave(&ha->hardware_lock, flags);
1836  gpio_data = RD_REG_DWORD(&reg->gpiod);
1837 
1838  /* Disable the gpio_data reg for update. */
1839  gpio_data &= ~GPDX_LED_UPDATE_MASK;
1840  WRT_REG_DWORD(&reg->gpiod, gpio_data);
1841  RD_REG_DWORD(&reg->gpiod);
1842  spin_unlock_irqrestore(&ha->hardware_lock, flags);
1843 
1844 set_fw_options:
1846 
1847  if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1848  ql_log(ql_log_warn, vha, 0x704d,
1849  "Unable to update fw options (beacon on).\n");
1850  return QLA_FUNCTION_FAILED;
1851  }
1852 
1853  if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1854  ql_log(ql_log_warn, vha, 0x704e,
1855  "Unable to update fw options (beacon on).\n");
1856  return QLA_FUNCTION_FAILED;
1857  }
1858 
1859  return QLA_SUCCESS;
1860 }
1861 
1862 
1863 /*
1864  * Flash support routines
1865  */
1866 
1871 static void
1872 qla2x00_flash_enable(struct qla_hw_data *ha)
1873 {
1874  uint16_t data;
1875  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1876 
1877  data = RD_REG_WORD(&reg->ctrl_status);
1878  data |= CSR_FLASH_ENABLE;
1879  WRT_REG_WORD(&reg->ctrl_status, data);
1880  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1881 }
1882 
1887 static void
1888 qla2x00_flash_disable(struct qla_hw_data *ha)
1889 {
1890  uint16_t data;
1891  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1892 
1893  data = RD_REG_WORD(&reg->ctrl_status);
1894  data &= ~(CSR_FLASH_ENABLE);
1895  WRT_REG_WORD(&reg->ctrl_status, data);
1896  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1897 }
1898 
1908 static uint8_t
1909 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1910 {
1911  uint16_t data;
1912  uint16_t bank_select;
1913  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1914 
1915  bank_select = RD_REG_WORD(&reg->ctrl_status);
1916 
1917  if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1918  /* Specify 64K address range: */
1919  /* clear out Module Select and Flash Address bits [19:16]. */
1920  bank_select &= ~0xf8;
1921  bank_select |= addr >> 12 & 0xf0;
1922  bank_select |= CSR_FLASH_64K_BANK;
1923  WRT_REG_WORD(&reg->ctrl_status, bank_select);
1924  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1925 
1926  WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1927  data = RD_REG_WORD(&reg->flash_data);
1928 
1929  return (uint8_t)data;
1930  }
1931 
1932  /* Setup bit 16 of flash address. */
1933  if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1934  bank_select |= CSR_FLASH_64K_BANK;
1935  WRT_REG_WORD(&reg->ctrl_status, bank_select);
1936  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1937  } else if (((addr & BIT_16) == 0) &&
1938  (bank_select & CSR_FLASH_64K_BANK)) {
1939  bank_select &= ~(CSR_FLASH_64K_BANK);
1940  WRT_REG_WORD(&reg->ctrl_status, bank_select);
1941  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1942  }
1943 
1944  /* Always perform IO mapped accesses to the FLASH registers. */
1945  if (ha->pio_address) {
1946  uint16_t data2;
1947 
1949  do {
1950  data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1951  barrier();
1952  cpu_relax();
1953  data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1954  } while (data != data2);
1955  } else {
1956  WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1957  data = qla2x00_debounce_register(&reg->flash_data);
1958  }
1959 
1960  return (uint8_t)data;
1961 }
1962 
1969 static void
1970 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1971 {
1972  uint16_t bank_select;
1973  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1974 
1975  bank_select = RD_REG_WORD(&reg->ctrl_status);
1976  if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1977  /* Specify 64K address range: */
1978  /* clear out Module Select and Flash Address bits [19:16]. */
1979  bank_select &= ~0xf8;
1980  bank_select |= addr >> 12 & 0xf0;
1981  bank_select |= CSR_FLASH_64K_BANK;
1982  WRT_REG_WORD(&reg->ctrl_status, bank_select);
1983  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1984 
1985  WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1986  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1987  WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1988  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1989 
1990  return;
1991  }
1992 
1993  /* Setup bit 16 of flash address. */
1994  if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1995  bank_select |= CSR_FLASH_64K_BANK;
1996  WRT_REG_WORD(&reg->ctrl_status, bank_select);
1997  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1998  } else if (((addr & BIT_16) == 0) &&
1999  (bank_select & CSR_FLASH_64K_BANK)) {
2000  bank_select &= ~(CSR_FLASH_64K_BANK);
2001  WRT_REG_WORD(&reg->ctrl_status, bank_select);
2002  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2003  }
2004 
2005  /* Always perform IO mapped accesses to the FLASH registers. */
2006  if (ha->pio_address) {
2009  } else {
2010  WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2011  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2012  WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2013  RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2014  }
2015 }
2016 
2032 static int
2033 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2034  uint8_t man_id, uint8_t flash_id)
2035 {
2036  int status;
2038  uint32_t cnt;
2039 
2040  status = 1;
2041 
2042  /* Wait for 30 seconds for command to finish. */
2043  poll_data &= BIT_7;
2044  for (cnt = 3000000; cnt; cnt--) {
2045  flash_data = qla2x00_read_flash_byte(ha, addr);
2046  if ((flash_data & BIT_7) == poll_data) {
2047  status = 0;
2048  break;
2049  }
2050 
2051  if (man_id != 0x40 && man_id != 0xda) {
2052  if ((flash_data & BIT_5) && cnt > 2)
2053  cnt = 2;
2054  }
2055  udelay(10);
2056  barrier();
2057  cond_resched();
2058  }
2059  return status;
2060 }
2061 
2072 static int
2073 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2074  uint8_t data, uint8_t man_id, uint8_t flash_id)
2075 {
2076  /* Write Program Command Sequence. */
2077  if (IS_OEM_001(ha)) {
2078  qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2079  qla2x00_write_flash_byte(ha, 0x555, 0x55);
2080  qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2081  qla2x00_write_flash_byte(ha, addr, data);
2082  } else {
2083  if (man_id == 0xda && flash_id == 0xc1) {
2084  qla2x00_write_flash_byte(ha, addr, data);
2085  if (addr & 0x7e)
2086  return 0;
2087  } else {
2088  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2089  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2090  qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2091  qla2x00_write_flash_byte(ha, addr, data);
2092  }
2093  }
2094 
2095  udelay(150);
2096 
2097  /* Wait for write to complete. */
2098  return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2099 }
2100 
2109 static int
2110 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2111 {
2112  /* Individual Sector Erase Command Sequence */
2113  if (IS_OEM_001(ha)) {
2114  qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2115  qla2x00_write_flash_byte(ha, 0x555, 0x55);
2116  qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2117  qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2118  qla2x00_write_flash_byte(ha, 0x555, 0x55);
2119  qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2120  } else {
2121  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2122  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2123  qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2124  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2125  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2126  qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2127  }
2128 
2129  udelay(150);
2130 
2131  /* Wait for erase to complete. */
2132  return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2133 }
2134 
2145 static int
2146 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2147  uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2148 {
2149  /* Individual Sector Erase Command Sequence */
2150  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2151  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2152  qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2153  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2154  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2155  if (man_id == 0x1f && flash_id == 0x13)
2156  qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2157  else
2158  qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2159 
2160  udelay(150);
2161 
2162  /* Wait for erase to complete. */
2163  return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2164 }
2165 
2171 static void
2172 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2173  uint8_t *flash_id)
2174 {
2175  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2176  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2177  qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2178  *man_id = qla2x00_read_flash_byte(ha, 0x0000);
2179  *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2180  qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2181  qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2182  qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2183 }
2184 
2185 static void
2186 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2188 {
2189  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2190  uint32_t midpoint, ilength;
2191  uint8_t data;
2192 
2193  midpoint = length / 2;
2194 
2195  WRT_REG_WORD(&reg->nvram, 0);
2196  RD_REG_WORD(&reg->nvram);
2197  for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2198  if (ilength == midpoint) {
2199  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2200  RD_REG_WORD(&reg->nvram);
2201  }
2202  data = qla2x00_read_flash_byte(ha, saddr);
2203  if (saddr % 100)
2204  udelay(10);
2205  *tmp_buf = data;
2206  cond_resched();
2207  }
2208 }
2209 
2210 static inline void
2211 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2212 {
2213  int cnt;
2214  unsigned long flags;
2215  struct qla_hw_data *ha = vha->hw;
2216  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2217 
2218  /* Suspend HBA. */
2219  scsi_block_requests(vha->host);
2220  ha->isp_ops->disable_intrs(ha);
2222 
2223  /* Pause RISC. */
2224  spin_lock_irqsave(&ha->hardware_lock, flags);
2226  RD_REG_WORD(&reg->hccr);
2227  if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2228  for (cnt = 0; cnt < 30000; cnt++) {
2229  if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2230  break;
2231  udelay(100);
2232  }
2233  } else {
2234  udelay(10);
2235  }
2236  spin_unlock_irqrestore(&ha->hardware_lock, flags);
2237 }
2238 
2239 static inline void
2240 qla2x00_resume_hba(struct scsi_qla_host *vha)
2241 {
2242  struct qla_hw_data *ha = vha->hw;
2243 
2244  /* Resume HBA. */
2247  qla2xxx_wake_dpc(vha);
2250 }
2251 
2252 uint8_t *
2254  uint32_t offset, uint32_t length)
2255 {
2256  uint32_t addr, midpoint;
2257  uint8_t *data;
2258  struct qla_hw_data *ha = vha->hw;
2259  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2260 
2261  /* Suspend HBA. */
2262  qla2x00_suspend_hba(vha);
2263 
2264  /* Go with read. */
2265  midpoint = ha->optrom_size / 2;
2266 
2267  qla2x00_flash_enable(ha);
2268  WRT_REG_WORD(&reg->nvram, 0);
2269  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2270  for (addr = offset, data = buf; addr < length; addr++, data++) {
2271  if (addr == midpoint) {
2272  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2273  RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2274  }
2275 
2276  *data = qla2x00_read_flash_byte(ha, addr);
2277  }
2278  qla2x00_flash_disable(ha);
2279 
2280  /* Resume HBA. */
2281  qla2x00_resume_hba(vha);
2282 
2283  return buf;
2284 }
2285 
2286 int
2288  uint32_t offset, uint32_t length)
2289 {
2290 
2291  int rval;
2292  uint8_t man_id, flash_id, sec_number, data;
2293  uint16_t wd;
2294  uint32_t addr, liter, sec_mask, rest_addr;
2295  struct qla_hw_data *ha = vha->hw;
2296  struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2297 
2298  /* Suspend HBA. */
2299  qla2x00_suspend_hba(vha);
2300 
2301  rval = QLA_SUCCESS;
2302  sec_number = 0;
2303 
2304  /* Reset ISP chip. */
2306  pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2307 
2308  /* Go with write. */
2309  qla2x00_flash_enable(ha);
2310  do { /* Loop once to provide quick error exit */
2311  /* Structure of flash memory based on manufacturer */
2312  if (IS_OEM_001(ha)) {
2313  /* OEM variant with special flash part. */
2314  man_id = flash_id = 0;
2315  rest_addr = 0xffff;
2316  sec_mask = 0x10000;
2317  goto update_flash;
2318  }
2319  qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2320  switch (man_id) {
2321  case 0x20: /* ST flash. */
2322  if (flash_id == 0xd2 || flash_id == 0xe3) {
2323  /*
2324  * ST m29w008at part - 64kb sector size with
2325  * 32kb,8kb,8kb,16kb sectors at memory address
2326  * 0xf0000.
2327  */
2328  rest_addr = 0xffff;
2329  sec_mask = 0x10000;
2330  break;
2331  }
2332  /*
2333  * ST m29w010b part - 16kb sector size
2334  * Default to 16kb sectors
2335  */
2336  rest_addr = 0x3fff;
2337  sec_mask = 0x1c000;
2338  break;
2339  case 0x40: /* Mostel flash. */
2340  /* Mostel v29c51001 part - 512 byte sector size. */
2341  rest_addr = 0x1ff;
2342  sec_mask = 0x1fe00;
2343  break;
2344  case 0xbf: /* SST flash. */
2345  /* SST39sf10 part - 4kb sector size. */
2346  rest_addr = 0xfff;
2347  sec_mask = 0x1f000;
2348  break;
2349  case 0xda: /* Winbond flash. */
2350  /* Winbond W29EE011 part - 256 byte sector size. */
2351  rest_addr = 0x7f;
2352  sec_mask = 0x1ff80;
2353  break;
2354  case 0xc2: /* Macronix flash. */
2355  /* 64k sector size. */
2356  if (flash_id == 0x38 || flash_id == 0x4f) {
2357  rest_addr = 0xffff;
2358  sec_mask = 0x10000;
2359  break;
2360  }
2361  /* Fall through... */
2362 
2363  case 0x1f: /* Atmel flash. */
2364  /* 512k sector size. */
2365  if (flash_id == 0x13) {
2366  rest_addr = 0x7fffffff;
2367  sec_mask = 0x80000000;
2368  break;
2369  }
2370  /* Fall through... */
2371 
2372  case 0x01: /* AMD flash. */
2373  if (flash_id == 0x38 || flash_id == 0x40 ||
2374  flash_id == 0x4f) {
2375  /* Am29LV081 part - 64kb sector size. */
2376  /* Am29LV002BT part - 64kb sector size. */
2377  rest_addr = 0xffff;
2378  sec_mask = 0x10000;
2379  break;
2380  } else if (flash_id == 0x3e) {
2381  /*
2382  * Am29LV008b part - 64kb sector size with
2383  * 32kb,8kb,8kb,16kb sector at memory address
2384  * h0xf0000.
2385  */
2386  rest_addr = 0xffff;
2387  sec_mask = 0x10000;
2388  break;
2389  } else if (flash_id == 0x20 || flash_id == 0x6e) {
2390  /*
2391  * Am29LV010 part or AM29f010 - 16kb sector
2392  * size.
2393  */
2394  rest_addr = 0x3fff;
2395  sec_mask = 0x1c000;
2396  break;
2397  } else if (flash_id == 0x6d) {
2398  /* Am29LV001 part - 8kb sector size. */
2399  rest_addr = 0x1fff;
2400  sec_mask = 0x1e000;
2401  break;
2402  }
2403  default:
2404  /* Default to 16 kb sector size. */
2405  rest_addr = 0x3fff;
2406  sec_mask = 0x1c000;
2407  break;
2408  }
2409 
2410 update_flash:
2411  if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2412  if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2413  rval = QLA_FUNCTION_FAILED;
2414  break;
2415  }
2416  }
2417 
2418  for (addr = offset, liter = 0; liter < length; liter++,
2419  addr++) {
2420  data = buf[liter];
2421  /* Are we at the beginning of a sector? */
2422  if ((addr & rest_addr) == 0) {
2423  if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2424  if (addr >= 0x10000UL) {
2425  if (((addr >> 12) & 0xf0) &&
2426  ((man_id == 0x01 &&
2427  flash_id == 0x3e) ||
2428  (man_id == 0x20 &&
2429  flash_id == 0xd2))) {
2430  sec_number++;
2431  if (sec_number == 1) {
2432  rest_addr =
2433  0x7fff;
2434  sec_mask =
2435  0x18000;
2436  } else if (
2437  sec_number == 2 ||
2438  sec_number == 3) {
2439  rest_addr =
2440  0x1fff;
2441  sec_mask =
2442  0x1e000;
2443  } else if (
2444  sec_number == 4) {
2445  rest_addr =
2446  0x3fff;
2447  sec_mask =
2448  0x1c000;
2449  }
2450  }
2451  }
2452  } else if (addr == ha->optrom_size / 2) {
2453  WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2454  RD_REG_WORD(&reg->nvram);
2455  }
2456 
2457  if (flash_id == 0xda && man_id == 0xc1) {
2458  qla2x00_write_flash_byte(ha, 0x5555,
2459  0xaa);
2460  qla2x00_write_flash_byte(ha, 0x2aaa,
2461  0x55);
2462  qla2x00_write_flash_byte(ha, 0x5555,
2463  0xa0);
2464  } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2465  /* Then erase it */
2466  if (qla2x00_erase_flash_sector(ha,
2467  addr, sec_mask, man_id,
2468  flash_id)) {
2469  rval = QLA_FUNCTION_FAILED;
2470  break;
2471  }
2472  if (man_id == 0x01 && flash_id == 0x6d)
2473  sec_number++;
2474  }
2475  }
2476 
2477  if (man_id == 0x01 && flash_id == 0x6d) {
2478  if (sec_number == 1 &&
2479  addr == (rest_addr - 1)) {
2480  rest_addr = 0x0fff;
2481  sec_mask = 0x1f000;
2482  } else if (sec_number == 3 && (addr & 0x7ffe)) {
2483  rest_addr = 0x3fff;
2484  sec_mask = 0x1c000;
2485  }
2486  }
2487 
2488  if (qla2x00_program_flash_address(ha, addr, data,
2489  man_id, flash_id)) {
2490  rval = QLA_FUNCTION_FAILED;
2491  break;
2492  }
2493  cond_resched();
2494  }
2495  } while (0);
2496  qla2x00_flash_disable(ha);
2497 
2498  /* Resume HBA. */
2499  qla2x00_resume_hba(vha);
2500 
2501  return rval;
2502 }
2503 
2504 uint8_t *
2506  uint32_t offset, uint32_t length)
2507 {
2508  struct qla_hw_data *ha = vha->hw;
2509 
2510  /* Suspend HBA. */
2511  scsi_block_requests(vha->host);
2513 
2514  /* Go with read. */
2515  qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2516 
2517  /* Resume HBA. */
2520 
2521  return buf;
2522 }
2523 
2524 int
2526  uint32_t offset, uint32_t length)
2527 {
2528  int rval;
2529  struct qla_hw_data *ha = vha->hw;
2530 
2531  /* Suspend HBA. */
2532  scsi_block_requests(vha->host);
2534 
2535  /* Go with write. */
2536  rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2537  length >> 2);
2538 
2541 
2542  return rval;
2543 }
2544 
2545 uint8_t *
2547  uint32_t offset, uint32_t length)
2548 {
2549  int rval;
2550  dma_addr_t optrom_dma;
2551  void *optrom;
2552  uint8_t *pbuf;
2553  uint32_t faddr, left, burst;
2554  struct qla_hw_data *ha = vha->hw;
2555 
2556  if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2557  goto try_fast;
2558  if (offset & 0xfff)
2559  goto slow_read;
2560  if (length < OPTROM_BURST_SIZE)
2561  goto slow_read;
2562 
2563 try_fast:
2564  optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2565  &optrom_dma, GFP_KERNEL);
2566  if (!optrom) {
2567  ql_log(ql_log_warn, vha, 0x00cc,
2568  "Unable to allocate memory for optrom burst read (%x KB).\n",
2569  OPTROM_BURST_SIZE / 1024);
2570  goto slow_read;
2571  }
2572 
2573  pbuf = buf;
2574  faddr = offset >> 2;
2575  left = length >> 2;
2576  burst = OPTROM_BURST_DWORDS;
2577  while (left != 0) {
2578  if (burst > left)
2579  burst = left;
2580 
2581  rval = qla2x00_dump_ram(vha, optrom_dma,
2582  flash_data_addr(ha, faddr), burst);
2583  if (rval) {
2584  ql_log(ql_log_warn, vha, 0x00f5,
2585  "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2586  rval, flash_data_addr(ha, faddr),
2587  (unsigned long long)optrom_dma);
2588  ql_log(ql_log_warn, vha, 0x00f6,
2589  "Reverting to slow-read.\n");
2590 
2592  optrom, optrom_dma);
2593  goto slow_read;
2594  }
2595 
2596  memcpy(pbuf, optrom, burst * 4);
2597 
2598  left -= burst;
2599  faddr += burst;
2600  pbuf += burst * 4;
2601  }
2602 
2603  dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2604  optrom_dma);
2605 
2606  return buf;
2607 
2608 slow_read:
2609  return qla24xx_read_optrom_data(vha, buf, offset, length);
2610 }
2611 
2630 static void
2631 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2632 {
2633  int ret = QLA_FUNCTION_FAILED;
2634  uint32_t istart, iend, iter, vend;
2635  uint8_t do_next, rbyte, *vbyte;
2636 
2637  memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2638 
2639  /* Skip the PCI data structure. */
2640  istart = pcids +
2641  ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2642  qla2x00_read_flash_byte(ha, pcids + 0x0A));
2643  iend = istart + 0x100;
2644  do {
2645  /* Scan for the sentinel date string...eeewww. */
2646  do_next = 0;
2647  iter = istart;
2648  while ((iter < iend) && !do_next) {
2649  iter++;
2650  if (qla2x00_read_flash_byte(ha, iter) == '/') {
2651  if (qla2x00_read_flash_byte(ha, iter + 2) ==
2652  '/')
2653  do_next++;
2654  else if (qla2x00_read_flash_byte(ha,
2655  iter + 3) == '/')
2656  do_next++;
2657  }
2658  }
2659  if (!do_next)
2660  break;
2661 
2662  /* Backtrack to previous ' ' (space). */
2663  do_next = 0;
2664  while ((iter > istart) && !do_next) {
2665  iter--;
2666  if (qla2x00_read_flash_byte(ha, iter) == ' ')
2667  do_next++;
2668  }
2669  if (!do_next)
2670  break;
2671 
2672  /*
2673  * Mark end of version tag, and find previous ' ' (space) or
2674  * string length (recent FCODE images -- major hack ahead!!!).
2675  */
2676  vend = iter - 1;
2677  do_next = 0;
2678  while ((iter > istart) && !do_next) {
2679  iter--;
2680  rbyte = qla2x00_read_flash_byte(ha, iter);
2681  if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2682  do_next++;
2683  }
2684  if (!do_next)
2685  break;
2686 
2687  /* Mark beginning of version tag, and copy data. */
2688  iter++;
2689  if ((vend - iter) &&
2690  ((vend - iter) < sizeof(ha->fcode_revision))) {
2691  vbyte = ha->fcode_revision;
2692  while (iter <= vend) {
2693  *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2694  iter++;
2695  }
2696  ret = QLA_SUCCESS;
2697  }
2698  } while (0);
2699 
2700  if (ret != QLA_SUCCESS)
2701  memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2702 }
2703 
2704 int
2706 {
2707  int ret = QLA_SUCCESS;
2708  uint8_t code_type, last_image;
2709  uint32_t pcihdr, pcids;
2710  uint8_t *dbyte;
2711  uint16_t *dcode;
2712  struct qla_hw_data *ha = vha->hw;
2713 
2714  if (!ha->pio_address || !mbuf)
2715  return QLA_FUNCTION_FAILED;
2716 
2717  memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2718  memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2719  memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2720  memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2721 
2722  qla2x00_flash_enable(ha);
2723 
2724  /* Begin with first PCI expansion ROM header. */
2725  pcihdr = 0;
2726  last_image = 1;
2727  do {
2728  /* Verify PCI expansion ROM header. */
2729  if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2730  qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2731  /* No signature */
2732  ql_log(ql_log_fatal, vha, 0x0050,
2733  "No matching ROM signature.\n");
2734  ret = QLA_FUNCTION_FAILED;
2735  break;
2736  }
2737 
2738  /* Locate PCI data structure. */
2739  pcids = pcihdr +
2740  ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2741  qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2742 
2743  /* Validate signature of PCI data structure. */
2744  if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2745  qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2746  qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2747  qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2748  /* Incorrect header. */
2749  ql_log(ql_log_fatal, vha, 0x0051,
2750  "PCI data struct not found pcir_adr=%x.\n", pcids);
2751  ret = QLA_FUNCTION_FAILED;
2752  break;
2753  }
2754 
2755  /* Read version */
2756  code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2757  switch (code_type) {
2758  case ROM_CODE_TYPE_BIOS:
2759  /* Intel x86, PC-AT compatible. */
2760  ha->bios_revision[0] =
2761  qla2x00_read_flash_byte(ha, pcids + 0x12);
2762  ha->bios_revision[1] =
2763  qla2x00_read_flash_byte(ha, pcids + 0x13);
2764  ql_dbg(ql_dbg_init, vha, 0x0052,
2765  "Read BIOS %d.%d.\n",
2766  ha->bios_revision[1], ha->bios_revision[0]);
2767  break;
2768  case ROM_CODE_TYPE_FCODE:
2769  /* Open Firmware standard for PCI (FCode). */
2770  /* Eeeewww... */
2771  qla2x00_get_fcode_version(ha, pcids);
2772  break;
2773  case ROM_CODE_TYPE_EFI:
2774  /* Extensible Firmware Interface (EFI). */
2775  ha->efi_revision[0] =
2776  qla2x00_read_flash_byte(ha, pcids + 0x12);
2777  ha->efi_revision[1] =
2778  qla2x00_read_flash_byte(ha, pcids + 0x13);
2779  ql_dbg(ql_dbg_init, vha, 0x0053,
2780  "Read EFI %d.%d.\n",
2781  ha->efi_revision[1], ha->efi_revision[0]);
2782  break;
2783  default:
2784  ql_log(ql_log_warn, vha, 0x0054,
2785  "Unrecognized code type %x at pcids %x.\n",
2786  code_type, pcids);
2787  break;
2788  }
2789 
2790  last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2791 
2792  /* Locate next PCI expansion ROM. */
2793  pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2794  qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2795  } while (!last_image);
2796 
2797  if (IS_QLA2322(ha)) {
2798  /* Read firmware image information. */
2799  memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2800  dbyte = mbuf;
2801  memset(dbyte, 0, 8);
2802  dcode = (uint16_t *)dbyte;
2803 
2804  qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2805  8);
2806  ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2807  "Dumping fw "
2808  "ver from flash:.\n");
2809  ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2810  (uint8_t *)dbyte, 8);
2811 
2812  if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2813  dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2814  (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2815  dcode[3] == 0)) {
2816  ql_log(ql_log_warn, vha, 0x0057,
2817  "Unrecognized fw revision at %x.\n",
2818  ha->flt_region_fw * 4);
2819  } else {
2820  /* values are in big endian */
2821  ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2822  ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2823  ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2824  ql_dbg(ql_dbg_init, vha, 0x0058,
2825  "FW Version: "
2826  "%d.%d.%d.\n", ha->fw_revision[0],
2827  ha->fw_revision[1], ha->fw_revision[2]);
2828  }
2829  }
2830 
2831  qla2x00_flash_disable(ha);
2832 
2833  return ret;
2834 }
2835 
2836 int
2838 {
2839  int ret = QLA_SUCCESS;
2840  uint32_t pcihdr, pcids;
2841  uint32_t *dcode;
2842  uint8_t *bcode;
2843  uint8_t code_type, last_image;
2844  int i;
2845  struct qla_hw_data *ha = vha->hw;
2846 
2847  if (IS_QLA82XX(ha))
2848  return ret;
2849 
2850  if (!mbuf)
2851  return QLA_FUNCTION_FAILED;
2852 
2853  memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2854  memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2855  memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2856  memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2857 
2858  dcode = mbuf;
2859 
2860  /* Begin with first PCI expansion ROM header. */
2861  pcihdr = ha->flt_region_boot << 2;
2862  last_image = 1;
2863  do {
2864  /* Verify PCI expansion ROM header. */
2865  qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2866  bcode = mbuf + (pcihdr % 4);
2867  if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2868  /* No signature */
2869  ql_log(ql_log_fatal, vha, 0x0059,
2870  "No matching ROM signature.\n");
2871  ret = QLA_FUNCTION_FAILED;
2872  break;
2873  }
2874 
2875  /* Locate PCI data structure. */
2876  pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2877 
2878  qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2879  bcode = mbuf + (pcihdr % 4);
2880 
2881  /* Validate signature of PCI data structure. */
2882  if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2883  bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2884  /* Incorrect header. */
2885  ql_log(ql_log_fatal, vha, 0x005a,
2886  "PCI data struct not found pcir_adr=%x.\n", pcids);
2887  ret = QLA_FUNCTION_FAILED;
2888  break;
2889  }
2890 
2891  /* Read version */
2892  code_type = bcode[0x14];
2893  switch (code_type) {
2894  case ROM_CODE_TYPE_BIOS:
2895  /* Intel x86, PC-AT compatible. */
2896  ha->bios_revision[0] = bcode[0x12];
2897  ha->bios_revision[1] = bcode[0x13];
2898  ql_dbg(ql_dbg_init, vha, 0x005b,
2899  "Read BIOS %d.%d.\n",
2900  ha->bios_revision[1], ha->bios_revision[0]);
2901  break;
2902  case ROM_CODE_TYPE_FCODE:
2903  /* Open Firmware standard for PCI (FCode). */
2904  ha->fcode_revision[0] = bcode[0x12];
2905  ha->fcode_revision[1] = bcode[0x13];
2906  ql_dbg(ql_dbg_init, vha, 0x005c,
2907  "Read FCODE %d.%d.\n",
2908  ha->fcode_revision[1], ha->fcode_revision[0]);
2909  break;
2910  case ROM_CODE_TYPE_EFI:
2911  /* Extensible Firmware Interface (EFI). */
2912  ha->efi_revision[0] = bcode[0x12];
2913  ha->efi_revision[1] = bcode[0x13];
2914  ql_dbg(ql_dbg_init, vha, 0x005d,
2915  "Read EFI %d.%d.\n",
2916  ha->efi_revision[1], ha->efi_revision[0]);
2917  break;
2918  default:
2919  ql_log(ql_log_warn, vha, 0x005e,
2920  "Unrecognized code type %x at pcids %x.\n",
2921  code_type, pcids);
2922  break;
2923  }
2924 
2925  last_image = bcode[0x15] & BIT_7;
2926 
2927  /* Locate next PCI expansion ROM. */
2928  pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2929  } while (!last_image);
2930 
2931  /* Read firmware image information. */
2932  memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2933  dcode = mbuf;
2934 
2935  qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2936  for (i = 0; i < 4; i++)
2937  dcode[i] = be32_to_cpu(dcode[i]);
2938 
2939  if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2940  dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2941  (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2942  dcode[3] == 0)) {
2943  ql_log(ql_log_warn, vha, 0x005f,
2944  "Unrecognized fw revision at %x.\n",
2945  ha->flt_region_fw * 4);
2946  } else {
2947  ha->fw_revision[0] = dcode[0];
2948  ha->fw_revision[1] = dcode[1];
2949  ha->fw_revision[2] = dcode[2];
2950  ha->fw_revision[3] = dcode[3];
2951  ql_dbg(ql_dbg_init, vha, 0x0060,
2952  "Firmware revision %d.%d.%d.%d.\n",
2953  ha->fw_revision[0], ha->fw_revision[1],
2954  ha->fw_revision[2], ha->fw_revision[3]);
2955  }
2956 
2957  /* Check for golden firmware and get version if available */
2958  if (!IS_QLA81XX(ha)) {
2959  /* Golden firmware is not present in non 81XX adapters */
2960  return ret;
2961  }
2962 
2963  memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2964  dcode = mbuf;
2965  ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2966  ha->flt_region_gold_fw << 2, 32);
2967 
2968  if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2969  dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2970  ql_log(ql_log_warn, vha, 0x0056,
2971  "Unrecognized golden fw at 0x%x.\n",
2972  ha->flt_region_gold_fw * 4);
2973  return ret;
2974  }
2975 
2976  for (i = 4; i < 8; i++)
2977  ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2978 
2979  return ret;
2980 }
2981 
2982 static int
2983 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2984 {
2985  if (pos >= end || *pos != 0x82)
2986  return 0;
2987 
2988  pos += 3 + pos[1];
2989  if (pos >= end || *pos != 0x90)
2990  return 0;
2991 
2992  pos += 3 + pos[1];
2993  if (pos >= end || *pos != 0x78)
2994  return 0;
2995 
2996  return 1;
2997 }
2998 
2999 int
3000 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3001 {
3002  struct qla_hw_data *ha = vha->hw;
3003  uint8_t *pos = ha->vpd;
3004  uint8_t *end = pos + ha->vpd_size;
3005  int len = 0;
3006 
3007  if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3008  return 0;
3009 
3010  while (pos < end && *pos != 0x78) {
3011  len = (*pos == 0x82) ? pos[1] : pos[2];
3012 
3013  if (!strncmp(pos, key, strlen(key)))
3014  break;
3015 
3016  if (*pos != 0x90 && *pos != 0x91)
3017  pos += len;
3018 
3019  pos += 3;
3020  }
3021 
3022  if (pos < end - len && *pos != 0x78)
3023  return snprintf(str, size, "%.*s", len, pos + 3);
3024 
3025  return 0;
3026 }
3027 
3028 int
3030 {
3031  int len, max_len;
3032  uint32_t fcp_prio_addr;
3033  struct qla_hw_data *ha = vha->hw;
3034 
3035  if (!ha->fcp_prio_cfg) {
3037  if (!ha->fcp_prio_cfg) {
3038  ql_log(ql_log_warn, vha, 0x00d5,
3039  "Unable to allocate memory for fcp priorty data (%x).\n",
3041  return QLA_FUNCTION_FAILED;
3042  }
3043  }
3045 
3046  fcp_prio_addr = ha->flt_region_fcp_prio;
3047 
3048  /* first read the fcp priority data header from flash */
3049  ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3050  fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3051 
3052  if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3053  goto fail;
3054 
3055  /* read remaining FCP CMD config data from flash */
3056  fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3057  len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3059 
3060  ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3061  fcp_prio_addr << 2, (len < max_len ? len : max_len));
3062 
3063  /* revalidate the entire FCP priority config data, including entries */
3064  if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3065  goto fail;
3066 
3067  ha->flags.fcp_prio_enabled = 1;
3068  return QLA_SUCCESS;
3069 fail:
3070  vfree(ha->fcp_prio_cfg);
3071  ha->fcp_prio_cfg = NULL;
3072  return QLA_FUNCTION_FAILED;
3073 }