Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
raid5.c
Go to the documentation of this file.
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  * Copyright (C) 1999, 2000 Ingo Molnar
5  * Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches. Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  * new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  * we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  * batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76  int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77  return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap. There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91  int sectors = bio->bi_size >> 9;
92  if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93  return bio->bi_next;
94  else
95  return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104  atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105  return (atomic_read(segments) >> 16) & 0xffff;
106 }
107 
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110  atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111  return atomic_sub_return(1, segments) & 0xffff;
112 }
113 
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116  atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117  atomic_inc(segments);
118 }
119 
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121  unsigned int cnt)
122 {
123  atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124  int old, new;
125 
126  do {
127  old = atomic_read(segments);
128  new = (old & 0xffff) | (cnt << 16);
129  } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131 
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134  atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135  atomic_set(segments, cnt);
136 }
137 
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141  if (sh->ddf_layout)
142  /* ddf always start from first device */
143  return 0;
144  /* md starts just after Q block */
145  if (sh->qd_idx == sh->disks - 1)
146  return 0;
147  else
148  return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152  disk++;
153  return (disk < raid_disks) ? disk : 0;
154 }
155 
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1. This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162  int *count, int syndrome_disks)
163 {
164  int slot = *count;
165 
166  if (sh->ddf_layout)
167  (*count)++;
168  if (idx == sh->pd_idx)
169  return syndrome_disks;
170  if (idx == sh->qd_idx)
171  return syndrome_disks + 1;
172  if (!sh->ddf_layout)
173  (*count)++;
174  return slot;
175 }
176 
177 static void return_io(struct bio *return_bi)
178 {
179  struct bio *bi = return_bi;
180  while (bi) {
181 
182  return_bi = bi->bi_next;
183  bi->bi_next = NULL;
184  bi->bi_size = 0;
185  bio_endio(bi, 0);
186  bi = return_bi;
187  }
188 }
189 
190 static void print_raid5_conf (struct r5conf *conf);
191 
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194  return sh->check_state || sh->reconstruct_state ||
197 }
198 
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201  BUG_ON(!list_empty(&sh->lru));
202  BUG_ON(atomic_read(&conf->active_stripes)==0);
203  if (test_bit(STRIPE_HANDLE, &sh->state)) {
204  if (test_bit(STRIPE_DELAYED, &sh->state) &&
206  list_add_tail(&sh->lru, &conf->delayed_list);
207  else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208  sh->bm_seq - conf->seq_write > 0)
209  list_add_tail(&sh->lru, &conf->bitmap_list);
210  else {
213  list_add_tail(&sh->lru, &conf->handle_list);
214  }
215  md_wakeup_thread(conf->mddev->thread);
216  } else {
217  BUG_ON(stripe_operations_active(sh));
220  < IO_THRESHOLD)
221  md_wakeup_thread(conf->mddev->thread);
222  atomic_dec(&conf->active_stripes);
223  if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224  list_add_tail(&sh->lru, &conf->inactive_list);
225  wake_up(&conf->wait_for_stripe);
226  if (conf->retry_read_aligned)
227  md_wakeup_thread(conf->mddev->thread);
228  }
229  }
230 }
231 
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234  if (atomic_dec_and_test(&sh->count))
235  do_release_stripe(conf, sh);
236 }
237 
238 static void release_stripe(struct stripe_head *sh)
239 {
240  struct r5conf *conf = sh->raid_conf;
241  unsigned long flags;
242 
243  local_irq_save(flags);
244  if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245  do_release_stripe(conf, sh);
246  spin_unlock(&conf->device_lock);
247  }
248  local_irq_restore(flags);
249 }
250 
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253  pr_debug("remove_hash(), stripe %llu\n",
254  (unsigned long long)sh->sector);
255 
256  hlist_del_init(&sh->hash);
257 }
258 
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261  struct hlist_head *hp = stripe_hash(conf, sh->sector);
262 
263  pr_debug("insert_hash(), stripe %llu\n",
264  (unsigned long long)sh->sector);
265 
266  hlist_add_head(&sh->hash, hp);
267 }
268 
269 
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273  struct stripe_head *sh = NULL;
274  struct list_head *first;
275 
276  if (list_empty(&conf->inactive_list))
277  goto out;
278  first = conf->inactive_list.next;
279  sh = list_entry(first, struct stripe_head, lru);
280  list_del_init(first);
281  remove_hash(sh);
282  atomic_inc(&conf->active_stripes);
283 out:
284  return sh;
285 }
286 
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289  struct page *p;
290  int i;
291  int num = sh->raid_conf->pool_size;
292 
293  for (i = 0; i < num ; i++) {
294  p = sh->dev[i].page;
295  if (!p)
296  continue;
297  sh->dev[i].page = NULL;
298  put_page(p);
299  }
300 }
301 
302 static int grow_buffers(struct stripe_head *sh)
303 {
304  int i;
305  int num = sh->raid_conf->pool_size;
306 
307  for (i = 0; i < num; i++) {
308  struct page *page;
309 
310  if (!(page = alloc_page(GFP_KERNEL))) {
311  return 1;
312  }
313  sh->dev[i].page = page;
314  }
315  return 0;
316 }
317 
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320  struct stripe_head *sh);
321 
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324  struct r5conf *conf = sh->raid_conf;
325  int i;
326 
327  BUG_ON(atomic_read(&sh->count) != 0);
329  BUG_ON(stripe_operations_active(sh));
330 
331  pr_debug("init_stripe called, stripe %llu\n",
332  (unsigned long long)sh->sector);
333 
334  remove_hash(sh);
335 
336  sh->generation = conf->generation - previous;
337  sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338  sh->sector = sector;
339  stripe_set_idx(sector, conf, previous, sh);
340  sh->state = 0;
341 
342 
343  for (i = sh->disks; i--; ) {
344  struct r5dev *dev = &sh->dev[i];
345 
346  if (dev->toread || dev->read || dev->towrite || dev->written ||
347  test_bit(R5_LOCKED, &dev->flags)) {
348  printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349  (unsigned long long)sh->sector, i, dev->toread,
350  dev->read, dev->towrite, dev->written,
351  test_bit(R5_LOCKED, &dev->flags));
352  WARN_ON(1);
353  }
354  dev->flags = 0;
355  raid5_build_block(sh, i, previous);
356  }
357  insert_hash(conf, sh);
358 }
359 
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361  short generation)
362 {
363  struct stripe_head *sh;
364  struct hlist_node *hn;
365 
366  pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367  hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368  if (sh->sector == sector && sh->generation == generation)
369  return sh;
370  pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371  return NULL;
372 }
373 
374 /*
375  * Need to check if array has failed when deciding whether to:
376  * - start an array
377  * - remove non-faulty devices
378  * - add a spare
379  * - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389  int degraded, degraded2;
390  int i;
391 
392  rcu_read_lock();
393  degraded = 0;
394  for (i = 0; i < conf->previous_raid_disks; i++) {
395  struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396  if (rdev && test_bit(Faulty, &rdev->flags))
397  rdev = rcu_dereference(conf->disks[i].replacement);
398  if (!rdev || test_bit(Faulty, &rdev->flags))
399  degraded++;
400  else if (test_bit(In_sync, &rdev->flags))
401  ;
402  else
403  /* not in-sync or faulty.
404  * If the reshape increases the number of devices,
405  * this is being recovered by the reshape, so
406  * this 'previous' section is not in_sync.
407  * If the number of devices is being reduced however,
408  * the device can only be part of the array if
409  * we are reverting a reshape, so this section will
410  * be in-sync.
411  */
412  if (conf->raid_disks >= conf->previous_raid_disks)
413  degraded++;
414  }
415  rcu_read_unlock();
416  if (conf->raid_disks == conf->previous_raid_disks)
417  return degraded;
418  rcu_read_lock();
419  degraded2 = 0;
420  for (i = 0; i < conf->raid_disks; i++) {
421  struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422  if (rdev && test_bit(Faulty, &rdev->flags))
423  rdev = rcu_dereference(conf->disks[i].replacement);
424  if (!rdev || test_bit(Faulty, &rdev->flags))
425  degraded2++;
426  else if (test_bit(In_sync, &rdev->flags))
427  ;
428  else
429  /* not in-sync or faulty.
430  * If reshape increases the number of devices, this
431  * section has already been recovered, else it
432  * almost certainly hasn't.
433  */
434  if (conf->raid_disks <= conf->previous_raid_disks)
435  degraded2++;
436  }
437  rcu_read_unlock();
438  if (degraded2 > degraded)
439  return degraded2;
440  return degraded;
441 }
442 
443 static int has_failed(struct r5conf *conf)
444 {
445  int degraded;
446 
447  if (conf->mddev->reshape_position == MaxSector)
448  return conf->mddev->degraded > conf->max_degraded;
449 
450  degraded = calc_degraded(conf);
451  if (degraded > conf->max_degraded)
452  return 1;
453  return 0;
454 }
455 
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458  int previous, int noblock, int noquiesce)
459 {
460  struct stripe_head *sh;
461 
462  pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463 
464  spin_lock_irq(&conf->device_lock);
465 
466  do {
468  conf->quiesce == 0 || noquiesce,
469  conf->device_lock, /* nothing */);
470  sh = __find_stripe(conf, sector, conf->generation - previous);
471  if (!sh) {
472  if (!conf->inactive_blocked)
473  sh = get_free_stripe(conf);
474  if (noblock && sh == NULL)
475  break;
476  if (!sh) {
477  conf->inactive_blocked = 1;
479  !list_empty(&conf->inactive_list) &&
480  (atomic_read(&conf->active_stripes)
481  < (conf->max_nr_stripes *3/4)
482  || !conf->inactive_blocked),
483  conf->device_lock,
484  );
485  conf->inactive_blocked = 0;
486  } else
487  init_stripe(sh, sector, previous);
488  } else {
489  if (atomic_read(&sh->count)) {
490  BUG_ON(!list_empty(&sh->lru)
491  && !test_bit(STRIPE_EXPANDING, &sh->state)
493  } else {
494  if (!test_bit(STRIPE_HANDLE, &sh->state))
495  atomic_inc(&conf->active_stripes);
496  if (list_empty(&sh->lru) &&
498  BUG();
499  list_del_init(&sh->lru);
500  }
501  }
502  } while (sh == NULL);
503 
504  if (sh)
505  atomic_inc(&sh->count);
506 
507  spin_unlock_irq(&conf->device_lock);
508  return sh;
509 }
510 
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
517  /* Need a memory barrier to make sure we see the value
518  * of conf->generation, or ->data_offset that was set before
519  * reshape_progress was updated.
520  */
521  smp_rmb();
522  if (progress == MaxSector)
523  return 0;
524  if (sh->generation == conf->generation - 1)
525  return 0;
526  /* We are in a reshape, and this is a new-generation stripe,
527  * so use new_data_offset.
528  */
529  return 1;
530 }
531 
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536 
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539  struct r5conf *conf = sh->raid_conf;
540  int i, disks = sh->disks;
541 
542  might_sleep();
543 
544  for (i = disks; i--; ) {
545  int rw;
546  int replace_only = 0;
547  struct bio *bi, *rbi;
548  struct md_rdev *rdev, *rrdev = NULL;
549  if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550  if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551  rw = WRITE_FUA;
552  else
553  rw = WRITE;
554  if (test_bit(R5_Discard, &sh->dev[i].flags))
555  rw |= REQ_DISCARD;
556  } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557  rw = READ;
559  &sh->dev[i].flags)) {
560  rw = WRITE;
561  replace_only = 1;
562  } else
563  continue;
564  if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565  rw |= REQ_SYNC;
566 
567  bi = &sh->dev[i].req;
568  rbi = &sh->dev[i].rreq; /* For writing to replacement */
569 
570  bi->bi_rw = rw;
571  rbi->bi_rw = rw;
572  if (rw & WRITE) {
573  bi->bi_end_io = raid5_end_write_request;
574  rbi->bi_end_io = raid5_end_write_request;
575  } else
576  bi->bi_end_io = raid5_end_read_request;
577 
578  rcu_read_lock();
579  rrdev = rcu_dereference(conf->disks[i].replacement);
580  smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581  rdev = rcu_dereference(conf->disks[i].rdev);
582  if (!rdev) {
583  rdev = rrdev;
584  rrdev = NULL;
585  }
586  if (rw & WRITE) {
587  if (replace_only)
588  rdev = NULL;
589  if (rdev == rrdev)
590  /* We raced and saw duplicates */
591  rrdev = NULL;
592  } else {
593  if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594  rdev = rrdev;
595  rrdev = NULL;
596  }
597 
598  if (rdev && test_bit(Faulty, &rdev->flags))
599  rdev = NULL;
600  if (rdev)
601  atomic_inc(&rdev->nr_pending);
602  if (rrdev && test_bit(Faulty, &rrdev->flags))
603  rrdev = NULL;
604  if (rrdev)
605  atomic_inc(&rrdev->nr_pending);
606  rcu_read_unlock();
607 
608  /* We have already checked bad blocks for reads. Now
609  * need to check for writes. We never accept write errors
610  * on the replacement, so we don't to check rrdev.
611  */
612  while ((rw & WRITE) && rdev &&
613  test_bit(WriteErrorSeen, &rdev->flags)) {
614  sector_t first_bad;
615  int bad_sectors;
616  int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617  &first_bad, &bad_sectors);
618  if (!bad)
619  break;
620 
621  if (bad < 0) {
622  set_bit(BlockedBadBlocks, &rdev->flags);
623  if (!conf->mddev->external &&
624  conf->mddev->flags) {
625  /* It is very unlikely, but we might
626  * still need to write out the
627  * bad block log - better give it
628  * a chance*/
629  md_check_recovery(conf->mddev);
630  }
631  /*
632  * Because md_wait_for_blocked_rdev
633  * will dec nr_pending, we must
634  * increment it first.
635  */
636  atomic_inc(&rdev->nr_pending);
637  md_wait_for_blocked_rdev(rdev, conf->mddev);
638  } else {
639  /* Acknowledged bad block - skip the write */
640  rdev_dec_pending(rdev, conf->mddev);
641  rdev = NULL;
642  }
643  }
644 
645  if (rdev) {
646  if (s->syncing || s->expanding || s->expanded
647  || s->replacing)
648  md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649 
651 
652  bi->bi_bdev = rdev->bdev;
653  pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654  __func__, (unsigned long long)sh->sector,
655  bi->bi_rw, i);
656  atomic_inc(&sh->count);
657  if (use_new_offset(conf, sh))
658  bi->bi_sector = (sh->sector
659  + rdev->new_data_offset);
660  else
661  bi->bi_sector = (sh->sector
662  + rdev->data_offset);
663  if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664  bi->bi_rw |= REQ_FLUSH;
665 
666  bi->bi_flags = 1 << BIO_UPTODATE;
667  bi->bi_idx = 0;
668  bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669  bi->bi_io_vec[0].bv_offset = 0;
670  bi->bi_size = STRIPE_SIZE;
671  bi->bi_next = NULL;
672  if (rrdev)
673  set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
675  }
676  if (rrdev) {
677  if (s->syncing || s->expanding || s->expanded
678  || s->replacing)
679  md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
680 
682 
683  rbi->bi_bdev = rrdev->bdev;
684  pr_debug("%s: for %llu schedule op %ld on "
685  "replacement disc %d\n",
686  __func__, (unsigned long long)sh->sector,
687  rbi->bi_rw, i);
688  atomic_inc(&sh->count);
689  if (use_new_offset(conf, sh))
690  rbi->bi_sector = (sh->sector
691  + rrdev->new_data_offset);
692  else
693  rbi->bi_sector = (sh->sector
694  + rrdev->data_offset);
695  rbi->bi_flags = 1 << BIO_UPTODATE;
696  rbi->bi_idx = 0;
697  rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
698  rbi->bi_io_vec[0].bv_offset = 0;
699  rbi->bi_size = STRIPE_SIZE;
700  rbi->bi_next = NULL;
702  }
703  if (!rdev && !rrdev) {
704  if (rw & WRITE)
706  pr_debug("skip op %ld on disc %d for sector %llu\n",
707  bi->bi_rw, i, (unsigned long long)sh->sector);
708  clear_bit(R5_LOCKED, &sh->dev[i].flags);
709  set_bit(STRIPE_HANDLE, &sh->state);
710  }
711  }
712 }
713 
714 static struct dma_async_tx_descriptor *
715 async_copy_data(int frombio, struct bio *bio, struct page *page,
716  sector_t sector, struct dma_async_tx_descriptor *tx)
717 {
718  struct bio_vec *bvl;
719  struct page *bio_page;
720  int i;
721  int page_offset;
722  struct async_submit_ctl submit;
723  enum async_tx_flags flags = 0;
724 
725  if (bio->bi_sector >= sector)
726  page_offset = (signed)(bio->bi_sector - sector) * 512;
727  else
728  page_offset = (signed)(sector - bio->bi_sector) * -512;
729 
730  if (frombio)
731  flags |= ASYNC_TX_FENCE;
732  init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
733 
734  bio_for_each_segment(bvl, bio, i) {
735  int len = bvl->bv_len;
736  int clen;
737  int b_offset = 0;
738 
739  if (page_offset < 0) {
740  b_offset = -page_offset;
741  page_offset += b_offset;
742  len -= b_offset;
743  }
744 
745  if (len > 0 && page_offset + len > STRIPE_SIZE)
746  clen = STRIPE_SIZE - page_offset;
747  else
748  clen = len;
749 
750  if (clen > 0) {
751  b_offset += bvl->bv_offset;
752  bio_page = bvl->bv_page;
753  if (frombio)
754  tx = async_memcpy(page, bio_page, page_offset,
755  b_offset, clen, &submit);
756  else
757  tx = async_memcpy(bio_page, page, b_offset,
758  page_offset, clen, &submit);
759  }
760  /* chain the operations */
761  submit.depend_tx = tx;
762 
763  if (clen < len) /* hit end of page */
764  break;
765  page_offset += len;
766  }
767 
768  return tx;
769 }
770 
771 static void ops_complete_biofill(void *stripe_head_ref)
772 {
773  struct stripe_head *sh = stripe_head_ref;
774  struct bio *return_bi = NULL;
775  int i;
776 
777  pr_debug("%s: stripe %llu\n", __func__,
778  (unsigned long long)sh->sector);
779 
780  /* clear completed biofills */
781  for (i = sh->disks; i--; ) {
782  struct r5dev *dev = &sh->dev[i];
783 
784  /* acknowledge completion of a biofill operation */
785  /* and check if we need to reply to a read request,
786  * new R5_Wantfill requests are held off until
787  * !STRIPE_BIOFILL_RUN
788  */
789  if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
790  struct bio *rbi, *rbi2;
791 
792  BUG_ON(!dev->read);
793  rbi = dev->read;
794  dev->read = NULL;
795  while (rbi && rbi->bi_sector <
796  dev->sector + STRIPE_SECTORS) {
797  rbi2 = r5_next_bio(rbi, dev->sector);
798  if (!raid5_dec_bi_active_stripes(rbi)) {
799  rbi->bi_next = return_bi;
800  return_bi = rbi;
801  }
802  rbi = rbi2;
803  }
804  }
805  }
807 
808  return_io(return_bi);
809 
810  set_bit(STRIPE_HANDLE, &sh->state);
811  release_stripe(sh);
812 }
813 
814 static void ops_run_biofill(struct stripe_head *sh)
815 {
816  struct dma_async_tx_descriptor *tx = NULL;
817  struct async_submit_ctl submit;
818  int i;
819 
820  pr_debug("%s: stripe %llu\n", __func__,
821  (unsigned long long)sh->sector);
822 
823  for (i = sh->disks; i--; ) {
824  struct r5dev *dev = &sh->dev[i];
825  if (test_bit(R5_Wantfill, &dev->flags)) {
826  struct bio *rbi;
827  spin_lock_irq(&sh->stripe_lock);
828  dev->read = rbi = dev->toread;
829  dev->toread = NULL;
830  spin_unlock_irq(&sh->stripe_lock);
831  while (rbi && rbi->bi_sector <
832  dev->sector + STRIPE_SECTORS) {
833  tx = async_copy_data(0, rbi, dev->page,
834  dev->sector, tx);
835  rbi = r5_next_bio(rbi, dev->sector);
836  }
837  }
838  }
839 
840  atomic_inc(&sh->count);
841  init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
842  async_trigger_callback(&submit);
843 }
844 
845 static void mark_target_uptodate(struct stripe_head *sh, int target)
846 {
847  struct r5dev *tgt;
848 
849  if (target < 0)
850  return;
851 
852  tgt = &sh->dev[target];
853  set_bit(R5_UPTODATE, &tgt->flags);
854  BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
855  clear_bit(R5_Wantcompute, &tgt->flags);
856 }
857 
858 static void ops_complete_compute(void *stripe_head_ref)
859 {
860  struct stripe_head *sh = stripe_head_ref;
861 
862  pr_debug("%s: stripe %llu\n", __func__,
863  (unsigned long long)sh->sector);
864 
865  /* mark the computed target(s) as uptodate */
866  mark_target_uptodate(sh, sh->ops.target);
867  mark_target_uptodate(sh, sh->ops.target2);
868 
872  set_bit(STRIPE_HANDLE, &sh->state);
873  release_stripe(sh);
874 }
875 
876 /* return a pointer to the address conversion region of the scribble buffer */
877 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
878  struct raid5_percpu *percpu)
879 {
880  return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
881 }
882 
883 static struct dma_async_tx_descriptor *
884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
885 {
886  int disks = sh->disks;
887  struct page **xor_srcs = percpu->scribble;
888  int target = sh->ops.target;
889  struct r5dev *tgt = &sh->dev[target];
890  struct page *xor_dest = tgt->page;
891  int count = 0;
892  struct dma_async_tx_descriptor *tx;
893  struct async_submit_ctl submit;
894  int i;
895 
896  pr_debug("%s: stripe %llu block: %d\n",
897  __func__, (unsigned long long)sh->sector, target);
898  BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899 
900  for (i = disks; i--; )
901  if (i != target)
902  xor_srcs[count++] = sh->dev[i].page;
903 
904  atomic_inc(&sh->count);
905 
906  init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
907  ops_complete_compute, sh, to_addr_conv(sh, percpu));
908  if (unlikely(count == 1))
909  tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
910  else
911  tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
912 
913  return tx;
914 }
915 
916 /* set_syndrome_sources - populate source buffers for gen_syndrome
917  * @srcs - (struct page *) array of size sh->disks
918  * @sh - stripe_head to parse
919  *
920  * Populates srcs in proper layout order for the stripe and returns the
921  * 'count' of sources to be used in a call to async_gen_syndrome. The P
922  * destination buffer is recorded in srcs[count] and the Q destination
923  * is recorded in srcs[count+1]].
924  */
925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
926 {
927  int disks = sh->disks;
928  int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
929  int d0_idx = raid6_d0(sh);
930  int count;
931  int i;
932 
933  for (i = 0; i < disks; i++)
934  srcs[i] = NULL;
935 
936  count = 0;
937  i = d0_idx;
938  do {
939  int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
940 
941  srcs[slot] = sh->dev[i].page;
942  i = raid6_next_disk(i, disks);
943  } while (i != d0_idx);
944 
945  return syndrome_disks;
946 }
947 
948 static struct dma_async_tx_descriptor *
949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
950 {
951  int disks = sh->disks;
952  struct page **blocks = percpu->scribble;
953  int target;
954  int qd_idx = sh->qd_idx;
955  struct dma_async_tx_descriptor *tx;
956  struct async_submit_ctl submit;
957  struct r5dev *tgt;
958  struct page *dest;
959  int i;
960  int count;
961 
962  if (sh->ops.target < 0)
963  target = sh->ops.target2;
964  else if (sh->ops.target2 < 0)
965  target = sh->ops.target;
966  else
967  /* we should only have one valid target */
968  BUG();
969  BUG_ON(target < 0);
970  pr_debug("%s: stripe %llu block: %d\n",
971  __func__, (unsigned long long)sh->sector, target);
972 
973  tgt = &sh->dev[target];
974  BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975  dest = tgt->page;
976 
977  atomic_inc(&sh->count);
978 
979  if (target == qd_idx) {
980  count = set_syndrome_sources(blocks, sh);
981  blocks[count] = NULL; /* regenerating p is not necessary */
982  BUG_ON(blocks[count+1] != dest); /* q should already be set */
983  init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
984  ops_complete_compute, sh,
985  to_addr_conv(sh, percpu));
986  tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
987  } else {
988  /* Compute any data- or p-drive using XOR */
989  count = 0;
990  for (i = disks; i-- ; ) {
991  if (i == target || i == qd_idx)
992  continue;
993  blocks[count++] = sh->dev[i].page;
994  }
995 
996  init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
997  NULL, ops_complete_compute, sh,
998  to_addr_conv(sh, percpu));
999  tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1000  }
1001 
1002  return tx;
1003 }
1004 
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008  int i, count, disks = sh->disks;
1009  int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1010  int d0_idx = raid6_d0(sh);
1011  int faila = -1, failb = -1;
1012  int target = sh->ops.target;
1013  int target2 = sh->ops.target2;
1014  struct r5dev *tgt = &sh->dev[target];
1015  struct r5dev *tgt2 = &sh->dev[target2];
1016  struct dma_async_tx_descriptor *tx;
1017  struct page **blocks = percpu->scribble;
1018  struct async_submit_ctl submit;
1019 
1020  pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1021  __func__, (unsigned long long)sh->sector, target, target2);
1022  BUG_ON(target < 0 || target2 < 0);
1023  BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1024  BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1025 
1026  /* we need to open-code set_syndrome_sources to handle the
1027  * slot number conversion for 'faila' and 'failb'
1028  */
1029  for (i = 0; i < disks ; i++)
1030  blocks[i] = NULL;
1031  count = 0;
1032  i = d0_idx;
1033  do {
1034  int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1035 
1036  blocks[slot] = sh->dev[i].page;
1037 
1038  if (i == target)
1039  faila = slot;
1040  if (i == target2)
1041  failb = slot;
1042  i = raid6_next_disk(i, disks);
1043  } while (i != d0_idx);
1044 
1045  BUG_ON(faila == failb);
1046  if (failb < faila)
1047  swap(faila, failb);
1048  pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1049  __func__, (unsigned long long)sh->sector, faila, failb);
1050 
1051  atomic_inc(&sh->count);
1052 
1053  if (failb == syndrome_disks+1) {
1054  /* Q disk is one of the missing disks */
1055  if (faila == syndrome_disks) {
1056  /* Missing P+Q, just recompute */
1057  init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1058  ops_complete_compute, sh,
1059  to_addr_conv(sh, percpu));
1060  return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1061  STRIPE_SIZE, &submit);
1062  } else {
1063  struct page *dest;
1064  int data_target;
1065  int qd_idx = sh->qd_idx;
1066 
1067  /* Missing D+Q: recompute D from P, then recompute Q */
1068  if (target == qd_idx)
1069  data_target = target2;
1070  else
1071  data_target = target;
1072 
1073  count = 0;
1074  for (i = disks; i-- ; ) {
1075  if (i == data_target || i == qd_idx)
1076  continue;
1077  blocks[count++] = sh->dev[i].page;
1078  }
1079  dest = sh->dev[data_target].page;
1080  init_async_submit(&submit,
1082  NULL, NULL, NULL,
1083  to_addr_conv(sh, percpu));
1084  tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1085  &submit);
1086 
1087  count = set_syndrome_sources(blocks, sh);
1088  init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1089  ops_complete_compute, sh,
1090  to_addr_conv(sh, percpu));
1091  return async_gen_syndrome(blocks, 0, count+2,
1092  STRIPE_SIZE, &submit);
1093  }
1094  } else {
1095  init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1096  ops_complete_compute, sh,
1097  to_addr_conv(sh, percpu));
1098  if (failb == syndrome_disks) {
1099  /* We're missing D+P. */
1100  return async_raid6_datap_recov(syndrome_disks+2,
1101  STRIPE_SIZE, faila,
1102  blocks, &submit);
1103  } else {
1104  /* We're missing D+D. */
1105  return async_raid6_2data_recov(syndrome_disks+2,
1106  STRIPE_SIZE, faila, failb,
1107  blocks, &submit);
1108  }
1109  }
1110 }
1111 
1112 
1113 static void ops_complete_prexor(void *stripe_head_ref)
1114 {
1115  struct stripe_head *sh = stripe_head_ref;
1116 
1117  pr_debug("%s: stripe %llu\n", __func__,
1118  (unsigned long long)sh->sector);
1119 }
1120 
1121 static struct dma_async_tx_descriptor *
1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1123  struct dma_async_tx_descriptor *tx)
1124 {
1125  int disks = sh->disks;
1126  struct page **xor_srcs = percpu->scribble;
1127  int count = 0, pd_idx = sh->pd_idx, i;
1128  struct async_submit_ctl submit;
1129 
1130  /* existing parity data subtracted */
1131  struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1132 
1133  pr_debug("%s: stripe %llu\n", __func__,
1134  (unsigned long long)sh->sector);
1135 
1136  for (i = disks; i--; ) {
1137  struct r5dev *dev = &sh->dev[i];
1138  /* Only process blocks that are known to be uptodate */
1139  if (test_bit(R5_Wantdrain, &dev->flags))
1140  xor_srcs[count++] = dev->page;
1141  }
1142 
1143  init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1144  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1145  tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146 
1147  return tx;
1148 }
1149 
1150 static struct dma_async_tx_descriptor *
1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1152 {
1153  int disks = sh->disks;
1154  int i;
1155 
1156  pr_debug("%s: stripe %llu\n", __func__,
1157  (unsigned long long)sh->sector);
1158 
1159  for (i = disks; i--; ) {
1160  struct r5dev *dev = &sh->dev[i];
1161  struct bio *chosen;
1162 
1163  if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1164  struct bio *wbi;
1165 
1166  spin_lock_irq(&sh->stripe_lock);
1167  chosen = dev->towrite;
1168  dev->towrite = NULL;
1169  BUG_ON(dev->written);
1170  wbi = dev->written = chosen;
1171  spin_unlock_irq(&sh->stripe_lock);
1172 
1173  while (wbi && wbi->bi_sector <
1174  dev->sector + STRIPE_SECTORS) {
1175  if (wbi->bi_rw & REQ_FUA)
1176  set_bit(R5_WantFUA, &dev->flags);
1177  if (wbi->bi_rw & REQ_SYNC)
1178  set_bit(R5_SyncIO, &dev->flags);
1179  if (wbi->bi_rw & REQ_DISCARD)
1180  set_bit(R5_Discard, &dev->flags);
1181  else
1182  tx = async_copy_data(1, wbi, dev->page,
1183  dev->sector, tx);
1184  wbi = r5_next_bio(wbi, dev->sector);
1185  }
1186  }
1187  }
1188 
1189  return tx;
1190 }
1191 
1192 static void ops_complete_reconstruct(void *stripe_head_ref)
1193 {
1194  struct stripe_head *sh = stripe_head_ref;
1195  int disks = sh->disks;
1196  int pd_idx = sh->pd_idx;
1197  int qd_idx = sh->qd_idx;
1198  int i;
1199  bool fua = false, sync = false, discard = false;
1200 
1201  pr_debug("%s: stripe %llu\n", __func__,
1202  (unsigned long long)sh->sector);
1203 
1204  for (i = disks; i--; ) {
1205  fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1206  sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1207  discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1208  }
1209 
1210  for (i = disks; i--; ) {
1211  struct r5dev *dev = &sh->dev[i];
1212 
1213  if (dev->written || i == pd_idx || i == qd_idx) {
1214  if (!discard)
1215  set_bit(R5_UPTODATE, &dev->flags);
1216  if (fua)
1217  set_bit(R5_WantFUA, &dev->flags);
1218  if (sync)
1219  set_bit(R5_SyncIO, &dev->flags);
1220  }
1221  }
1222 
1227  else {
1230  }
1231 
1232  set_bit(STRIPE_HANDLE, &sh->state);
1233  release_stripe(sh);
1234 }
1235 
1236 static void
1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1238  struct dma_async_tx_descriptor *tx)
1239 {
1240  int disks = sh->disks;
1241  struct page **xor_srcs = percpu->scribble;
1242  struct async_submit_ctl submit;
1243  int count = 0, pd_idx = sh->pd_idx, i;
1244  struct page *xor_dest;
1245  int prexor = 0;
1246  unsigned long flags;
1247 
1248  pr_debug("%s: stripe %llu\n", __func__,
1249  (unsigned long long)sh->sector);
1250 
1251  for (i = 0; i < sh->disks; i++) {
1252  if (pd_idx == i)
1253  continue;
1254  if (!test_bit(R5_Discard, &sh->dev[i].flags))
1255  break;
1256  }
1257  if (i >= sh->disks) {
1258  atomic_inc(&sh->count);
1259  set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1260  ops_complete_reconstruct(sh);
1261  return;
1262  }
1263  /* check if prexor is active which means only process blocks
1264  * that are part of a read-modify-write (written)
1265  */
1267  prexor = 1;
1268  xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1269  for (i = disks; i--; ) {
1270  struct r5dev *dev = &sh->dev[i];
1271  if (dev->written)
1272  xor_srcs[count++] = dev->page;
1273  }
1274  } else {
1275  xor_dest = sh->dev[pd_idx].page;
1276  for (i = disks; i--; ) {
1277  struct r5dev *dev = &sh->dev[i];
1278  if (i != pd_idx)
1279  xor_srcs[count++] = dev->page;
1280  }
1281  }
1282 
1283  /* 1/ if we prexor'd then the dest is reused as a source
1284  * 2/ if we did not prexor then we are redoing the parity
1285  * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1286  * for the synchronous xor case
1287  */
1288  flags = ASYNC_TX_ACK |
1290 
1291  atomic_inc(&sh->count);
1292 
1293  init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1294  to_addr_conv(sh, percpu));
1295  if (unlikely(count == 1))
1296  tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1297  else
1298  tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1299 }
1300 
1301 static void
1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1303  struct dma_async_tx_descriptor *tx)
1304 {
1305  struct async_submit_ctl submit;
1306  struct page **blocks = percpu->scribble;
1307  int count, i;
1308 
1309  pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1310 
1311  for (i = 0; i < sh->disks; i++) {
1312  if (sh->pd_idx == i || sh->qd_idx == i)
1313  continue;
1314  if (!test_bit(R5_Discard, &sh->dev[i].flags))
1315  break;
1316  }
1317  if (i >= sh->disks) {
1318  atomic_inc(&sh->count);
1319  set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1320  set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1321  ops_complete_reconstruct(sh);
1322  return;
1323  }
1324 
1325  count = set_syndrome_sources(blocks, sh);
1326 
1327  atomic_inc(&sh->count);
1328 
1329  init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1330  sh, to_addr_conv(sh, percpu));
1331  async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1332 }
1333 
1334 static void ops_complete_check(void *stripe_head_ref)
1335 {
1336  struct stripe_head *sh = stripe_head_ref;
1337 
1338  pr_debug("%s: stripe %llu\n", __func__,
1339  (unsigned long long)sh->sector);
1340 
1342  set_bit(STRIPE_HANDLE, &sh->state);
1343  release_stripe(sh);
1344 }
1345 
1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1347 {
1348  int disks = sh->disks;
1349  int pd_idx = sh->pd_idx;
1350  int qd_idx = sh->qd_idx;
1351  struct page *xor_dest;
1352  struct page **xor_srcs = percpu->scribble;
1353  struct dma_async_tx_descriptor *tx;
1354  struct async_submit_ctl submit;
1355  int count;
1356  int i;
1357 
1358  pr_debug("%s: stripe %llu\n", __func__,
1359  (unsigned long long)sh->sector);
1360 
1361  count = 0;
1362  xor_dest = sh->dev[pd_idx].page;
1363  xor_srcs[count++] = xor_dest;
1364  for (i = disks; i--; ) {
1365  if (i == pd_idx || i == qd_idx)
1366  continue;
1367  xor_srcs[count++] = sh->dev[i].page;
1368  }
1369 
1370  init_async_submit(&submit, 0, NULL, NULL, NULL,
1371  to_addr_conv(sh, percpu));
1372  tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1373  &sh->ops.zero_sum_result, &submit);
1374 
1375  atomic_inc(&sh->count);
1376  init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1377  tx = async_trigger_callback(&submit);
1378 }
1379 
1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1381 {
1382  struct page **srcs = percpu->scribble;
1383  struct async_submit_ctl submit;
1384  int count;
1385 
1386  pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1387  (unsigned long long)sh->sector, checkp);
1388 
1389  count = set_syndrome_sources(srcs, sh);
1390  if (!checkp)
1391  srcs[count] = NULL;
1392 
1393  atomic_inc(&sh->count);
1394  init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1395  sh, to_addr_conv(sh, percpu));
1396  async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1397  &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1398 }
1399 
1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1401 {
1402  int overlap_clear = 0, i, disks = sh->disks;
1403  struct dma_async_tx_descriptor *tx = NULL;
1404  struct r5conf *conf = sh->raid_conf;
1405  int level = conf->level;
1406  struct raid5_percpu *percpu;
1407  unsigned long cpu;
1408 
1409  cpu = get_cpu();
1410  percpu = per_cpu_ptr(conf->percpu, cpu);
1411  if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1412  ops_run_biofill(sh);
1413  overlap_clear++;
1414  }
1415 
1416  if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1417  if (level < 6)
1418  tx = ops_run_compute5(sh, percpu);
1419  else {
1420  if (sh->ops.target2 < 0 || sh->ops.target < 0)
1421  tx = ops_run_compute6_1(sh, percpu);
1422  else
1423  tx = ops_run_compute6_2(sh, percpu);
1424  }
1425  /* terminate the chain if reconstruct is not set to be run */
1426  if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1427  async_tx_ack(tx);
1428  }
1429 
1430  if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1431  tx = ops_run_prexor(sh, percpu, tx);
1432 
1433  if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1434  tx = ops_run_biodrain(sh, tx);
1435  overlap_clear++;
1436  }
1437 
1438  if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1439  if (level < 6)
1440  ops_run_reconstruct5(sh, percpu, tx);
1441  else
1442  ops_run_reconstruct6(sh, percpu, tx);
1443  }
1444 
1445  if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1446  if (sh->check_state == check_state_run)
1447  ops_run_check_p(sh, percpu);
1448  else if (sh->check_state == check_state_run_q)
1449  ops_run_check_pq(sh, percpu, 0);
1450  else if (sh->check_state == check_state_run_pq)
1451  ops_run_check_pq(sh, percpu, 1);
1452  else
1453  BUG();
1454  }
1455 
1456  if (overlap_clear)
1457  for (i = disks; i--; ) {
1458  struct r5dev *dev = &sh->dev[i];
1459  if (test_and_clear_bit(R5_Overlap, &dev->flags))
1460  wake_up(&sh->raid_conf->wait_for_overlap);
1461  }
1462  put_cpu();
1463 }
1464 
1465 #ifdef CONFIG_MULTICORE_RAID456
1466 static void async_run_ops(void *param, async_cookie_t cookie)
1467 {
1468  struct stripe_head *sh = param;
1469  unsigned long ops_request = sh->ops.request;
1470 
1472  wake_up(&sh->ops.wait_for_ops);
1473 
1474  __raid_run_ops(sh, ops_request);
1475  release_stripe(sh);
1476 }
1477 
1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1479 {
1480  /* since handle_stripe can be called outside of raid5d context
1481  * we need to ensure sh->ops.request is de-staged before another
1482  * request arrives
1483  */
1484  wait_event(sh->ops.wait_for_ops,
1486  sh->ops.request = ops_request;
1487 
1488  atomic_inc(&sh->count);
1489  async_schedule(async_run_ops, sh);
1490 }
1491 #else
1492 #define raid_run_ops __raid_run_ops
1493 #endif
1494 
1495 static int grow_one_stripe(struct r5conf *conf)
1496 {
1497  struct stripe_head *sh;
1498  sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1499  if (!sh)
1500  return 0;
1501 
1502  sh->raid_conf = conf;
1503  #ifdef CONFIG_MULTICORE_RAID456
1504  init_waitqueue_head(&sh->ops.wait_for_ops);
1505  #endif
1506 
1508 
1509  if (grow_buffers(sh)) {
1510  shrink_buffers(sh);
1511  kmem_cache_free(conf->slab_cache, sh);
1512  return 0;
1513  }
1514  /* we just created an active stripe so... */
1515  atomic_set(&sh->count, 1);
1516  atomic_inc(&conf->active_stripes);
1517  INIT_LIST_HEAD(&sh->lru);
1518  release_stripe(sh);
1519  return 1;
1520 }
1521 
1522 static int grow_stripes(struct r5conf *conf, int num)
1523 {
1524  struct kmem_cache *sc;
1525  int devs = max(conf->raid_disks, conf->previous_raid_disks);
1526 
1527  if (conf->mddev->gendisk)
1528  sprintf(conf->cache_name[0],
1529  "raid%d-%s", conf->level, mdname(conf->mddev));
1530  else
1531  sprintf(conf->cache_name[0],
1532  "raid%d-%p", conf->level, conf->mddev);
1533  sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1534 
1535  conf->active_name = 0;
1536  sc = kmem_cache_create(conf->cache_name[conf->active_name],
1537  sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1538  0, 0, NULL);
1539  if (!sc)
1540  return 1;
1541  conf->slab_cache = sc;
1542  conf->pool_size = devs;
1543  while (num--)
1544  if (!grow_one_stripe(conf))
1545  return 1;
1546  return 0;
1547 }
1548 
1562 static size_t scribble_len(int num)
1563 {
1564  size_t len;
1565 
1566  len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1567 
1568  return len;
1569 }
1570 
1571 static int resize_stripes(struct r5conf *conf, int newsize)
1572 {
1573  /* Make all the stripes able to hold 'newsize' devices.
1574  * New slots in each stripe get 'page' set to a new page.
1575  *
1576  * This happens in stages:
1577  * 1/ create a new kmem_cache and allocate the required number of
1578  * stripe_heads.
1579  * 2/ gather all the old stripe_heads and tranfer the pages across
1580  * to the new stripe_heads. This will have the side effect of
1581  * freezing the array as once all stripe_heads have been collected,
1582  * no IO will be possible. Old stripe heads are freed once their
1583  * pages have been transferred over, and the old kmem_cache is
1584  * freed when all stripes are done.
1585  * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1586  * we simple return a failre status - no need to clean anything up.
1587  * 4/ allocate new pages for the new slots in the new stripe_heads.
1588  * If this fails, we don't bother trying the shrink the
1589  * stripe_heads down again, we just leave them as they are.
1590  * As each stripe_head is processed the new one is released into
1591  * active service.
1592  *
1593  * Once step2 is started, we cannot afford to wait for a write,
1594  * so we use GFP_NOIO allocations.
1595  */
1596  struct stripe_head *osh, *nsh;
1597  LIST_HEAD(newstripes);
1598  struct disk_info *ndisks;
1599  unsigned long cpu;
1600  int err;
1601  struct kmem_cache *sc;
1602  int i;
1603 
1604  if (newsize <= conf->pool_size)
1605  return 0; /* never bother to shrink */
1606 
1607  err = md_allow_write(conf->mddev);
1608  if (err)
1609  return err;
1610 
1611  /* Step 1 */
1612  sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1613  sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1614  0, 0, NULL);
1615  if (!sc)
1616  return -ENOMEM;
1617 
1618  for (i = conf->max_nr_stripes; i; i--) {
1619  nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1620  if (!nsh)
1621  break;
1622 
1623  nsh->raid_conf = conf;
1624  #ifdef CONFIG_MULTICORE_RAID456
1625  init_waitqueue_head(&nsh->ops.wait_for_ops);
1626  #endif
1627  spin_lock_init(&nsh->stripe_lock);
1628 
1629  list_add(&nsh->lru, &newstripes);
1630  }
1631  if (i) {
1632  /* didn't get enough, give up */
1633  while (!list_empty(&newstripes)) {
1634  nsh = list_entry(newstripes.next, struct stripe_head, lru);
1635  list_del(&nsh->lru);
1636  kmem_cache_free(sc, nsh);
1637  }
1638  kmem_cache_destroy(sc);
1639  return -ENOMEM;
1640  }
1641  /* Step 2 - Must use GFP_NOIO now.
1642  * OK, we have enough stripes, start collecting inactive
1643  * stripes and copying them over
1644  */
1645  list_for_each_entry(nsh, &newstripes, lru) {
1646  spin_lock_irq(&conf->device_lock);
1648  !list_empty(&conf->inactive_list),
1649  conf->device_lock,
1650  );
1651  osh = get_free_stripe(conf);
1652  spin_unlock_irq(&conf->device_lock);
1653  atomic_set(&nsh->count, 1);
1654  for(i=0; i<conf->pool_size; i++)
1655  nsh->dev[i].page = osh->dev[i].page;
1656  for( ; i<newsize; i++)
1657  nsh->dev[i].page = NULL;
1658  kmem_cache_free(conf->slab_cache, osh);
1659  }
1661 
1662  /* Step 3.
1663  * At this point, we are holding all the stripes so the array
1664  * is completely stalled, so now is a good time to resize
1665  * conf->disks and the scribble region
1666  */
1667  ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1668  if (ndisks) {
1669  for (i=0; i<conf->raid_disks; i++)
1670  ndisks[i] = conf->disks[i];
1671  kfree(conf->disks);
1672  conf->disks = ndisks;
1673  } else
1674  err = -ENOMEM;
1675 
1676  get_online_cpus();
1677  conf->scribble_len = scribble_len(newsize);
1678  for_each_present_cpu(cpu) {
1679  struct raid5_percpu *percpu;
1680  void *scribble;
1681 
1682  percpu = per_cpu_ptr(conf->percpu, cpu);
1683  scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1684 
1685  if (scribble) {
1686  kfree(percpu->scribble);
1687  percpu->scribble = scribble;
1688  } else {
1689  err = -ENOMEM;
1690  break;
1691  }
1692  }
1693  put_online_cpus();
1694 
1695  /* Step 4, return new stripes to service */
1696  while(!list_empty(&newstripes)) {
1697  nsh = list_entry(newstripes.next, struct stripe_head, lru);
1698  list_del_init(&nsh->lru);
1699 
1700  for (i=conf->raid_disks; i < newsize; i++)
1701  if (nsh->dev[i].page == NULL) {
1702  struct page *p = alloc_page(GFP_NOIO);
1703  nsh->dev[i].page = p;
1704  if (!p)
1705  err = -ENOMEM;
1706  }
1707  release_stripe(nsh);
1708  }
1709  /* critical section pass, GFP_NOIO no longer needed */
1710 
1711  conf->slab_cache = sc;
1712  conf->active_name = 1-conf->active_name;
1713  conf->pool_size = newsize;
1714  return err;
1715 }
1716 
1717 static int drop_one_stripe(struct r5conf *conf)
1718 {
1719  struct stripe_head *sh;
1720 
1721  spin_lock_irq(&conf->device_lock);
1722  sh = get_free_stripe(conf);
1723  spin_unlock_irq(&conf->device_lock);
1724  if (!sh)
1725  return 0;
1726  BUG_ON(atomic_read(&sh->count));
1727  shrink_buffers(sh);
1728  kmem_cache_free(conf->slab_cache, sh);
1729  atomic_dec(&conf->active_stripes);
1730  return 1;
1731 }
1732 
1733 static void shrink_stripes(struct r5conf *conf)
1734 {
1735  while (drop_one_stripe(conf))
1736  ;
1737 
1738  if (conf->slab_cache)
1740  conf->slab_cache = NULL;
1741 }
1742 
1743 static void raid5_end_read_request(struct bio * bi, int error)
1744 {
1745  struct stripe_head *sh = bi->bi_private;
1746  struct r5conf *conf = sh->raid_conf;
1747  int disks = sh->disks, i;
1748  int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1749  char b[BDEVNAME_SIZE];
1750  struct md_rdev *rdev = NULL;
1751  sector_t s;
1752 
1753  for (i=0 ; i<disks; i++)
1754  if (bi == &sh->dev[i].req)
1755  break;
1756 
1757  pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1758  (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1759  uptodate);
1760  if (i == disks) {
1761  BUG();
1762  return;
1763  }
1764  if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1765  /* If replacement finished while this request was outstanding,
1766  * 'replacement' might be NULL already.
1767  * In that case it moved down to 'rdev'.
1768  * rdev is not removed until all requests are finished.
1769  */
1770  rdev = conf->disks[i].replacement;
1771  if (!rdev)
1772  rdev = conf->disks[i].rdev;
1773 
1774  if (use_new_offset(conf, sh))
1775  s = sh->sector + rdev->new_data_offset;
1776  else
1777  s = sh->sector + rdev->data_offset;
1778  if (uptodate) {
1779  set_bit(R5_UPTODATE, &sh->dev[i].flags);
1780  if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1781  /* Note that this cannot happen on a
1782  * replacement device. We just fail those on
1783  * any error
1784  */
1786  KERN_INFO
1787  "md/raid:%s: read error corrected"
1788  " (%lu sectors at %llu on %s)\n",
1789  mdname(conf->mddev), STRIPE_SECTORS,
1790  (unsigned long long)s,
1791  bdevname(rdev->bdev, b));
1793  clear_bit(R5_ReadError, &sh->dev[i].flags);
1794  clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795  } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1796  clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1797 
1798  if (atomic_read(&rdev->read_errors))
1799  atomic_set(&rdev->read_errors, 0);
1800  } else {
1801  const char *bdn = bdevname(rdev->bdev, b);
1802  int retry = 0;
1803  int set_bad = 0;
1804 
1805  clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1806  atomic_inc(&rdev->read_errors);
1807  if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1809  KERN_WARNING
1810  "md/raid:%s: read error on replacement device "
1811  "(sector %llu on %s).\n",
1812  mdname(conf->mddev),
1813  (unsigned long long)s,
1814  bdn);
1815  else if (conf->mddev->degraded >= conf->max_degraded) {
1816  set_bad = 1;
1818  KERN_WARNING
1819  "md/raid:%s: read error not correctable "
1820  "(sector %llu on %s).\n",
1821  mdname(conf->mddev),
1822  (unsigned long long)s,
1823  bdn);
1824  } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1825  /* Oh, no!!! */
1826  set_bad = 1;
1828  KERN_WARNING
1829  "md/raid:%s: read error NOT corrected!! "
1830  "(sector %llu on %s).\n",
1831  mdname(conf->mddev),
1832  (unsigned long long)s,
1833  bdn);
1834  } else if (atomic_read(&rdev->read_errors)
1835  > conf->max_nr_stripes)
1837  "md/raid:%s: Too many read errors, failing device %s.\n",
1838  mdname(conf->mddev), bdn);
1839  else
1840  retry = 1;
1841  if (retry)
1842  if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1843  set_bit(R5_ReadError, &sh->dev[i].flags);
1844  clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1845  } else
1846  set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1847  else {
1848  clear_bit(R5_ReadError, &sh->dev[i].flags);
1849  clear_bit(R5_ReWrite, &sh->dev[i].flags);
1850  if (!(set_bad
1851  && test_bit(In_sync, &rdev->flags)
1852  && rdev_set_badblocks(
1853  rdev, sh->sector, STRIPE_SECTORS, 0)))
1854  md_error(conf->mddev, rdev);
1855  }
1856  }
1857  rdev_dec_pending(rdev, conf->mddev);
1858  clear_bit(R5_LOCKED, &sh->dev[i].flags);
1859  set_bit(STRIPE_HANDLE, &sh->state);
1860  release_stripe(sh);
1861 }
1862 
1863 static void raid5_end_write_request(struct bio *bi, int error)
1864 {
1865  struct stripe_head *sh = bi->bi_private;
1866  struct r5conf *conf = sh->raid_conf;
1867  int disks = sh->disks, i;
1868  struct md_rdev *uninitialized_var(rdev);
1869  int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1870  sector_t first_bad;
1871  int bad_sectors;
1872  int replacement = 0;
1873 
1874  for (i = 0 ; i < disks; i++) {
1875  if (bi == &sh->dev[i].req) {
1876  rdev = conf->disks[i].rdev;
1877  break;
1878  }
1879  if (bi == &sh->dev[i].rreq) {
1880  rdev = conf->disks[i].replacement;
1881  if (rdev)
1882  replacement = 1;
1883  else
1884  /* rdev was removed and 'replacement'
1885  * replaced it. rdev is not removed
1886  * until all requests are finished.
1887  */
1888  rdev = conf->disks[i].rdev;
1889  break;
1890  }
1891  }
1892  pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1893  (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1894  uptodate);
1895  if (i == disks) {
1896  BUG();
1897  return;
1898  }
1899 
1900  if (replacement) {
1901  if (!uptodate)
1902  md_error(conf->mddev, rdev);
1903  else if (is_badblock(rdev, sh->sector,
1905  &first_bad, &bad_sectors))
1906  set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1907  } else {
1908  if (!uptodate) {
1909  set_bit(WriteErrorSeen, &rdev->flags);
1910  set_bit(R5_WriteError, &sh->dev[i].flags);
1911  if (!test_and_set_bit(WantReplacement, &rdev->flags))
1913  &rdev->mddev->recovery);
1914  } else if (is_badblock(rdev, sh->sector,
1916  &first_bad, &bad_sectors))
1917  set_bit(R5_MadeGood, &sh->dev[i].flags);
1918  }
1919  rdev_dec_pending(rdev, conf->mddev);
1920 
1921  if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922  clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923  set_bit(STRIPE_HANDLE, &sh->state);
1924  release_stripe(sh);
1925 }
1926 
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1928 
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1930 {
1931  struct r5dev *dev = &sh->dev[i];
1932 
1933  bio_init(&dev->req);
1934  dev->req.bi_io_vec = &dev->vec;
1935  dev->req.bi_vcnt++;
1936  dev->req.bi_max_vecs++;
1937  dev->req.bi_private = sh;
1938  dev->vec.bv_page = dev->page;
1939 
1940  bio_init(&dev->rreq);
1941  dev->rreq.bi_io_vec = &dev->rvec;
1942  dev->rreq.bi_vcnt++;
1943  dev->rreq.bi_max_vecs++;
1944  dev->rreq.bi_private = sh;
1945  dev->rvec.bv_page = dev->page;
1946 
1947  dev->flags = 0;
1948  dev->sector = compute_blocknr(sh, i, previous);
1949 }
1950 
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953  char b[BDEVNAME_SIZE];
1954  struct r5conf *conf = mddev->private;
1955  unsigned long flags;
1956  pr_debug("raid456: error called\n");
1957 
1958  spin_lock_irqsave(&conf->device_lock, flags);
1959  clear_bit(In_sync, &rdev->flags);
1960  mddev->degraded = calc_degraded(conf);
1961  spin_unlock_irqrestore(&conf->device_lock, flags);
1962  set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963 
1964  set_bit(Blocked, &rdev->flags);
1965  set_bit(Faulty, &rdev->flags);
1966  set_bit(MD_CHANGE_DEVS, &mddev->flags);
1968  "md/raid:%s: Disk failure on %s, disabling device.\n"
1969  "md/raid:%s: Operation continuing on %d devices.\n",
1970  mdname(mddev),
1971  bdevname(rdev->bdev, b),
1972  mdname(mddev),
1973  conf->raid_disks - mddev->degraded);
1974 }
1975 
1976 /*
1977  * Input: a 'big' sector number,
1978  * Output: index of the data and parity disk, and the sector # in them.
1979  */
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981  int previous, int *dd_idx,
1982  struct stripe_head *sh)
1983 {
1984  sector_t stripe, stripe2;
1985  sector_t chunk_number;
1986  unsigned int chunk_offset;
1987  int pd_idx, qd_idx;
1988  int ddf_layout = 0;
1989  sector_t new_sector;
1990  int algorithm = previous ? conf->prev_algo
1991  : conf->algorithm;
1992  int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993  : conf->chunk_sectors;
1994  int raid_disks = previous ? conf->previous_raid_disks
1995  : conf->raid_disks;
1996  int data_disks = raid_disks - conf->max_degraded;
1997 
1998  /* First compute the information on this sector */
1999 
2000  /*
2001  * Compute the chunk number and the sector offset inside the chunk
2002  */
2003  chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004  chunk_number = r_sector;
2005 
2006  /*
2007  * Compute the stripe number
2008  */
2009  stripe = chunk_number;
2010  *dd_idx = sector_div(stripe, data_disks);
2011  stripe2 = stripe;
2012  /*
2013  * Select the parity disk based on the user selected algorithm.
2014  */
2015  pd_idx = qd_idx = -1;
2016  switch(conf->level) {
2017  case 4:
2018  pd_idx = data_disks;
2019  break;
2020  case 5:
2021  switch (algorithm) {
2023  pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024  if (*dd_idx >= pd_idx)
2025  (*dd_idx)++;
2026  break;
2028  pd_idx = sector_div(stripe2, raid_disks);
2029  if (*dd_idx >= pd_idx)
2030  (*dd_idx)++;
2031  break;
2033  pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034  *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035  break;
2037  pd_idx = sector_div(stripe2, raid_disks);
2038  *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039  break;
2040  case ALGORITHM_PARITY_0:
2041  pd_idx = 0;
2042  (*dd_idx)++;
2043  break;
2044  case ALGORITHM_PARITY_N:
2045  pd_idx = data_disks;
2046  break;
2047  default:
2048  BUG();
2049  }
2050  break;
2051  case 6:
2052 
2053  switch (algorithm) {
2055  pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056  qd_idx = pd_idx + 1;
2057  if (pd_idx == raid_disks-1) {
2058  (*dd_idx)++; /* Q D D D P */
2059  qd_idx = 0;
2060  } else if (*dd_idx >= pd_idx)
2061  (*dd_idx) += 2; /* D D P Q D */
2062  break;
2064  pd_idx = sector_div(stripe2, raid_disks);
2065  qd_idx = pd_idx + 1;
2066  if (pd_idx == raid_disks-1) {
2067  (*dd_idx)++; /* Q D D D P */
2068  qd_idx = 0;
2069  } else if (*dd_idx >= pd_idx)
2070  (*dd_idx) += 2; /* D D P Q D */
2071  break;
2073  pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074  qd_idx = (pd_idx + 1) % raid_disks;
2075  *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076  break;
2078  pd_idx = sector_div(stripe2, raid_disks);
2079  qd_idx = (pd_idx + 1) % raid_disks;
2080  *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081  break;
2082 
2083  case ALGORITHM_PARITY_0:
2084  pd_idx = 0;
2085  qd_idx = 1;
2086  (*dd_idx) += 2;
2087  break;
2088  case ALGORITHM_PARITY_N:
2089  pd_idx = data_disks;
2090  qd_idx = data_disks + 1;
2091  break;
2092 
2094  /* Exactly the same as RIGHT_ASYMMETRIC, but or
2095  * of blocks for computing Q is different.
2096  */
2097  pd_idx = sector_div(stripe2, raid_disks);
2098  qd_idx = pd_idx + 1;
2099  if (pd_idx == raid_disks-1) {
2100  (*dd_idx)++; /* Q D D D P */
2101  qd_idx = 0;
2102  } else if (*dd_idx >= pd_idx)
2103  (*dd_idx) += 2; /* D D P Q D */
2104  ddf_layout = 1;
2105  break;
2106 
2108  /* Same a left_asymmetric, by first stripe is
2109  * D D D P Q rather than
2110  * Q D D D P
2111  */
2112  stripe2 += 1;
2113  pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114  qd_idx = pd_idx + 1;
2115  if (pd_idx == raid_disks-1) {
2116  (*dd_idx)++; /* Q D D D P */
2117  qd_idx = 0;
2118  } else if (*dd_idx >= pd_idx)
2119  (*dd_idx) += 2; /* D D P Q D */
2120  ddf_layout = 1;
2121  break;
2122 
2124  /* Same as left_symmetric but Q is before P */
2125  pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126  qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127  *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128  ddf_layout = 1;
2129  break;
2130 
2132  /* RAID5 left_asymmetric, with Q on last device */
2133  pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134  if (*dd_idx >= pd_idx)
2135  (*dd_idx)++;
2136  qd_idx = raid_disks - 1;
2137  break;
2138 
2140  pd_idx = sector_div(stripe2, raid_disks-1);
2141  if (*dd_idx >= pd_idx)
2142  (*dd_idx)++;
2143  qd_idx = raid_disks - 1;
2144  break;
2145 
2147  pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148  *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149  qd_idx = raid_disks - 1;
2150  break;
2151 
2153  pd_idx = sector_div(stripe2, raid_disks-1);
2154  *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155  qd_idx = raid_disks - 1;
2156  break;
2157 
2158  case ALGORITHM_PARITY_0_6:
2159  pd_idx = 0;
2160  (*dd_idx)++;
2161  qd_idx = raid_disks - 1;
2162  break;
2163 
2164  default:
2165  BUG();
2166  }
2167  break;
2168  }
2169 
2170  if (sh) {
2171  sh->pd_idx = pd_idx;
2172  sh->qd_idx = qd_idx;
2173  sh->ddf_layout = ddf_layout;
2174  }
2175  /*
2176  * Finally, compute the new sector number
2177  */
2178  new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179  return new_sector;
2180 }
2181 
2182 
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2184 {
2185  struct r5conf *conf = sh->raid_conf;
2186  int raid_disks = sh->disks;
2187  int data_disks = raid_disks - conf->max_degraded;
2188  sector_t new_sector = sh->sector, check;
2189  int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190  : conf->chunk_sectors;
2191  int algorithm = previous ? conf->prev_algo
2192  : conf->algorithm;
2193  sector_t stripe;
2194  int chunk_offset;
2195  sector_t chunk_number;
2196  int dummy1, dd_idx = i;
2197  sector_t r_sector;
2198  struct stripe_head sh2;
2199 
2200 
2201  chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202  stripe = new_sector;
2203 
2204  if (i == sh->pd_idx)
2205  return 0;
2206  switch(conf->level) {
2207  case 4: break;
2208  case 5:
2209  switch (algorithm) {
2212  if (i > sh->pd_idx)
2213  i--;
2214  break;
2217  if (i < sh->pd_idx)
2218  i += raid_disks;
2219  i -= (sh->pd_idx + 1);
2220  break;
2221  case ALGORITHM_PARITY_0:
2222  i -= 1;
2223  break;
2224  case ALGORITHM_PARITY_N:
2225  break;
2226  default:
2227  BUG();
2228  }
2229  break;
2230  case 6:
2231  if (i == sh->qd_idx)
2232  return 0; /* It is the Q disk */
2233  switch (algorithm) {
2238  if (sh->pd_idx == raid_disks-1)
2239  i--; /* Q D D D P */
2240  else if (i > sh->pd_idx)
2241  i -= 2; /* D D P Q D */
2242  break;
2245  if (sh->pd_idx == raid_disks-1)
2246  i--; /* Q D D D P */
2247  else {
2248  /* D D P Q D */
2249  if (i < sh->pd_idx)
2250  i += raid_disks;
2251  i -= (sh->pd_idx + 2);
2252  }
2253  break;
2254  case ALGORITHM_PARITY_0:
2255  i -= 2;
2256  break;
2257  case ALGORITHM_PARITY_N:
2258  break;
2260  /* Like left_symmetric, but P is before Q */
2261  if (sh->pd_idx == 0)
2262  i--; /* P D D D Q */
2263  else {
2264  /* D D Q P D */
2265  if (i < sh->pd_idx)
2266  i += raid_disks;
2267  i -= (sh->pd_idx + 1);
2268  }
2269  break;
2272  if (i > sh->pd_idx)
2273  i--;
2274  break;
2277  if (i < sh->pd_idx)
2278  i += data_disks + 1;
2279  i -= (sh->pd_idx + 1);
2280  break;
2281  case ALGORITHM_PARITY_0_6:
2282  i -= 1;
2283  break;
2284  default:
2285  BUG();
2286  }
2287  break;
2288  }
2289 
2290  chunk_number = stripe * data_disks + i;
2291  r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2292 
2293  check = raid5_compute_sector(conf, r_sector,
2294  previous, &dummy1, &sh2);
2295  if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296  || sh2.qd_idx != sh->qd_idx) {
2297  printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298  mdname(conf->mddev));
2299  return 0;
2300  }
2301  return r_sector;
2302 }
2303 
2304 
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307  int rcw, int expand)
2308 {
2309  int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310  struct r5conf *conf = sh->raid_conf;
2311  int level = conf->level;
2312 
2313  if (rcw) {
2314  /* if we are not expanding this is a proper write request, and
2315  * there will be bios with new data to be drained into the
2316  * stripe cache
2317  */
2318  if (!expand) {
2321  } else
2323 
2325 
2326  for (i = disks; i--; ) {
2327  struct r5dev *dev = &sh->dev[i];
2328 
2329  if (dev->towrite) {
2330  set_bit(R5_LOCKED, &dev->flags);
2331  set_bit(R5_Wantdrain, &dev->flags);
2332  if (!expand)
2333  clear_bit(R5_UPTODATE, &dev->flags);
2334  s->locked++;
2335  }
2336  }
2337  if (s->locked + conf->max_degraded == disks)
2340  } else {
2341  BUG_ON(level == 6);
2342  BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2343  test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2344 
2349 
2350  for (i = disks; i--; ) {
2351  struct r5dev *dev = &sh->dev[i];
2352  if (i == pd_idx)
2353  continue;
2354 
2355  if (dev->towrite &&
2356  (test_bit(R5_UPTODATE, &dev->flags) ||
2357  test_bit(R5_Wantcompute, &dev->flags))) {
2358  set_bit(R5_Wantdrain, &dev->flags);
2359  set_bit(R5_LOCKED, &dev->flags);
2360  clear_bit(R5_UPTODATE, &dev->flags);
2361  s->locked++;
2362  }
2363  }
2364  }
2365 
2366  /* keep the parity disk(s) locked while asynchronous operations
2367  * are in flight
2368  */
2369  set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2370  clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2371  s->locked++;
2372 
2373  if (level == 6) {
2374  int qd_idx = sh->qd_idx;
2375  struct r5dev *dev = &sh->dev[qd_idx];
2376 
2377  set_bit(R5_LOCKED, &dev->flags);
2378  clear_bit(R5_UPTODATE, &dev->flags);
2379  s->locked++;
2380  }
2381 
2382  pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2383  __func__, (unsigned long long)sh->sector,
2384  s->locked, s->ops_request);
2385 }
2386 
2387 /*
2388  * Each stripe/dev can have one or more bion attached.
2389  * toread/towrite point to the first in a chain.
2390  * The bi_next chain must be in order.
2391  */
2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2393 {
2394  struct bio **bip;
2395  struct r5conf *conf = sh->raid_conf;
2396  int firstwrite=0;
2397 
2398  pr_debug("adding bi b#%llu to stripe s#%llu\n",
2399  (unsigned long long)bi->bi_sector,
2400  (unsigned long long)sh->sector);
2401 
2402  /*
2403  * If several bio share a stripe. The bio bi_phys_segments acts as a
2404  * reference count to avoid race. The reference count should already be
2405  * increased before this function is called (for example, in
2406  * make_request()), so other bio sharing this stripe will not free the
2407  * stripe. If a stripe is owned by one stripe, the stripe lock will
2408  * protect it.
2409  */
2410  spin_lock_irq(&sh->stripe_lock);
2411  if (forwrite) {
2412  bip = &sh->dev[dd_idx].towrite;
2413  if (*bip == NULL)
2414  firstwrite = 1;
2415  } else
2416  bip = &sh->dev[dd_idx].toread;
2417  while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2418  if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2419  goto overlap;
2420  bip = & (*bip)->bi_next;
2421  }
2422  if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2423  goto overlap;
2424 
2425  BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2426  if (*bip)
2427  bi->bi_next = *bip;
2428  *bip = bi;
2429  raid5_inc_bi_active_stripes(bi);
2430 
2431  if (forwrite) {
2432  /* check if page is covered */
2433  sector_t sector = sh->dev[dd_idx].sector;
2434  for (bi=sh->dev[dd_idx].towrite;
2435  sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2436  bi && bi->bi_sector <= sector;
2437  bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2438  if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2439  sector = bi->bi_sector + (bi->bi_size>>9);
2440  }
2441  if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2442  set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2443  }
2444 
2445  pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2446  (unsigned long long)(*bip)->bi_sector,
2447  (unsigned long long)sh->sector, dd_idx);
2448  spin_unlock_irq(&sh->stripe_lock);
2449 
2450  if (conf->mddev->bitmap && firstwrite) {
2451  bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2452  STRIPE_SECTORS, 0);
2453  sh->bm_seq = conf->seq_flush+1;
2455  }
2456  return 1;
2457 
2458  overlap:
2459  set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2460  spin_unlock_irq(&sh->stripe_lock);
2461  return 0;
2462 }
2463 
2464 static void end_reshape(struct r5conf *conf);
2465 
2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2467  struct stripe_head *sh)
2468 {
2469  int sectors_per_chunk =
2470  previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2471  int dd_idx;
2472  int chunk_offset = sector_div(stripe, sectors_per_chunk);
2473  int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2474 
2475  raid5_compute_sector(conf,
2476  stripe * (disks - conf->max_degraded)
2477  *sectors_per_chunk + chunk_offset,
2478  previous,
2479  &dd_idx, sh);
2480 }
2481 
2482 static void
2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2484  struct stripe_head_state *s, int disks,
2485  struct bio **return_bi)
2486 {
2487  int i;
2488  for (i = disks; i--; ) {
2489  struct bio *bi;
2490  int bitmap_end = 0;
2491 
2492  if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2493  struct md_rdev *rdev;
2494  rcu_read_lock();
2495  rdev = rcu_dereference(conf->disks[i].rdev);
2496  if (rdev && test_bit(In_sync, &rdev->flags))
2497  atomic_inc(&rdev->nr_pending);
2498  else
2499  rdev = NULL;
2500  rcu_read_unlock();
2501  if (rdev) {
2502  if (!rdev_set_badblocks(
2503  rdev,
2504  sh->sector,
2505  STRIPE_SECTORS, 0))
2506  md_error(conf->mddev, rdev);
2507  rdev_dec_pending(rdev, conf->mddev);
2508  }
2509  }
2510  spin_lock_irq(&sh->stripe_lock);
2511  /* fail all writes first */
2512  bi = sh->dev[i].towrite;
2513  sh->dev[i].towrite = NULL;
2514  spin_unlock_irq(&sh->stripe_lock);
2515  if (bi)
2516  bitmap_end = 1;
2517 
2518  if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2519  wake_up(&conf->wait_for_overlap);
2520 
2521  while (bi && bi->bi_sector <
2522  sh->dev[i].sector + STRIPE_SECTORS) {
2523  struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2524  clear_bit(BIO_UPTODATE, &bi->bi_flags);
2525  if (!raid5_dec_bi_active_stripes(bi)) {
2526  md_write_end(conf->mddev);
2527  bi->bi_next = *return_bi;
2528  *return_bi = bi;
2529  }
2530  bi = nextbi;
2531  }
2532  if (bitmap_end)
2533  bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2534  STRIPE_SECTORS, 0, 0);
2535  bitmap_end = 0;
2536  /* and fail all 'written' */
2537  bi = sh->dev[i].written;
2538  sh->dev[i].written = NULL;
2539  if (bi) bitmap_end = 1;
2540  while (bi && bi->bi_sector <
2541  sh->dev[i].sector + STRIPE_SECTORS) {
2542  struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2543  clear_bit(BIO_UPTODATE, &bi->bi_flags);
2544  if (!raid5_dec_bi_active_stripes(bi)) {
2545  md_write_end(conf->mddev);
2546  bi->bi_next = *return_bi;
2547  *return_bi = bi;
2548  }
2549  bi = bi2;
2550  }
2551 
2552  /* fail any reads if this device is non-operational and
2553  * the data has not reached the cache yet.
2554  */
2555  if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2556  (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2557  test_bit(R5_ReadError, &sh->dev[i].flags))) {
2558  spin_lock_irq(&sh->stripe_lock);
2559  bi = sh->dev[i].toread;
2560  sh->dev[i].toread = NULL;
2561  spin_unlock_irq(&sh->stripe_lock);
2562  if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2563  wake_up(&conf->wait_for_overlap);
2564  while (bi && bi->bi_sector <
2565  sh->dev[i].sector + STRIPE_SECTORS) {
2566  struct bio *nextbi =
2567  r5_next_bio(bi, sh->dev[i].sector);
2568  clear_bit(BIO_UPTODATE, &bi->bi_flags);
2569  if (!raid5_dec_bi_active_stripes(bi)) {
2570  bi->bi_next = *return_bi;
2571  *return_bi = bi;
2572  }
2573  bi = nextbi;
2574  }
2575  }
2576  if (bitmap_end)
2577  bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2578  STRIPE_SECTORS, 0, 0);
2579  /* If we were in the middle of a write the parity block might
2580  * still be locked - so just clear all R5_LOCKED flags
2581  */
2582  clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583  }
2584 
2587  md_wakeup_thread(conf->mddev->thread);
2588 }
2589 
2590 static void
2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2592  struct stripe_head_state *s)
2593 {
2594  int abort = 0;
2595  int i;
2596 
2598  s->syncing = 0;
2599  s->replacing = 0;
2600  /* There is nothing more to do for sync/check/repair.
2601  * Don't even need to abort as that is handled elsewhere
2602  * if needed, and not always wanted e.g. if there is a known
2603  * bad block here.
2604  * For recover/replace we need to record a bad block on all
2605  * non-sync devices, or abort the recovery
2606  */
2607  if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2608  /* During recovery devices cannot be removed, so
2609  * locking and refcounting of rdevs is not needed
2610  */
2611  for (i = 0; i < conf->raid_disks; i++) {
2612  struct md_rdev *rdev = conf->disks[i].rdev;
2613  if (rdev
2614  && !test_bit(Faulty, &rdev->flags)
2615  && !test_bit(In_sync, &rdev->flags)
2616  && !rdev_set_badblocks(rdev, sh->sector,
2617  STRIPE_SECTORS, 0))
2618  abort = 1;
2619  rdev = conf->disks[i].replacement;
2620  if (rdev
2621  && !test_bit(Faulty, &rdev->flags)
2622  && !test_bit(In_sync, &rdev->flags)
2623  && !rdev_set_badblocks(rdev, sh->sector,
2624  STRIPE_SECTORS, 0))
2625  abort = 1;
2626  }
2627  if (abort)
2628  conf->recovery_disabled =
2629  conf->mddev->recovery_disabled;
2630  }
2631  md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2632 }
2633 
2634 static int want_replace(struct stripe_head *sh, int disk_idx)
2635 {
2636  struct md_rdev *rdev;
2637  int rv = 0;
2638  /* Doing recovery so rcu locking not required */
2639  rdev = sh->raid_conf->disks[disk_idx].replacement;
2640  if (rdev
2641  && !test_bit(Faulty, &rdev->flags)
2642  && !test_bit(In_sync, &rdev->flags)
2643  && (rdev->recovery_offset <= sh->sector
2644  || rdev->mddev->recovery_cp <= sh->sector))
2645  rv = 1;
2646 
2647  return rv;
2648 }
2649 
2650 /* fetch_block - checks the given member device to see if its data needs
2651  * to be read or computed to satisfy a request.
2652  *
2653  * Returns 1 when no more member devices need to be checked, otherwise returns
2654  * 0 to tell the loop in handle_stripe_fill to continue
2655  */
2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2657  int disk_idx, int disks)
2658 {
2659  struct r5dev *dev = &sh->dev[disk_idx];
2660  struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2661  &sh->dev[s->failed_num[1]] };
2662 
2663  /* is the data in this block needed, and can we get it? */
2664  if (!test_bit(R5_LOCKED, &dev->flags) &&
2665  !test_bit(R5_UPTODATE, &dev->flags) &&
2666  (dev->toread ||
2667  (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2668  s->syncing || s->expanding ||
2669  (s->replacing && want_replace(sh, disk_idx)) ||
2670  (s->failed >= 1 && fdev[0]->toread) ||
2671  (s->failed >= 2 && fdev[1]->toread) ||
2672  (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2673  !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2674  (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2675  /* we would like to get this block, possibly by computing it,
2676  * otherwise read it if the backing disk is insync
2677  */
2678  BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2679  BUG_ON(test_bit(R5_Wantread, &dev->flags));
2680  if ((s->uptodate == disks - 1) &&
2681  (s->failed && (disk_idx == s->failed_num[0] ||
2682  disk_idx == s->failed_num[1]))) {
2683  /* have disk failed, and we're requested to fetch it;
2684  * do compute it
2685  */
2686  pr_debug("Computing stripe %llu block %d\n",
2687  (unsigned long long)sh->sector, disk_idx);
2690  set_bit(R5_Wantcompute, &dev->flags);
2691  sh->ops.target = disk_idx;
2692  sh->ops.target2 = -1; /* no 2nd target */
2693  s->req_compute = 1;
2694  /* Careful: from this point on 'uptodate' is in the eye
2695  * of raid_run_ops which services 'compute' operations
2696  * before writes. R5_Wantcompute flags a block that will
2697  * be R5_UPTODATE by the time it is needed for a
2698  * subsequent operation.
2699  */
2700  s->uptodate++;
2701  return 1;
2702  } else if (s->uptodate == disks-2 && s->failed >= 2) {
2703  /* Computing 2-failure is *very* expensive; only
2704  * do it if failed >= 2
2705  */
2706  int other;
2707  for (other = disks; other--; ) {
2708  if (other == disk_idx)
2709  continue;
2710  if (!test_bit(R5_UPTODATE,
2711  &sh->dev[other].flags))
2712  break;
2713  }
2714  BUG_ON(other < 0);
2715  pr_debug("Computing stripe %llu blocks %d,%d\n",
2716  (unsigned long long)sh->sector,
2717  disk_idx, other);
2720  set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2721  set_bit(R5_Wantcompute, &sh->dev[other].flags);
2722  sh->ops.target = disk_idx;
2723  sh->ops.target2 = other;
2724  s->uptodate += 2;
2725  s->req_compute = 1;
2726  return 1;
2727  } else if (test_bit(R5_Insync, &dev->flags)) {
2728  set_bit(R5_LOCKED, &dev->flags);
2729  set_bit(R5_Wantread, &dev->flags);
2730  s->locked++;
2731  pr_debug("Reading block %d (sync=%d)\n",
2732  disk_idx, s->syncing);
2733  }
2734  }
2735 
2736  return 0;
2737 }
2738 
2742 static void handle_stripe_fill(struct stripe_head *sh,
2743  struct stripe_head_state *s,
2744  int disks)
2745 {
2746  int i;
2747 
2748  /* look for blocks to read/compute, skip this if a compute
2749  * is already in flight, or if the stripe contents are in the
2750  * midst of changing due to a write
2751  */
2752  if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2753  !sh->reconstruct_state)
2754  for (i = disks; i--; )
2755  if (fetch_block(sh, s, i, disks))
2756  break;
2757  set_bit(STRIPE_HANDLE, &sh->state);
2758 }
2759 
2760 
2761 /* handle_stripe_clean_event
2762  * any written block on an uptodate or failed drive can be returned.
2763  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2764  * never LOCKED, so we don't need to test 'failed' directly.
2765  */
2766 static void handle_stripe_clean_event(struct r5conf *conf,
2767  struct stripe_head *sh, int disks, struct bio **return_bi)
2768 {
2769  int i;
2770  struct r5dev *dev;
2771 
2772  for (i = disks; i--; )
2773  if (sh->dev[i].written) {
2774  dev = &sh->dev[i];
2775  if (!test_bit(R5_LOCKED, &dev->flags) &&
2776  (test_bit(R5_UPTODATE, &dev->flags) ||
2777  test_bit(R5_Discard, &dev->flags))) {
2778  /* We can return any write requests */
2779  struct bio *wbi, *wbi2;
2780  pr_debug("Return write for disc %d\n", i);
2781  if (test_and_clear_bit(R5_Discard, &dev->flags))
2782  clear_bit(R5_UPTODATE, &dev->flags);
2783  wbi = dev->written;
2784  dev->written = NULL;
2785  while (wbi && wbi->bi_sector <
2786  dev->sector + STRIPE_SECTORS) {
2787  wbi2 = r5_next_bio(wbi, dev->sector);
2788  if (!raid5_dec_bi_active_stripes(wbi)) {
2789  md_write_end(conf->mddev);
2790  wbi->bi_next = *return_bi;
2791  *return_bi = wbi;
2792  }
2793  wbi = wbi2;
2794  }
2795  bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2797  !test_bit(STRIPE_DEGRADED, &sh->state),
2798  0);
2799  }
2800  } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2801  clear_bit(R5_Discard, &sh->dev[i].flags);
2802 
2805  md_wakeup_thread(conf->mddev->thread);
2806 }
2807 
2808 static void handle_stripe_dirtying(struct r5conf *conf,
2809  struct stripe_head *sh,
2810  struct stripe_head_state *s,
2811  int disks)
2812 {
2813  int rmw = 0, rcw = 0, i;
2814  sector_t recovery_cp = conf->mddev->recovery_cp;
2815 
2816  /* RAID6 requires 'rcw' in current implementation.
2817  * Otherwise, check whether resync is now happening or should start.
2818  * If yes, then the array is dirty (after unclean shutdown or
2819  * initial creation), so parity in some stripes might be inconsistent.
2820  * In this case, we need to always do reconstruct-write, to ensure
2821  * that in case of drive failure or read-error correction, we
2822  * generate correct data from the parity.
2823  */
2824  if (conf->max_degraded == 2 ||
2825  (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2826  /* Calculate the real rcw later - for now make it
2827  * look like rcw is cheaper
2828  */
2829  rcw = 1; rmw = 2;
2830  pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2831  conf->max_degraded, (unsigned long long)recovery_cp,
2832  (unsigned long long)sh->sector);
2833  } else for (i = disks; i--; ) {
2834  /* would I have to read this buffer for read_modify_write */
2835  struct r5dev *dev = &sh->dev[i];
2836  if ((dev->towrite || i == sh->pd_idx) &&
2837  !test_bit(R5_LOCKED, &dev->flags) &&
2838  !(test_bit(R5_UPTODATE, &dev->flags) ||
2839  test_bit(R5_Wantcompute, &dev->flags))) {
2840  if (test_bit(R5_Insync, &dev->flags))
2841  rmw++;
2842  else
2843  rmw += 2*disks; /* cannot read it */
2844  }
2845  /* Would I have to read this buffer for reconstruct_write */
2846  if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2847  !test_bit(R5_LOCKED, &dev->flags) &&
2848  !(test_bit(R5_UPTODATE, &dev->flags) ||
2849  test_bit(R5_Wantcompute, &dev->flags))) {
2850  if (test_bit(R5_Insync, &dev->flags)) rcw++;
2851  else
2852  rcw += 2*disks;
2853  }
2854  }
2855  pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2856  (unsigned long long)sh->sector, rmw, rcw);
2857  set_bit(STRIPE_HANDLE, &sh->state);
2858  if (rmw < rcw && rmw > 0)
2859  /* prefer read-modify-write, but need to get some data */
2860  for (i = disks; i--; ) {
2861  struct r5dev *dev = &sh->dev[i];
2862  if ((dev->towrite || i == sh->pd_idx) &&
2863  !test_bit(R5_LOCKED, &dev->flags) &&
2864  !(test_bit(R5_UPTODATE, &dev->flags) ||
2865  test_bit(R5_Wantcompute, &dev->flags)) &&
2866  test_bit(R5_Insync, &dev->flags)) {
2867  if (
2869  pr_debug("Read_old block "
2870  "%d for r-m-w\n", i);
2871  set_bit(R5_LOCKED, &dev->flags);
2872  set_bit(R5_Wantread, &dev->flags);
2873  s->locked++;
2874  } else {
2875  set_bit(STRIPE_DELAYED, &sh->state);
2876  set_bit(STRIPE_HANDLE, &sh->state);
2877  }
2878  }
2879  }
2880  if (rcw <= rmw && rcw > 0) {
2881  /* want reconstruct write, but need to get some data */
2882  rcw = 0;
2883  for (i = disks; i--; ) {
2884  struct r5dev *dev = &sh->dev[i];
2885  if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2886  i != sh->pd_idx && i != sh->qd_idx &&
2887  !test_bit(R5_LOCKED, &dev->flags) &&
2888  !(test_bit(R5_UPTODATE, &dev->flags) ||
2889  test_bit(R5_Wantcompute, &dev->flags))) {
2890  rcw++;
2891  if (!test_bit(R5_Insync, &dev->flags))
2892  continue; /* it's a failed drive */
2893  if (
2895  pr_debug("Read_old block "
2896  "%d for Reconstruct\n", i);
2897  set_bit(R5_LOCKED, &dev->flags);
2898  set_bit(R5_Wantread, &dev->flags);
2899  s->locked++;
2900  } else {
2901  set_bit(STRIPE_DELAYED, &sh->state);
2902  set_bit(STRIPE_HANDLE, &sh->state);
2903  }
2904  }
2905  }
2906  }
2907  /* now if nothing is locked, and if we have enough data,
2908  * we can start a write request
2909  */
2910  /* since handle_stripe can be called at any time we need to handle the
2911  * case where a compute block operation has been submitted and then a
2912  * subsequent call wants to start a write request. raid_run_ops only
2913  * handles the case where compute block and reconstruct are requested
2914  * simultaneously. If this is not the case then new writes need to be
2915  * held off until the compute completes.
2916  */
2917  if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2918  (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2919  !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2920  schedule_reconstruction(sh, s, rcw == 0, 0);
2921 }
2922 
2923 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2924  struct stripe_head_state *s, int disks)
2925 {
2926  struct r5dev *dev = NULL;
2927 
2928  set_bit(STRIPE_HANDLE, &sh->state);
2929 
2930  switch (sh->check_state) {
2931  case check_state_idle:
2932  /* start a new check operation if there are no failures */
2933  if (s->failed == 0) {
2934  BUG_ON(s->uptodate != disks);
2937  clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2938  s->uptodate--;
2939  break;
2940  }
2941  dev = &sh->dev[s->failed_num[0]];
2942  /* fall through */
2945  if (!dev)
2946  dev = &sh->dev[sh->pd_idx];
2947 
2948  /* check that a write has not made the stripe insync */
2949  if (test_bit(STRIPE_INSYNC, &sh->state))
2950  break;
2951 
2952  /* either failed parity check, or recovery is happening */
2953  BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2954  BUG_ON(s->uptodate != disks);
2955 
2956  set_bit(R5_LOCKED, &dev->flags);
2957  s->locked++;
2958  set_bit(R5_Wantwrite, &dev->flags);
2959 
2961  set_bit(STRIPE_INSYNC, &sh->state);
2962  break;
2963  case check_state_run:
2964  break; /* we will be called again upon completion */
2967 
2968  /* if a failure occurred during the check operation, leave
2969  * STRIPE_INSYNC not set and let the stripe be handled again
2970  */
2971  if (s->failed)
2972  break;
2973 
2974  /* handle a successful check operation, if parity is correct
2975  * we are done. Otherwise update the mismatch count and repair
2976  * parity if !MD_RECOVERY_CHECK
2977  */
2978  if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2979  /* parity is correct (on disc,
2980  * not in buffer any more)
2981  */
2982  set_bit(STRIPE_INSYNC, &sh->state);
2983  else {
2984  atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2985  if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2986  /* don't try to repair!! */
2987  set_bit(STRIPE_INSYNC, &sh->state);
2988  else {
2993  &sh->dev[sh->pd_idx].flags);
2994  sh->ops.target = sh->pd_idx;
2995  sh->ops.target2 = -1;
2996  s->uptodate++;
2997  }
2998  }
2999  break;
3001  break;
3002  default:
3003  printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3004  __func__, sh->check_state,
3005  (unsigned long long) sh->sector);
3006  BUG();
3007  }
3008 }
3009 
3010 
3011 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3012  struct stripe_head_state *s,
3013  int disks)
3014 {
3015  int pd_idx = sh->pd_idx;
3016  int qd_idx = sh->qd_idx;
3017  struct r5dev *dev;
3018 
3019  set_bit(STRIPE_HANDLE, &sh->state);
3020 
3021  BUG_ON(s->failed > 2);
3022 
3023  /* Want to check and possibly repair P and Q.
3024  * However there could be one 'failed' device, in which
3025  * case we can only check one of them, possibly using the
3026  * other to generate missing data
3027  */
3028 
3029  switch (sh->check_state) {
3030  case check_state_idle:
3031  /* start a new check operation if there are < 2 failures */
3032  if (s->failed == s->q_failed) {
3033  /* The only possible failed device holds Q, so it
3034  * makes sense to check P (If anything else were failed,
3035  * we would have used P to recreate it).
3036  */
3038  }
3039  if (!s->q_failed && s->failed < 2) {
3040  /* Q is not failed, and we didn't use it to generate
3041  * anything, so it makes sense to check it
3042  */
3043  if (sh->check_state == check_state_run)
3045  else
3047  }
3048 
3049  /* discard potentially stale zero_sum_result */
3050  sh->ops.zero_sum_result = 0;
3051 
3052  if (sh->check_state == check_state_run) {
3053  /* async_xor_zero_sum destroys the contents of P */
3054  clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3055  s->uptodate--;
3056  }
3057  if (sh->check_state >= check_state_run &&
3059  /* async_syndrome_zero_sum preserves P and Q, so
3060  * no need to mark them !uptodate here
3061  */
3063  break;
3064  }
3065 
3066  /* we have 2-disk failure */
3067  BUG_ON(s->failed != 2);
3068  /* fall through */
3071 
3072  /* check that a write has not made the stripe insync */
3073  if (test_bit(STRIPE_INSYNC, &sh->state))
3074  break;
3075 
3076  /* now write out any block on a failed drive,
3077  * or P or Q if they were recomputed
3078  */
3079  BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3080  if (s->failed == 2) {
3081  dev = &sh->dev[s->failed_num[1]];
3082  s->locked++;
3083  set_bit(R5_LOCKED, &dev->flags);
3084  set_bit(R5_Wantwrite, &dev->flags);
3085  }
3086  if (s->failed >= 1) {
3087  dev = &sh->dev[s->failed_num[0]];
3088  s->locked++;
3089  set_bit(R5_LOCKED, &dev->flags);
3090  set_bit(R5_Wantwrite, &dev->flags);
3091  }
3092  if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3093  dev = &sh->dev[pd_idx];
3094  s->locked++;
3095  set_bit(R5_LOCKED, &dev->flags);
3096  set_bit(R5_Wantwrite, &dev->flags);
3097  }
3098  if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3099  dev = &sh->dev[qd_idx];
3100  s->locked++;
3101  set_bit(R5_LOCKED, &dev->flags);
3102  set_bit(R5_Wantwrite, &dev->flags);
3103  }
3105 
3106  set_bit(STRIPE_INSYNC, &sh->state);
3107  break;
3108  case check_state_run:
3109  case check_state_run_q:
3110  case check_state_run_pq:
3111  break; /* we will be called again upon completion */
3114 
3115  /* handle a successful check operation, if parity is correct
3116  * we are done. Otherwise update the mismatch count and repair
3117  * parity if !MD_RECOVERY_CHECK
3118  */
3119  if (sh->ops.zero_sum_result == 0) {
3120  /* both parities are correct */
3121  if (!s->failed)
3122  set_bit(STRIPE_INSYNC, &sh->state);
3123  else {
3124  /* in contrast to the raid5 case we can validate
3125  * parity, but still have a failure to write
3126  * back
3127  */
3129  /* Returning at this point means that we may go
3130  * off and bring p and/or q uptodate again so
3131  * we make sure to check zero_sum_result again
3132  * to verify if p or q need writeback
3133  */
3134  }
3135  } else {
3136  atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3137  if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3138  /* don't try to repair!! */
3139  set_bit(STRIPE_INSYNC, &sh->state);
3140  else {
3141  int *target = &sh->ops.target;
3142 
3143  sh->ops.target = -1;
3144  sh->ops.target2 = -1;
3148  if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3150  &sh->dev[pd_idx].flags);
3151  *target = pd_idx;
3152  target = &sh->ops.target2;
3153  s->uptodate++;
3154  }
3155  if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3157  &sh->dev[qd_idx].flags);
3158  *target = qd_idx;
3159  s->uptodate++;
3160  }
3161  }
3162  }
3163  break;
3165  break;
3166  default:
3167  printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3168  __func__, sh->check_state,
3169  (unsigned long long) sh->sector);
3170  BUG();
3171  }
3172 }
3173 
3174 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3175 {
3176  int i;
3177 
3178  /* We have read all the blocks in this stripe and now we need to
3179  * copy some of them into a target stripe for expand.
3180  */
3181  struct dma_async_tx_descriptor *tx = NULL;
3183  for (i = 0; i < sh->disks; i++)
3184  if (i != sh->pd_idx && i != sh->qd_idx) {
3185  int dd_idx, j;
3186  struct stripe_head *sh2;
3187  struct async_submit_ctl submit;
3188 
3189  sector_t bn = compute_blocknr(sh, i, 1);
3190  sector_t s = raid5_compute_sector(conf, bn, 0,
3191  &dd_idx, NULL);
3192  sh2 = get_active_stripe(conf, s, 0, 1, 1);
3193  if (sh2 == NULL)
3194  /* so far only the early blocks of this stripe
3195  * have been requested. When later blocks
3196  * get requested, we will try again
3197  */
3198  continue;
3199  if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3200  test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3201  /* must have already done this block */
3202  release_stripe(sh2);
3203  continue;
3204  }
3205 
3206  /* place all the copies on one channel */
3207  init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3208  tx = async_memcpy(sh2->dev[dd_idx].page,
3209  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3210  &submit);
3211 
3212  set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3213  set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3214  for (j = 0; j < conf->raid_disks; j++)
3215  if (j != sh2->pd_idx &&
3216  j != sh2->qd_idx &&
3217  !test_bit(R5_Expanded, &sh2->dev[j].flags))
3218  break;
3219  if (j == conf->raid_disks) {
3221  set_bit(STRIPE_HANDLE, &sh2->state);
3222  }
3223  release_stripe(sh2);
3224 
3225  }
3226  /* done submitting copies, wait for them to complete */
3227  if (tx) {
3228  async_tx_ack(tx);
3230  }
3231 }
3232 
3233 /*
3234  * handle_stripe - do things to a stripe.
3235  *
3236  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3237  * state of various bits to see what needs to be done.
3238  * Possible results:
3239  * return some read requests which now have data
3240  * return some write requests which are safely on storage
3241  * schedule a read on some buffers
3242  * schedule a write of some buffers
3243  * return confirmation of parity correctness
3244  *
3245  */
3246 
3247 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3248 {
3249  struct r5conf *conf = sh->raid_conf;
3250  int disks = sh->disks;
3251  struct r5dev *dev;
3252  int i;
3253  int do_recovery = 0;
3254 
3255  memset(s, 0, sizeof(*s));
3256 
3259  s->failed_num[0] = -1;
3260  s->failed_num[1] = -1;
3261 
3262  /* Now to look around and see what can be done */
3263  rcu_read_lock();
3264  for (i=disks; i--; ) {
3265  struct md_rdev *rdev;
3266  sector_t first_bad;
3267  int bad_sectors;
3268  int is_bad = 0;
3269 
3270  dev = &sh->dev[i];
3271 
3272  pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3273  i, dev->flags,
3274  dev->toread, dev->towrite, dev->written);
3275  /* maybe we can reply to a read
3276  *
3277  * new wantfill requests are only permitted while
3278  * ops_complete_biofill is guaranteed to be inactive
3279  */
3280  if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3282  set_bit(R5_Wantfill, &dev->flags);
3283 
3284  /* now count some things */
3285  if (test_bit(R5_LOCKED, &dev->flags))
3286  s->locked++;
3287  if (test_bit(R5_UPTODATE, &dev->flags))
3288  s->uptodate++;
3289  if (test_bit(R5_Wantcompute, &dev->flags)) {
3290  s->compute++;
3291  BUG_ON(s->compute > 2);
3292  }
3293 
3294  if (test_bit(R5_Wantfill, &dev->flags))
3295  s->to_fill++;
3296  else if (dev->toread)
3297  s->to_read++;
3298  if (dev->towrite) {
3299  s->to_write++;
3300  if (!test_bit(R5_OVERWRITE, &dev->flags))
3301  s->non_overwrite++;
3302  }
3303  if (dev->written)
3304  s->written++;
3305  /* Prefer to use the replacement for reads, but only
3306  * if it is recovered enough and has no bad blocks.
3307  */
3308  rdev = rcu_dereference(conf->disks[i].replacement);
3309  if (rdev && !test_bit(Faulty, &rdev->flags) &&
3310  rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3311  !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3312  &first_bad, &bad_sectors))
3313  set_bit(R5_ReadRepl, &dev->flags);
3314  else {
3315  if (rdev)
3316  set_bit(R5_NeedReplace, &dev->flags);
3317  rdev = rcu_dereference(conf->disks[i].rdev);
3318  clear_bit(R5_ReadRepl, &dev->flags);
3319  }
3320  if (rdev && test_bit(Faulty, &rdev->flags))
3321  rdev = NULL;
3322  if (rdev) {
3323  is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3324  &first_bad, &bad_sectors);
3325  if (s->blocked_rdev == NULL
3326  && (test_bit(Blocked, &rdev->flags)
3327  || is_bad < 0)) {
3328  if (is_bad < 0)
3330  &rdev->flags);
3331  s->blocked_rdev = rdev;
3332  atomic_inc(&rdev->nr_pending);
3333  }
3334  }
3335  clear_bit(R5_Insync, &dev->flags);
3336  if (!rdev)
3337  /* Not in-sync */;
3338  else if (is_bad) {
3339  /* also not in-sync */
3340  if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3341  test_bit(R5_UPTODATE, &dev->flags)) {
3342  /* treat as in-sync, but with a read error
3343  * which we can now try to correct
3344  */
3345  set_bit(R5_Insync, &dev->flags);
3346  set_bit(R5_ReadError, &dev->flags);
3347  }
3348  } else if (test_bit(In_sync, &rdev->flags))
3349  set_bit(R5_Insync, &dev->flags);
3350  else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3351  /* in sync if before recovery_offset */
3352  set_bit(R5_Insync, &dev->flags);
3353  else if (test_bit(R5_UPTODATE, &dev->flags) &&
3354  test_bit(R5_Expanded, &dev->flags))
3355  /* If we've reshaped into here, we assume it is Insync.
3356  * We will shortly update recovery_offset to make
3357  * it official.
3358  */
3359  set_bit(R5_Insync, &dev->flags);
3360 
3361  if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3362  /* This flag does not apply to '.replacement'
3363  * only to .rdev, so make sure to check that*/
3364  struct md_rdev *rdev2 = rcu_dereference(
3365  conf->disks[i].rdev);
3366  if (rdev2 == rdev)
3367  clear_bit(R5_Insync, &dev->flags);
3368  if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3369  s->handle_bad_blocks = 1;
3370  atomic_inc(&rdev2->nr_pending);
3371  } else
3372  clear_bit(R5_WriteError, &dev->flags);
3373  }
3374  if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3375  /* This flag does not apply to '.replacement'
3376  * only to .rdev, so make sure to check that*/
3377  struct md_rdev *rdev2 = rcu_dereference(
3378  conf->disks[i].rdev);
3379  if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3380  s->handle_bad_blocks = 1;
3381  atomic_inc(&rdev2->nr_pending);
3382  } else
3383  clear_bit(R5_MadeGood, &dev->flags);
3384  }
3385  if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3386  struct md_rdev *rdev2 = rcu_dereference(
3387  conf->disks[i].replacement);
3388  if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3389  s->handle_bad_blocks = 1;
3390  atomic_inc(&rdev2->nr_pending);
3391  } else
3392  clear_bit(R5_MadeGoodRepl, &dev->flags);
3393  }
3394  if (!test_bit(R5_Insync, &dev->flags)) {
3395  /* The ReadError flag will just be confusing now */
3396  clear_bit(R5_ReadError, &dev->flags);
3397  clear_bit(R5_ReWrite, &dev->flags);
3398  }
3399  if (test_bit(R5_ReadError, &dev->flags))
3400  clear_bit(R5_Insync, &dev->flags);
3401  if (!test_bit(R5_Insync, &dev->flags)) {
3402  if (s->failed < 2)
3403  s->failed_num[s->failed] = i;
3404  s->failed++;
3405  if (rdev && !test_bit(Faulty, &rdev->flags))
3406  do_recovery = 1;
3407  }
3408  }
3409  if (test_bit(STRIPE_SYNCING, &sh->state)) {
3410  /* If there is a failed device being replaced,
3411  * we must be recovering.
3412  * else if we are after recovery_cp, we must be syncing
3413  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3414  * else we can only be replacing
3415  * sync and recovery both need to read all devices, and so
3416  * use the same flag.
3417  */
3418  if (do_recovery ||
3419  sh->sector >= conf->mddev->recovery_cp ||
3420  test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3421  s->syncing = 1;
3422  else
3423  s->replacing = 1;
3424  }
3425  rcu_read_unlock();
3426 }
3427 
3428 static void handle_stripe(struct stripe_head *sh)
3429 {
3430  struct stripe_head_state s;
3431  struct r5conf *conf = sh->raid_conf;
3432  int i;
3433  int prexor;
3434  int disks = sh->disks;
3435  struct r5dev *pdev, *qdev;
3436 
3437  clear_bit(STRIPE_HANDLE, &sh->state);
3439  /* already being handled, ensure it gets handled
3440  * again when current action finishes */
3441  set_bit(STRIPE_HANDLE, &sh->state);
3442  return;
3443  }
3444 
3446  set_bit(STRIPE_SYNCING, &sh->state);
3447  clear_bit(STRIPE_INSYNC, &sh->state);
3448  }
3450 
3451  pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3452  "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3453  (unsigned long long)sh->sector, sh->state,
3454  atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3455  sh->check_state, sh->reconstruct_state);
3456 
3457  analyse_stripe(sh, &s);
3458 
3459  if (s.handle_bad_blocks) {
3460  set_bit(STRIPE_HANDLE, &sh->state);
3461  goto finish;
3462  }
3463 
3464  if (unlikely(s.blocked_rdev)) {
3465  if (s.syncing || s.expanding || s.expanded ||
3466  s.replacing || s.to_write || s.written) {
3467  set_bit(STRIPE_HANDLE, &sh->state);
3468  goto finish;
3469  }
3470  /* There is nothing for the blocked_rdev to block */
3471  rdev_dec_pending(s.blocked_rdev, conf->mddev);
3472  s.blocked_rdev = NULL;
3473  }
3474 
3475  if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3478  }
3479 
3480  pr_debug("locked=%d uptodate=%d to_read=%d"
3481  " to_write=%d failed=%d failed_num=%d,%d\n",
3482  s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3483  s.failed_num[0], s.failed_num[1]);
3484  /* check if the array has lost more than max_degraded devices and,
3485  * if so, some requests might need to be failed.
3486  */
3487  if (s.failed > conf->max_degraded) {
3488  sh->check_state = 0;
3489  sh->reconstruct_state = 0;
3490  if (s.to_read+s.to_write+s.written)
3491  handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3492  if (s.syncing + s.replacing)
3493  handle_failed_sync(conf, sh, &s);
3494  }
3495 
3496  /* Now we check to see if any write operations have recently
3497  * completed
3498  */
3499  prexor = 0;
3501  prexor = 1;
3505 
3506  /* All the 'written' buffers and the parity block are ready to
3507  * be written back to disk
3508  */
3509  BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3510  !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3511  BUG_ON(sh->qd_idx >= 0 &&
3512  !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3513  !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3514  for (i = disks; i--; ) {
3515  struct r5dev *dev = &sh->dev[i];
3516  if (test_bit(R5_LOCKED, &dev->flags) &&
3517  (i == sh->pd_idx || i == sh->qd_idx ||
3518  dev->written)) {
3519  pr_debug("Writing block %d\n", i);
3520  set_bit(R5_Wantwrite, &dev->flags);
3521  if (prexor)
3522  continue;
3523  if (!test_bit(R5_Insync, &dev->flags) ||
3524  ((i == sh->pd_idx || i == sh->qd_idx) &&
3525  s.failed == 0))
3526  set_bit(STRIPE_INSYNC, &sh->state);
3527  }
3528  }
3530  s.dec_preread_active = 1;
3531  }
3532 
3533  /*
3534  * might be able to return some write requests if the parity blocks
3535  * are safe, or on a failed drive
3536  */
3537  pdev = &sh->dev[sh->pd_idx];
3538  s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3539  || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3540  qdev = &sh->dev[sh->qd_idx];
3541  s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3542  || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3543  || conf->level < 6;
3544 
3545  if (s.written &&
3546  (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3547  && !test_bit(R5_LOCKED, &pdev->flags)
3548  && (test_bit(R5_UPTODATE, &pdev->flags) ||
3549  test_bit(R5_Discard, &pdev->flags))))) &&
3550  (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3551  && !test_bit(R5_LOCKED, &qdev->flags)
3552  && (test_bit(R5_UPTODATE, &qdev->flags) ||
3553  test_bit(R5_Discard, &qdev->flags))))))
3554  handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3555 
3556  /* Now we might consider reading some blocks, either to check/generate
3557  * parity, or to satisfy requests
3558  * or to load a block that is being partially written.
3559  */
3560  if (s.to_read || s.non_overwrite
3561  || (conf->level == 6 && s.to_write && s.failed)
3562  || (s.syncing && (s.uptodate + s.compute < disks))
3563  || s.replacing
3564  || s.expanding)
3565  handle_stripe_fill(sh, &s, disks);
3566 
3567  /* Now to consider new write requests and what else, if anything
3568  * should be read. We do not handle new writes when:
3569  * 1/ A 'write' operation (copy+xor) is already in flight.
3570  * 2/ A 'check' operation is in flight, as it may clobber the parity
3571  * block.
3572  */
3573  if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3574  handle_stripe_dirtying(conf, sh, &s, disks);
3575 
3576  /* maybe we need to check and possibly fix the parity for this stripe
3577  * Any reads will already have been scheduled, so we just see if enough
3578  * data is available. The parity check is held off while parity
3579  * dependent operations are in flight.
3580  */
3581  if (sh->check_state ||
3582  (s.syncing && s.locked == 0 &&
3583  !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3584  !test_bit(STRIPE_INSYNC, &sh->state))) {
3585  if (conf->level == 6)
3586  handle_parity_checks6(conf, sh, &s, disks);
3587  else
3588  handle_parity_checks5(conf, sh, &s, disks);
3589  }
3590 
3591  if (s.replacing && s.locked == 0
3592  && !test_bit(STRIPE_INSYNC, &sh->state)) {
3593  /* Write out to replacement devices where possible */
3594  for (i = 0; i < conf->raid_disks; i++)
3595  if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3596  test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3597  set_bit(R5_WantReplace, &sh->dev[i].flags);
3598  set_bit(R5_LOCKED, &sh->dev[i].flags);
3599  s.locked++;
3600  }
3601  set_bit(STRIPE_INSYNC, &sh->state);
3602  }
3603  if ((s.syncing || s.replacing) && s.locked == 0 &&
3604  test_bit(STRIPE_INSYNC, &sh->state)) {
3605  md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3607  }
3608 
3609  /* If the failed drives are just a ReadError, then we might need
3610  * to progress the repair/check process
3611  */
3612  if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3613  for (i = 0; i < s.failed; i++) {
3614  struct r5dev *dev = &sh->dev[s.failed_num[i]];
3615  if (test_bit(R5_ReadError, &dev->flags)
3616  && !test_bit(R5_LOCKED, &dev->flags)
3617  && test_bit(R5_UPTODATE, &dev->flags)
3618  ) {
3619  if (!test_bit(R5_ReWrite, &dev->flags)) {
3620  set_bit(R5_Wantwrite, &dev->flags);
3621  set_bit(R5_ReWrite, &dev->flags);
3622  set_bit(R5_LOCKED, &dev->flags);
3623  s.locked++;
3624  } else {
3625  /* let's read it back */
3626  set_bit(R5_Wantread, &dev->flags);
3627  set_bit(R5_LOCKED, &dev->flags);
3628  s.locked++;
3629  }
3630  }
3631  }
3632 
3633 
3634  /* Finish reconstruct operations initiated by the expansion process */
3636  struct stripe_head *sh_src
3637  = get_active_stripe(conf, sh->sector, 1, 1, 1);
3638  if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3639  /* sh cannot be written until sh_src has been read.
3640  * so arrange for sh to be delayed a little
3641  */
3642  set_bit(STRIPE_DELAYED, &sh->state);
3643  set_bit(STRIPE_HANDLE, &sh->state);
3645  &sh_src->state))
3647  release_stripe(sh_src);
3648  goto finish;
3649  }
3650  if (sh_src)
3651  release_stripe(sh_src);
3652 
3655  for (i = conf->raid_disks; i--; ) {
3656  set_bit(R5_Wantwrite, &sh->dev[i].flags);
3657  set_bit(R5_LOCKED, &sh->dev[i].flags);
3658  s.locked++;
3659  }
3660  }
3661 
3662  if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3663  !sh->reconstruct_state) {
3664  /* Need to write out all blocks after computing parity */
3665  sh->disks = conf->raid_disks;
3666  stripe_set_idx(sh->sector, conf, 0, sh);
3667  schedule_reconstruction(sh, &s, 1, 1);
3668  } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3670  atomic_dec(&conf->reshape_stripes);
3671  wake_up(&conf->wait_for_overlap);
3672  md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3673  }
3674 
3675  if (s.expanding && s.locked == 0 &&
3677  handle_stripe_expansion(conf, sh);
3678 
3679 finish:
3680  /* wait for this device to become unblocked */
3681  if (unlikely(s.blocked_rdev)) {
3682  if (conf->mddev->external)
3684  conf->mddev);
3685  else
3686  /* Internal metadata will immediately
3687  * be written by raid5d, so we don't
3688  * need to wait here.
3689  */
3690  rdev_dec_pending(s.blocked_rdev,
3691  conf->mddev);
3692  }
3693 
3694  if (s.handle_bad_blocks)
3695  for (i = disks; i--; ) {
3696  struct md_rdev *rdev;
3697  struct r5dev *dev = &sh->dev[i];
3698  if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3699  /* We own a safe reference to the rdev */
3700  rdev = conf->disks[i].rdev;
3701  if (!rdev_set_badblocks(rdev, sh->sector,
3702  STRIPE_SECTORS, 0))
3703  md_error(conf->mddev, rdev);
3704  rdev_dec_pending(rdev, conf->mddev);
3705  }
3706  if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3707  rdev = conf->disks[i].rdev;
3708  rdev_clear_badblocks(rdev, sh->sector,
3709  STRIPE_SECTORS, 0);
3710  rdev_dec_pending(rdev, conf->mddev);
3711  }
3712  if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3713  rdev = conf->disks[i].replacement;
3714  if (!rdev)
3715  /* rdev have been moved down */
3716  rdev = conf->disks[i].rdev;
3717  rdev_clear_badblocks(rdev, sh->sector,
3718  STRIPE_SECTORS, 0);
3719  rdev_dec_pending(rdev, conf->mddev);
3720  }
3721  }
3722 
3723  if (s.ops_request)
3724  raid_run_ops(sh, s.ops_request);
3725 
3726  ops_run_io(sh, &s);
3727 
3728  if (s.dec_preread_active) {
3729  /* We delay this until after ops_run_io so that if make_request
3730  * is waiting on a flush, it won't continue until the writes
3731  * have actually been submitted.
3732  */
3734  if (atomic_read(&conf->preread_active_stripes) <
3735  IO_THRESHOLD)
3736  md_wakeup_thread(conf->mddev->thread);
3737  }
3738 
3739  return_io(s.return_bi);
3740 
3742 }
3743 
3744 static void raid5_activate_delayed(struct r5conf *conf)
3745 {
3747  while (!list_empty(&conf->delayed_list)) {
3748  struct list_head *l = conf->delayed_list.next;
3749  struct stripe_head *sh;
3750  sh = list_entry(l, struct stripe_head, lru);
3751  list_del_init(l);
3755  list_add_tail(&sh->lru, &conf->hold_list);
3756  }
3757  }
3758 }
3759 
3760 static void activate_bit_delay(struct r5conf *conf)
3761 {
3762  /* device_lock is held */
3763  struct list_head head;
3764  list_add(&head, &conf->bitmap_list);
3765  list_del_init(&conf->bitmap_list);
3766  while (!list_empty(&head)) {
3767  struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3768  list_del_init(&sh->lru);
3769  atomic_inc(&sh->count);
3770  __release_stripe(conf, sh);
3771  }
3772 }
3773 
3774 int md_raid5_congested(struct mddev *mddev, int bits)
3775 {
3776  struct r5conf *conf = mddev->private;
3777 
3778  /* No difference between reads and writes. Just check
3779  * how busy the stripe_cache is
3780  */
3781 
3782  if (conf->inactive_blocked)
3783  return 1;
3784  if (conf->quiesce)
3785  return 1;
3786  if (list_empty_careful(&conf->inactive_list))
3787  return 1;
3788 
3789  return 0;
3790 }
3792 
3793 static int raid5_congested(void *data, int bits)
3794 {
3795  struct mddev *mddev = data;
3796 
3797  return mddev_congested(mddev, bits) ||
3798  md_raid5_congested(mddev, bits);
3799 }
3800 
3801 /* We want read requests to align with chunks where possible,
3802  * but write requests don't need to.
3803  */
3804 static int raid5_mergeable_bvec(struct request_queue *q,
3805  struct bvec_merge_data *bvm,
3806  struct bio_vec *biovec)
3807 {
3808  struct mddev *mddev = q->queuedata;
3809  sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3810  int max;
3811  unsigned int chunk_sectors = mddev->chunk_sectors;
3812  unsigned int bio_sectors = bvm->bi_size >> 9;
3813 
3814  if ((bvm->bi_rw & 1) == WRITE)
3815  return biovec->bv_len; /* always allow writes to be mergeable */
3816 
3817  if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3818  chunk_sectors = mddev->new_chunk_sectors;
3819  max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3820  if (max < 0) max = 0;
3821  if (max <= biovec->bv_len && bio_sectors == 0)
3822  return biovec->bv_len;
3823  else
3824  return max;
3825 }
3826 
3827 
3828 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3829 {
3830  sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3831  unsigned int chunk_sectors = mddev->chunk_sectors;
3832  unsigned int bio_sectors = bio->bi_size >> 9;
3833 
3834  if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3835  chunk_sectors = mddev->new_chunk_sectors;
3836  return chunk_sectors >=
3837  ((sector & (chunk_sectors - 1)) + bio_sectors);
3838 }
3839 
3840 /*
3841  * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3842  * later sampled by raid5d.
3843  */
3844 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3845 {
3846  unsigned long flags;
3847 
3848  spin_lock_irqsave(&conf->device_lock, flags);
3849 
3850  bi->bi_next = conf->retry_read_aligned_list;
3851  conf->retry_read_aligned_list = bi;
3852 
3853  spin_unlock_irqrestore(&conf->device_lock, flags);
3854  md_wakeup_thread(conf->mddev->thread);
3855 }
3856 
3857 
3858 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3859 {
3860  struct bio *bi;
3861 
3862  bi = conf->retry_read_aligned;
3863  if (bi) {
3864  conf->retry_read_aligned = NULL;
3865  return bi;
3866  }
3867  bi = conf->retry_read_aligned_list;
3868  if(bi) {
3869  conf->retry_read_aligned_list = bi->bi_next;
3870  bi->bi_next = NULL;
3871  /*
3872  * this sets the active strip count to 1 and the processed
3873  * strip count to zero (upper 8 bits)
3874  */
3875  raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3876  }
3877 
3878  return bi;
3879 }
3880 
3881 
3882 /*
3883  * The "raid5_align_endio" should check if the read succeeded and if it
3884  * did, call bio_endio on the original bio (having bio_put the new bio
3885  * first).
3886  * If the read failed..
3887  */
3888 static void raid5_align_endio(struct bio *bi, int error)
3889 {
3890  struct bio* raid_bi = bi->bi_private;
3891  struct mddev *mddev;
3892  struct r5conf *conf;
3893  int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3894  struct md_rdev *rdev;
3895 
3896  bio_put(bi);
3897 
3898  rdev = (void*)raid_bi->bi_next;
3899  raid_bi->bi_next = NULL;
3900  mddev = rdev->mddev;
3901  conf = mddev->private;
3902 
3903  rdev_dec_pending(rdev, conf->mddev);
3904 
3905  if (!error && uptodate) {
3906  bio_endio(raid_bi, 0);
3908  wake_up(&conf->wait_for_stripe);
3909  return;
3910  }
3911 
3912 
3913  pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3914 
3915  add_bio_to_retry(raid_bi, conf);
3916 }
3917 
3918 static int bio_fits_rdev(struct bio *bi)
3919 {
3920  struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3921 
3922  if ((bi->bi_size>>9) > queue_max_sectors(q))
3923  return 0;
3924  blk_recount_segments(q, bi);
3925  if (bi->bi_phys_segments > queue_max_segments(q))
3926  return 0;
3927 
3928  if (q->merge_bvec_fn)
3929  /* it's too hard to apply the merge_bvec_fn at this stage,
3930  * just just give up
3931  */
3932  return 0;
3933 
3934  return 1;
3935 }
3936 
3937 
3938 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3939 {
3940  struct r5conf *conf = mddev->private;
3941  int dd_idx;
3942  struct bio* align_bi;
3943  struct md_rdev *rdev;
3945 
3946  if (!in_chunk_boundary(mddev, raid_bio)) {
3947  pr_debug("chunk_aligned_read : non aligned\n");
3948  return 0;
3949  }
3950  /*
3951  * use bio_clone_mddev to make a copy of the bio
3952  */
3953  align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3954  if (!align_bi)
3955  return 0;
3956  /*
3957  * set bi_end_io to a new function, and set bi_private to the
3958  * original bio.
3959  */
3960  align_bi->bi_end_io = raid5_align_endio;
3961  align_bi->bi_private = raid_bio;
3962  /*
3963  * compute position
3964  */
3965  align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3966  0,
3967  &dd_idx, NULL);
3968 
3969  end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3970  rcu_read_lock();
3971  rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3972  if (!rdev || test_bit(Faulty, &rdev->flags) ||
3973  rdev->recovery_offset < end_sector) {
3974  rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3975  if (rdev &&
3976  (test_bit(Faulty, &rdev->flags) ||
3977  !(test_bit(In_sync, &rdev->flags) ||
3978  rdev->recovery_offset >= end_sector)))
3979  rdev = NULL;
3980  }
3981  if (rdev) {
3982  sector_t first_bad;
3983  int bad_sectors;
3984 
3985  atomic_inc(&rdev->nr_pending);
3986  rcu_read_unlock();
3987  raid_bio->bi_next = (void*)rdev;
3988  align_bi->bi_bdev = rdev->bdev;
3989  align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3990 
3991  if (!bio_fits_rdev(align_bi) ||
3992  is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3993  &first_bad, &bad_sectors)) {
3994  /* too big in some way, or has a known bad block */
3995  bio_put(align_bi);
3996  rdev_dec_pending(rdev, mddev);
3997  return 0;
3998  }
3999 
4000  /* No reshape active, so we can trust rdev->data_offset */
4001  align_bi->bi_sector += rdev->data_offset;
4002 
4003  spin_lock_irq(&conf->device_lock);
4005  conf->quiesce == 0,
4006  conf->device_lock, /* nothing */);
4008  spin_unlock_irq(&conf->device_lock);
4009 
4010  generic_make_request(align_bi);
4011  return 1;
4012  } else {
4013  rcu_read_unlock();
4014  bio_put(align_bi);
4015  return 0;
4016  }
4017 }
4018 
4019 /* __get_priority_stripe - get the next stripe to process
4020  *
4021  * Full stripe writes are allowed to pass preread active stripes up until
4022  * the bypass_threshold is exceeded. In general the bypass_count
4023  * increments when the handle_list is handled before the hold_list; however, it
4024  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4025  * stripe with in flight i/o. The bypass_count will be reset when the
4026  * head of the hold_list has changed, i.e. the head was promoted to the
4027  * handle_list.
4028  */
4029 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4030 {
4031  struct stripe_head *sh;
4032 
4033  pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4034  __func__,
4035  list_empty(&conf->handle_list) ? "empty" : "busy",
4036  list_empty(&conf->hold_list) ? "empty" : "busy",
4038 
4039  if (!list_empty(&conf->handle_list)) {
4040  sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4041 
4042  if (list_empty(&conf->hold_list))
4043  conf->bypass_count = 0;
4044  else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4045  if (conf->hold_list.next == conf->last_hold)
4046  conf->bypass_count++;
4047  else {
4048  conf->last_hold = conf->hold_list.next;
4049  conf->bypass_count -= conf->bypass_threshold;
4050  if (conf->bypass_count < 0)
4051  conf->bypass_count = 0;
4052  }
4053  }
4054  } else if (!list_empty(&conf->hold_list) &&
4055  ((conf->bypass_threshold &&
4056  conf->bypass_count > conf->bypass_threshold) ||
4057  atomic_read(&conf->pending_full_writes) == 0)) {
4058  sh = list_entry(conf->hold_list.next,
4059  typeof(*sh), lru);
4060  conf->bypass_count -= conf->bypass_threshold;
4061  if (conf->bypass_count < 0)
4062  conf->bypass_count = 0;
4063  } else
4064  return NULL;
4065 
4066  list_del_init(&sh->lru);
4067  atomic_inc(&sh->count);
4068  BUG_ON(atomic_read(&sh->count) != 1);
4069  return sh;
4070 }
4071 
4073  struct blk_plug_cb cb;
4074  struct list_head list;
4075 };
4076 
4077 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4078 {
4079  struct raid5_plug_cb *cb = container_of(
4080  blk_cb, struct raid5_plug_cb, cb);
4081  struct stripe_head *sh;
4082  struct mddev *mddev = cb->cb.data;
4083  struct r5conf *conf = mddev->private;
4084 
4085  if (cb->list.next && !list_empty(&cb->list)) {
4086  spin_lock_irq(&conf->device_lock);
4087  while (!list_empty(&cb->list)) {
4088  sh = list_first_entry(&cb->list, struct stripe_head, lru);
4089  list_del_init(&sh->lru);
4090  /*
4091  * avoid race release_stripe_plug() sees
4092  * STRIPE_ON_UNPLUG_LIST clear but the stripe
4093  * is still in our list
4094  */
4097  __release_stripe(conf, sh);
4098  }
4099  spin_unlock_irq(&conf->device_lock);
4100  }
4101  kfree(cb);
4102 }
4103 
4104 static void release_stripe_plug(struct mddev *mddev,
4105  struct stripe_head *sh)
4106 {
4107  struct blk_plug_cb *blk_cb = blk_check_plugged(
4108  raid5_unplug, mddev,
4109  sizeof(struct raid5_plug_cb));
4110  struct raid5_plug_cb *cb;
4111 
4112  if (!blk_cb) {
4113  release_stripe(sh);
4114  return;
4115  }
4116 
4117  cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4118 
4119  if (cb->list.next == NULL)
4120  INIT_LIST_HEAD(&cb->list);
4121 
4123  list_add_tail(&sh->lru, &cb->list);
4124  else
4125  release_stripe(sh);
4126 }
4127 
4128 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4129 {
4130  struct r5conf *conf = mddev->private;
4131  sector_t logical_sector, last_sector;
4132  struct stripe_head *sh;
4133  int remaining;
4134  int stripe_sectors;
4135 
4136  if (mddev->reshape_position != MaxSector)
4137  /* Skip discard while reshape is happening */
4138  return;
4139 
4140  logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4141  last_sector = bi->bi_sector + (bi->bi_size>>9);
4142 
4143  bi->bi_next = NULL;
4144  bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4145 
4146  stripe_sectors = conf->chunk_sectors *
4147  (conf->raid_disks - conf->max_degraded);
4148  logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4149  stripe_sectors);
4150  sector_div(last_sector, stripe_sectors);
4151 
4152  logical_sector *= conf->chunk_sectors;
4153  last_sector *= conf->chunk_sectors;
4154 
4155  for (; logical_sector < last_sector;
4156  logical_sector += STRIPE_SECTORS) {
4157  DEFINE_WAIT(w);
4158  int d;
4159  again:
4160  sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4163  spin_lock_irq(&sh->stripe_lock);
4164  for (d = 0; d < conf->raid_disks; d++) {
4165  if (d == sh->pd_idx || d == sh->qd_idx)
4166  continue;
4167  if (sh->dev[d].towrite || sh->dev[d].toread) {
4168  set_bit(R5_Overlap, &sh->dev[d].flags);
4169  spin_unlock_irq(&sh->stripe_lock);
4170  release_stripe(sh);
4171  schedule();
4172  goto again;
4173  }
4174  }
4175  finish_wait(&conf->wait_for_overlap, &w);
4176  for (d = 0; d < conf->raid_disks; d++) {
4177  if (d == sh->pd_idx || d == sh->qd_idx)
4178  continue;
4179  sh->dev[d].towrite = bi;
4180  set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4181  raid5_inc_bi_active_stripes(bi);
4182  }
4183  spin_unlock_irq(&sh->stripe_lock);
4184  if (conf->mddev->bitmap) {
4185  for (d = 0;
4186  d < conf->raid_disks - conf->max_degraded;
4187  d++)
4188  bitmap_startwrite(mddev->bitmap,
4189  sh->sector,
4191  0);
4192  sh->bm_seq = conf->seq_flush + 1;
4194  }
4195 
4196  set_bit(STRIPE_HANDLE, &sh->state);
4200  release_stripe_plug(mddev, sh);
4201  }
4202 
4203  remaining = raid5_dec_bi_active_stripes(bi);
4204  if (remaining == 0) {
4205  md_write_end(mddev);
4206  bio_endio(bi, 0);
4207  }
4208 }
4209 
4210 static void make_request(struct mddev *mddev, struct bio * bi)
4211 {
4212  struct r5conf *conf = mddev->private;
4213  int dd_idx;
4214  sector_t new_sector;
4215  sector_t logical_sector, last_sector;
4216  struct stripe_head *sh;
4217  const int rw = bio_data_dir(bi);
4218  int remaining;
4219 
4220  if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4221  md_flush_request(mddev, bi);
4222  return;
4223  }
4224 
4225  md_write_start(mddev, bi);
4226 
4227  if (rw == READ &&
4228  mddev->reshape_position == MaxSector &&
4229  chunk_aligned_read(mddev,bi))
4230  return;
4231 
4232  if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4233  make_discard_request(mddev, bi);
4234  return;
4235  }
4236 
4237  logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4238  last_sector = bi->bi_sector + (bi->bi_size>>9);
4239  bi->bi_next = NULL;
4240  bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4241 
4242  for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4243  DEFINE_WAIT(w);
4244  int previous;
4245 
4246  retry:
4247  previous = 0;
4249  if (unlikely(conf->reshape_progress != MaxSector)) {
4250  /* spinlock is needed as reshape_progress may be
4251  * 64bit on a 32bit platform, and so it might be
4252  * possible to see a half-updated value
4253  * Of course reshape_progress could change after
4254  * the lock is dropped, so once we get a reference
4255  * to the stripe that we think it is, we will have
4256  * to check again.
4257  */
4258  spin_lock_irq(&conf->device_lock);
4259  if (mddev->reshape_backwards
4260  ? logical_sector < conf->reshape_progress
4261  : logical_sector >= conf->reshape_progress) {
4262  previous = 1;
4263  } else {
4264  if (mddev->reshape_backwards
4265  ? logical_sector < conf->reshape_safe
4266  : logical_sector >= conf->reshape_safe) {
4267  spin_unlock_irq(&conf->device_lock);
4268  schedule();
4269  goto retry;
4270  }
4271  }
4272  spin_unlock_irq(&conf->device_lock);
4273  }
4274 
4275  new_sector = raid5_compute_sector(conf, logical_sector,
4276  previous,
4277  &dd_idx, NULL);
4278  pr_debug("raid456: make_request, sector %llu logical %llu\n",
4279  (unsigned long long)new_sector,
4280  (unsigned long long)logical_sector);
4281 
4282  sh = get_active_stripe(conf, new_sector, previous,
4283  (bi->bi_rw&RWA_MASK), 0);
4284  if (sh) {
4285  if (unlikely(previous)) {
4286  /* expansion might have moved on while waiting for a
4287  * stripe, so we must do the range check again.
4288  * Expansion could still move past after this
4289  * test, but as we are holding a reference to
4290  * 'sh', we know that if that happens,
4291  * STRIPE_EXPANDING will get set and the expansion
4292  * won't proceed until we finish with the stripe.
4293  */
4294  int must_retry = 0;
4295  spin_lock_irq(&conf->device_lock);
4296  if (mddev->reshape_backwards
4297  ? logical_sector >= conf->reshape_progress
4298  : logical_sector < conf->reshape_progress)
4299  /* mismatch, need to try again */
4300  must_retry = 1;
4301  spin_unlock_irq(&conf->device_lock);
4302  if (must_retry) {
4303  release_stripe(sh);
4304  schedule();
4305  goto retry;
4306  }
4307  }
4308 
4309  if (rw == WRITE &&
4310  logical_sector >= mddev->suspend_lo &&
4311  logical_sector < mddev->suspend_hi) {
4312  release_stripe(sh);
4313  /* As the suspend_* range is controlled by
4314  * userspace, we want an interruptible
4315  * wait.
4316  */
4319  &w, TASK_INTERRUPTIBLE);
4320  if (logical_sector >= mddev->suspend_lo &&
4321  logical_sector < mddev->suspend_hi)
4322  schedule();
4323  goto retry;
4324  }
4325 
4326  if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4327  !add_stripe_bio(sh, bi, dd_idx, rw)) {
4328  /* Stripe is busy expanding or
4329  * add failed due to overlap. Flush everything
4330  * and wait a while
4331  */
4332  md_wakeup_thread(mddev->thread);
4333  release_stripe(sh);
4334  schedule();
4335  goto retry;
4336  }
4337  finish_wait(&conf->wait_for_overlap, &w);
4338  set_bit(STRIPE_HANDLE, &sh->state);
4340  if ((bi->bi_rw & REQ_SYNC) &&
4343  release_stripe_plug(mddev, sh);
4344  } else {
4345  /* cannot get stripe for read-ahead, just give-up */
4346  clear_bit(BIO_UPTODATE, &bi->bi_flags);
4347  finish_wait(&conf->wait_for_overlap, &w);
4348  break;
4349  }
4350  }
4351 
4352  remaining = raid5_dec_bi_active_stripes(bi);
4353  if (remaining == 0) {
4354 
4355  if ( rw == WRITE )
4356  md_write_end(mddev);
4357 
4358  bio_endio(bi, 0);
4359  }
4360 }
4361 
4362 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4363 
4364 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4365 {
4366  /* reshaping is quite different to recovery/resync so it is
4367  * handled quite separately ... here.
4368  *
4369  * On each call to sync_request, we gather one chunk worth of
4370  * destination stripes and flag them as expanding.
4371  * Then we find all the source stripes and request reads.
4372  * As the reads complete, handle_stripe will copy the data
4373  * into the destination stripe and release that stripe.
4374  */
4375  struct r5conf *conf = mddev->private;
4376  struct stripe_head *sh;
4377  sector_t first_sector, last_sector;
4378  int raid_disks = conf->previous_raid_disks;
4379  int data_disks = raid_disks - conf->max_degraded;
4380  int new_data_disks = conf->raid_disks - conf->max_degraded;
4381  int i;
4382  int dd_idx;
4383  sector_t writepos, readpos, safepos;
4384  sector_t stripe_addr;
4385  int reshape_sectors;
4386  struct list_head stripes;
4387 
4388  if (sector_nr == 0) {
4389  /* If restarting in the middle, skip the initial sectors */
4390  if (mddev->reshape_backwards &&
4391  conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4392  sector_nr = raid5_size(mddev, 0, 0)
4393  - conf->reshape_progress;
4394  } else if (!mddev->reshape_backwards &&
4395  conf->reshape_progress > 0)
4396  sector_nr = conf->reshape_progress;
4397  sector_div(sector_nr, new_data_disks);
4398  if (sector_nr) {
4399  mddev->curr_resync_completed = sector_nr;
4400  sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4401  *skipped = 1;
4402  return sector_nr;
4403  }
4404  }
4405 
4406  /* We need to process a full chunk at a time.
4407  * If old and new chunk sizes differ, we need to process the
4408  * largest of these
4409  */
4410  if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4411  reshape_sectors = mddev->new_chunk_sectors;
4412  else
4413  reshape_sectors = mddev->chunk_sectors;
4414 
4415  /* We update the metadata at least every 10 seconds, or when
4416  * the data about to be copied would over-write the source of
4417  * the data at the front of the range. i.e. one new_stripe
4418  * along from reshape_progress new_maps to after where
4419  * reshape_safe old_maps to
4420  */
4421  writepos = conf->reshape_progress;
4422  sector_div(writepos, new_data_disks);
4423  readpos = conf->reshape_progress;
4424  sector_div(readpos, data_disks);
4425  safepos = conf->reshape_safe;
4426  sector_div(safepos, data_disks);
4427  if (mddev->reshape_backwards) {
4428  writepos -= min_t(sector_t, reshape_sectors, writepos);
4429  readpos += reshape_sectors;
4430  safepos += reshape_sectors;
4431  } else {
4432  writepos += reshape_sectors;
4433  readpos -= min_t(sector_t, reshape_sectors, readpos);
4434  safepos -= min_t(sector_t, reshape_sectors, safepos);
4435  }
4436 
4437  /* Having calculated the 'writepos' possibly use it
4438  * to set 'stripe_addr' which is where we will write to.
4439  */
4440  if (mddev->reshape_backwards) {
4441  BUG_ON(conf->reshape_progress == 0);
4442  stripe_addr = writepos;
4443  BUG_ON((mddev->dev_sectors &
4444  ~((sector_t)reshape_sectors - 1))
4445  - reshape_sectors - stripe_addr
4446  != sector_nr);
4447  } else {
4448  BUG_ON(writepos != sector_nr + reshape_sectors);
4449  stripe_addr = sector_nr;
4450  }
4451 
4452  /* 'writepos' is the most advanced device address we might write.
4453  * 'readpos' is the least advanced device address we might read.
4454  * 'safepos' is the least address recorded in the metadata as having
4455  * been reshaped.
4456  * If there is a min_offset_diff, these are adjusted either by
4457  * increasing the safepos/readpos if diff is negative, or
4458  * increasing writepos if diff is positive.
4459  * If 'readpos' is then behind 'writepos', there is no way that we can
4460  * ensure safety in the face of a crash - that must be done by userspace
4461  * making a backup of the data. So in that case there is no particular
4462  * rush to update metadata.
4463  * Otherwise if 'safepos' is behind 'writepos', then we really need to
4464  * update the metadata to advance 'safepos' to match 'readpos' so that
4465  * we can be safe in the event of a crash.
4466  * So we insist on updating metadata if safepos is behind writepos and
4467  * readpos is beyond writepos.
4468  * In any case, update the metadata every 10 seconds.
4469  * Maybe that number should be configurable, but I'm not sure it is
4470  * worth it.... maybe it could be a multiple of safemode_delay???
4471  */
4472  if (conf->min_offset_diff < 0) {
4473  safepos += -conf->min_offset_diff;
4474  readpos += -conf->min_offset_diff;
4475  } else
4476  writepos += conf->min_offset_diff;
4477 
4478  if ((mddev->reshape_backwards
4479  ? (safepos > writepos && readpos < writepos)
4480  : (safepos < writepos && readpos > writepos)) ||
4481  time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4482  /* Cannot proceed until we've updated the superblock... */
4484  atomic_read(&conf->reshape_stripes)==0);
4485  mddev->reshape_position = conf->reshape_progress;
4486  mddev->curr_resync_completed = sector_nr;
4487  conf->reshape_checkpoint = jiffies;
4488  set_bit(MD_CHANGE_DEVS, &mddev->flags);
4489  md_wakeup_thread(mddev->thread);
4490  wait_event(mddev->sb_wait, mddev->flags == 0 ||
4492  spin_lock_irq(&conf->device_lock);
4493  conf->reshape_safe = mddev->reshape_position;
4494  spin_unlock_irq(&conf->device_lock);
4495  wake_up(&conf->wait_for_overlap);
4496  sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4497  }
4498 
4499  INIT_LIST_HEAD(&stripes);
4500  for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4501  int j;
4502  int skipped_disk = 0;
4503  sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4505  atomic_inc(&conf->reshape_stripes);
4506  /* If any of this stripe is beyond the end of the old
4507  * array, then we need to zero those blocks
4508  */
4509  for (j=sh->disks; j--;) {
4510  sector_t s;
4511  if (j == sh->pd_idx)
4512  continue;
4513  if (conf->level == 6 &&
4514  j == sh->qd_idx)
4515  continue;
4516  s = compute_blocknr(sh, j, 0);
4517  if (s < raid5_size(mddev, 0, 0)) {
4518  skipped_disk = 1;
4519  continue;
4520  }
4521  memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4522  set_bit(R5_Expanded, &sh->dev[j].flags);
4523  set_bit(R5_UPTODATE, &sh->dev[j].flags);
4524  }
4525  if (!skipped_disk) {
4527  set_bit(STRIPE_HANDLE, &sh->state);
4528  }
4529  list_add(&sh->lru, &stripes);
4530  }
4531  spin_lock_irq(&conf->device_lock);
4532  if (mddev->reshape_backwards)
4533  conf->reshape_progress -= reshape_sectors * new_data_disks;
4534  else
4535  conf->reshape_progress += reshape_sectors * new_data_disks;
4536  spin_unlock_irq(&conf->device_lock);
4537  /* Ok, those stripe are ready. We can start scheduling
4538  * reads on the source stripes.
4539  * The source stripes are determined by mapping the first and last
4540  * block on the destination stripes.
4541  */
4542  first_sector =
4543  raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4544  1, &dd_idx, NULL);
4545  last_sector =
4546  raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4547  * new_data_disks - 1),
4548  1, &dd_idx, NULL);
4549  if (last_sector >= mddev->dev_sectors)
4550  last_sector = mddev->dev_sectors - 1;
4551  while (first_sector <= last_sector) {
4552  sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4554  set_bit(STRIPE_HANDLE, &sh->state);
4555  release_stripe(sh);
4556  first_sector += STRIPE_SECTORS;
4557  }
4558  /* Now that the sources are clearly marked, we can release
4559  * the destination stripes
4560  */
4561  while (!list_empty(&stripes)) {
4562  sh = list_entry(stripes.next, struct stripe_head, lru);
4563  list_del_init(&sh->lru);
4564  release_stripe(sh);
4565  }
4566  /* If this takes us to the resync_max point where we have to pause,
4567  * then we need to write out the superblock.
4568  */
4569  sector_nr += reshape_sectors;
4570  if ((sector_nr - mddev->curr_resync_completed) * 2
4571  >= mddev->resync_max - mddev->curr_resync_completed) {
4572  /* Cannot proceed until we've updated the superblock... */
4574  atomic_read(&conf->reshape_stripes) == 0);
4575  mddev->reshape_position = conf->reshape_progress;
4576  mddev->curr_resync_completed = sector_nr;
4577  conf->reshape_checkpoint = jiffies;
4578  set_bit(MD_CHANGE_DEVS, &mddev->flags);
4579  md_wakeup_thread(mddev->thread);
4580  wait_event(mddev->sb_wait,
4581  !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4582  || kthread_should_stop());
4583  spin_lock_irq(&conf->device_lock);
4584  conf->reshape_safe = mddev->reshape_position;
4585  spin_unlock_irq(&conf->device_lock);
4586  wake_up(&conf->wait_for_overlap);
4587  sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4588  }
4589  return reshape_sectors;
4590 }
4591 
4592 /* FIXME go_faster isn't used */
4593 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4594 {
4595  struct r5conf *conf = mddev->private;
4596  struct stripe_head *sh;
4597  sector_t max_sector = mddev->dev_sectors;
4598  sector_t sync_blocks;
4599  int still_degraded = 0;
4600  int i;
4601 
4602  if (sector_nr >= max_sector) {
4603  /* just being told to finish up .. nothing much to do */
4604 
4605  if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4606  end_reshape(conf);
4607  return 0;
4608  }
4609 
4610  if (mddev->curr_resync < max_sector) /* aborted */
4611  bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4612  &sync_blocks, 1);
4613  else /* completed sync */
4614  conf->fullsync = 0;
4615  bitmap_close_sync(mddev->bitmap);
4616 
4617  return 0;
4618  }
4619 
4620  /* Allow raid5_quiesce to complete */
4621  wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4622 
4623  if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4624  return reshape_request(mddev, sector_nr, skipped);
4625 
4626  /* No need to check resync_max as we never do more than one
4627  * stripe, and as resync_max will always be on a chunk boundary,
4628  * if the check in md_do_sync didn't fire, there is no chance
4629  * of overstepping resync_max here
4630  */
4631 
4632  /* if there is too many failed drives and we are trying
4633  * to resync, then assert that we are finished, because there is
4634  * nothing we can do.
4635  */
4636  if (mddev->degraded >= conf->max_degraded &&
4637  test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4638  sector_t rv = mddev->dev_sectors - sector_nr;
4639  *skipped = 1;
4640  return rv;
4641  }
4642  if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4644  !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4645  /* we can skip this block, and probably more */
4646  sync_blocks /= STRIPE_SECTORS;
4647  *skipped = 1;
4648  return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4649  }
4650 
4651  bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4652 
4653  sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4654  if (sh == NULL) {
4655  sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4656  /* make sure we don't swamp the stripe cache if someone else
4657  * is trying to get access
4658  */
4660  }
4661  /* Need to check if array will still be degraded after recovery/resync
4662  * We don't need to check the 'failed' flag as when that gets set,
4663  * recovery aborts.
4664  */
4665  for (i = 0; i < conf->raid_disks; i++)
4666  if (conf->disks[i].rdev == NULL)
4667  still_degraded = 1;
4668 
4669  bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4670 
4672 
4673  handle_stripe(sh);
4674  release_stripe(sh);
4675 
4676  return STRIPE_SECTORS;
4677 }
4678 
4679 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4680 {
4681  /* We may not be able to submit a whole bio at once as there
4682  * may not be enough stripe_heads available.
4683  * We cannot pre-allocate enough stripe_heads as we may need
4684  * more than exist in the cache (if we allow ever large chunks).
4685  * So we do one stripe head at a time and record in
4686  * ->bi_hw_segments how many have been done.
4687  *
4688  * We *know* that this entire raid_bio is in one chunk, so
4689  * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4690  */
4691  struct stripe_head *sh;
4692  int dd_idx;
4693  sector_t sector, logical_sector, last_sector;
4694  int scnt = 0;
4695  int remaining;
4696  int handled = 0;
4697 
4698  logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4699  sector = raid5_compute_sector(conf, logical_sector,
4700  0, &dd_idx, NULL);
4701  last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4702 
4703  for (; logical_sector < last_sector;
4704  logical_sector += STRIPE_SECTORS,
4705  sector += STRIPE_SECTORS,
4706  scnt++) {
4707 
4708  if (scnt < raid5_bi_processed_stripes(raid_bio))
4709  /* already done this stripe */
4710  continue;
4711 
4712  sh = get_active_stripe(conf, sector, 0, 1, 0);
4713 
4714  if (!sh) {
4715  /* failed to get a stripe - must wait */
4716  raid5_set_bi_processed_stripes(raid_bio, scnt);
4717  conf->retry_read_aligned = raid_bio;
4718  return handled;
4719  }
4720 
4721  if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4722  release_stripe(sh);
4723  raid5_set_bi_processed_stripes(raid_bio, scnt);
4724  conf->retry_read_aligned = raid_bio;
4725  return handled;
4726  }
4727 
4728  set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4729  handle_stripe(sh);
4730  release_stripe(sh);
4731  handled++;
4732  }
4733  remaining = raid5_dec_bi_active_stripes(raid_bio);
4734  if (remaining == 0)
4735  bio_endio(raid_bio, 0);
4737  wake_up(&conf->wait_for_stripe);
4738  return handled;
4739 }
4740 
4741 #define MAX_STRIPE_BATCH 8
4742 static int handle_active_stripes(struct r5conf *conf)
4743 {
4744  struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4745  int i, batch_size = 0;
4746 
4747  while (batch_size < MAX_STRIPE_BATCH &&
4748  (sh = __get_priority_stripe(conf)) != NULL)
4749  batch[batch_size++] = sh;
4750 
4751  if (batch_size == 0)
4752  return batch_size;
4753  spin_unlock_irq(&conf->device_lock);
4754 
4755  for (i = 0; i < batch_size; i++)
4756  handle_stripe(batch[i]);
4757 
4758  cond_resched();
4759 
4760  spin_lock_irq(&conf->device_lock);
4761  for (i = 0; i < batch_size; i++)
4762  __release_stripe(conf, batch[i]);
4763  return batch_size;
4764 }
4765 
4766 /*
4767  * This is our raid5 kernel thread.
4768  *
4769  * We scan the hash table for stripes which can be handled now.
4770  * During the scan, completed stripes are saved for us by the interrupt
4771  * handler, so that they will not have to wait for our next wakeup.
4772  */
4773 static void raid5d(struct md_thread *thread)
4774 {
4775  struct mddev *mddev = thread->mddev;
4776  struct r5conf *conf = mddev->private;
4777  int handled;
4778  struct blk_plug plug;
4779 
4780  pr_debug("+++ raid5d active\n");
4781 
4782  md_check_recovery(mddev);
4783 
4784  blk_start_plug(&plug);
4785  handled = 0;
4786  spin_lock_irq(&conf->device_lock);
4787  while (1) {
4788  struct bio *bio;
4789  int batch_size;
4790 
4791  if (
4792  !list_empty(&conf->bitmap_list)) {
4793  /* Now is a good time to flush some bitmap updates */
4794  conf->seq_flush++;
4795  spin_unlock_irq(&conf->device_lock);
4796  bitmap_unplug(mddev->bitmap);
4797  spin_lock_irq(&conf->device_lock);
4798  conf->seq_write = conf->seq_flush;
4799  activate_bit_delay(conf);
4800  }
4801  raid5_activate_delayed(conf);
4802 
4803  while ((bio = remove_bio_from_retry(conf))) {
4804  int ok;
4805  spin_unlock_irq(&conf->device_lock);
4806  ok = retry_aligned_read(conf, bio);
4807  spin_lock_irq(&conf->device_lock);
4808  if (!ok)
4809  break;
4810  handled++;
4811  }
4812 
4813  batch_size = handle_active_stripes(conf);
4814  if (!batch_size)
4815  break;
4816  handled += batch_size;
4817 
4818  if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4819  spin_unlock_irq(&conf->device_lock);
4820  md_check_recovery(mddev);
4821  spin_lock_irq(&conf->device_lock);
4822  }
4823  }
4824  pr_debug("%d stripes handled\n", handled);
4825 
4826  spin_unlock_irq(&conf->device_lock);
4827 
4828  async_tx_issue_pending_all();
4829  blk_finish_plug(&plug);
4830 
4831  pr_debug("--- raid5d inactive\n");
4832 }
4833 
4834 static ssize_t
4835 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4836 {
4837  struct r5conf *conf = mddev->private;
4838  if (conf)
4839  return sprintf(page, "%d\n", conf->max_nr_stripes);
4840  else
4841  return 0;
4842 }
4843 
4844 int
4845 raid5_set_cache_size(struct mddev *mddev, int size)
4846 {
4847  struct r5conf *conf = mddev->private;
4848  int err;
4849 
4850  if (size <= 16 || size > 32768)
4851  return -EINVAL;
4852  while (size < conf->max_nr_stripes) {
4853  if (drop_one_stripe(conf))
4854  conf->max_nr_stripes--;
4855  else
4856  break;
4857  }
4858  err = md_allow_write(mddev);
4859  if (err)
4860  return err;
4861  while (size > conf->max_nr_stripes) {
4862  if (grow_one_stripe(conf))
4863  conf->max_nr_stripes++;
4864  else break;
4865  }
4866  return 0;
4867 }
4869 
4870 static ssize_t
4871 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4872 {
4873  struct r5conf *conf = mddev->private;
4874  unsigned long new;
4875  int err;
4876 
4877  if (len >= PAGE_SIZE)
4878  return -EINVAL;
4879  if (!conf)
4880  return -ENODEV;
4881 
4882  if (strict_strtoul(page, 10, &new))
4883  return -EINVAL;
4884  err = raid5_set_cache_size(mddev, new);
4885  if (err)
4886  return err;
4887  return len;
4888 }
4889 
4890 static struct md_sysfs_entry
4891 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4892  raid5_show_stripe_cache_size,
4893  raid5_store_stripe_cache_size);
4894 
4895 static ssize_t
4896 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4897 {
4898  struct r5conf *conf = mddev->private;
4899  if (conf)
4900  return sprintf(page, "%d\n", conf->bypass_threshold);
4901  else
4902  return 0;
4903 }
4904 
4905 static ssize_t
4906 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4907 {
4908  struct r5conf *conf = mddev->private;
4909  unsigned long new;
4910  if (len >= PAGE_SIZE)
4911  return -EINVAL;
4912  if (!conf)
4913  return -ENODEV;
4914 
4915  if (strict_strtoul(page, 10, &new))
4916  return -EINVAL;
4917  if (new > conf->max_nr_stripes)
4918  return -EINVAL;
4919  conf->bypass_threshold = new;
4920  return len;
4921 }
4922 
4923 static struct md_sysfs_entry
4924 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4925  S_IRUGO | S_IWUSR,
4926  raid5_show_preread_threshold,
4927  raid5_store_preread_threshold);
4928 
4929 static ssize_t
4930 stripe_cache_active_show(struct mddev *mddev, char *page)
4931 {
4932  struct r5conf *conf = mddev->private;
4933  if (conf)
4934  return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4935  else
4936  return 0;
4937 }
4938 
4939 static struct md_sysfs_entry
4940 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4941 
4942 static struct attribute *raid5_attrs[] = {
4943  &raid5_stripecache_size.attr,
4944  &raid5_stripecache_active.attr,
4945  &raid5_preread_bypass_threshold.attr,
4946  NULL,
4947 };
4948 static struct attribute_group raid5_attrs_group = {
4949  .name = NULL,
4950  .attrs = raid5_attrs,
4951 };
4952 
4953 static sector_t
4954 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4955 {
4956  struct r5conf *conf = mddev->private;
4957 
4958  if (!sectors)
4959  sectors = mddev->dev_sectors;
4960  if (!raid_disks)
4961  /* size is defined by the smallest of previous and new size */
4962  raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4963 
4964  sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4965  sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4966  return sectors * (raid_disks - conf->max_degraded);
4967 }
4968 
4969 static void raid5_free_percpu(struct r5conf *conf)
4970 {
4971  struct raid5_percpu *percpu;
4972  unsigned long cpu;
4973 
4974  if (!conf->percpu)
4975  return;
4976 
4977  get_online_cpus();
4978  for_each_possible_cpu(cpu) {
4979  percpu = per_cpu_ptr(conf->percpu, cpu);
4980  safe_put_page(percpu->spare_page);
4981  kfree(percpu->scribble);
4982  }
4983 #ifdef CONFIG_HOTPLUG_CPU
4984  unregister_cpu_notifier(&conf->cpu_notify);
4985 #endif
4986  put_online_cpus();
4987 
4988  free_percpu(conf->percpu);
4989 }
4990 
4991 static void free_conf(struct r5conf *conf)
4992 {
4993  shrink_stripes(conf);
4994  raid5_free_percpu(conf);
4995  kfree(conf->disks);
4996  kfree(conf->stripe_hashtbl);
4997  kfree(conf);
4998 }
4999 
5000 #ifdef CONFIG_HOTPLUG_CPU
5001 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5002  void *hcpu)
5003 {
5004  struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5005  long cpu = (long)hcpu;
5006  struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5007 
5008  switch (action) {
5009  case CPU_UP_PREPARE:
5010  case CPU_UP_PREPARE_FROZEN:
5011  if (conf->level == 6 && !percpu->spare_page)
5012  percpu->spare_page = alloc_page(GFP_KERNEL);
5013  if (!percpu->scribble)
5014  percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5015 
5016  if (!percpu->scribble ||
5017  (conf->level == 6 && !percpu->spare_page)) {
5018  safe_put_page(percpu->spare_page);
5019  kfree(percpu->scribble);
5020  pr_err("%s: failed memory allocation for cpu%ld\n",
5021  __func__, cpu);
5022  return notifier_from_errno(-ENOMEM);
5023  }
5024  break;
5025  case CPU_DEAD:
5026  case CPU_DEAD_FROZEN:
5027  safe_put_page(percpu->spare_page);
5028  kfree(percpu->scribble);
5029  percpu->spare_page = NULL;
5030  percpu->scribble = NULL;
5031  break;
5032  default:
5033  break;
5034  }
5035  return NOTIFY_OK;
5036 }
5037 #endif
5038 
5039 static int raid5_alloc_percpu(struct r5conf *conf)
5040 {
5041  unsigned long cpu;
5042  struct page *spare_page;
5043  struct raid5_percpu __percpu *allcpus;
5044  void *scribble;
5045  int err;
5046 
5047  allcpus = alloc_percpu(struct raid5_percpu);
5048  if (!allcpus)
5049  return -ENOMEM;
5050  conf->percpu = allcpus;
5051 
5052  get_online_cpus();
5053  err = 0;
5054  for_each_present_cpu(cpu) {
5055  if (conf->level == 6) {
5056  spare_page = alloc_page(GFP_KERNEL);
5057  if (!spare_page) {
5058  err = -ENOMEM;
5059  break;
5060  }
5061  per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5062  }
5063  scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5064  if (!scribble) {
5065  err = -ENOMEM;
5066  break;
5067  }
5068  per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5069  }
5070 #ifdef CONFIG_HOTPLUG_CPU
5071  conf->cpu_notify.notifier_call = raid456_cpu_notify;
5072  conf->cpu_notify.priority = 0;
5073  if (err == 0)
5074  err = register_cpu_notifier(&conf->cpu_notify);
5075 #endif
5076  put_online_cpus();
5077 
5078  return err;
5079 }
5080 
5081 static struct r5conf *setup_conf(struct mddev *mddev)
5082 {
5083  struct r5conf *conf;
5084  int raid_disk, memory, max_disks;
5085  struct md_rdev *rdev;
5086  struct disk_info *disk;
5087  char pers_name[6];
5088 
5089  if (mddev->new_level != 5
5090  && mddev->new_level != 4
5091  && mddev->new_level != 6) {
5092  printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5093  mdname(mddev), mddev->new_level);
5094  return ERR_PTR(-EIO);
5095  }
5096  if ((mddev->new_level == 5
5097  && !algorithm_valid_raid5(mddev->new_layout)) ||
5098  (mddev->new_level == 6
5099  && !algorithm_valid_raid6(mddev->new_layout))) {
5100  printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5101  mdname(mddev), mddev->new_layout);
5102  return ERR_PTR(-EIO);
5103  }
5104  if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5105  printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5106  mdname(mddev), mddev->raid_disks);
5107  return ERR_PTR(-EINVAL);
5108  }
5109 
5110  if (!mddev->new_chunk_sectors ||
5111  (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5112  !is_power_of_2(mddev->new_chunk_sectors)) {
5113  printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5114  mdname(mddev), mddev->new_chunk_sectors << 9);
5115  return ERR_PTR(-EINVAL);
5116  }
5117 
5118  conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5119  if (conf == NULL)
5120  goto abort;
5121  spin_lock_init(&conf->device_lock);
5124  INIT_LIST_HEAD(&conf->handle_list);
5125  INIT_LIST_HEAD(&conf->hold_list);
5126  INIT_LIST_HEAD(&conf->delayed_list);
5127  INIT_LIST_HEAD(&conf->bitmap_list);
5128  INIT_LIST_HEAD(&conf->inactive_list);
5129  atomic_set(&conf->active_stripes, 0);
5131  atomic_set(&conf->active_aligned_reads, 0);
5133  conf->recovery_disabled = mddev->recovery_disabled - 1;
5134 
5135  conf->raid_disks = mddev->raid_disks;
5136  if (mddev->reshape_position == MaxSector)
5137  conf->previous_raid_disks = mddev->raid_disks;
5138  else
5139  conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5140  max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5141  conf->scribble_len = scribble_len(max_disks);
5142 
5143  conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5144  GFP_KERNEL);
5145  if (!conf->disks)
5146  goto abort;
5147 
5148  conf->mddev = mddev;
5149 
5150  if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5151  goto abort;
5152 
5153  conf->level = mddev->new_level;
5154  if (raid5_alloc_percpu(conf) != 0)
5155  goto abort;
5156 
5157  pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5158 
5159  rdev_for_each(rdev, mddev) {
5160  raid_disk = rdev->raid_disk;
5161  if (raid_disk >= max_disks
5162  || raid_disk < 0)
5163  continue;
5164  disk = conf->disks + raid_disk;
5165 
5166  if (test_bit(Replacement, &rdev->flags)) {
5167  if (disk->replacement)
5168  goto abort;
5169  disk->replacement = rdev;
5170  } else {
5171  if (disk->rdev)
5172  goto abort;
5173  disk->rdev = rdev;
5174  }
5175 
5176  if (test_bit(In_sync, &rdev->flags)) {
5177  char b[BDEVNAME_SIZE];
5178  printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5179  " disk %d\n",
5180  mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5181  } else if (rdev->saved_raid_disk != raid_disk)
5182  /* Cannot rely on bitmap to complete recovery */
5183  conf->fullsync = 1;
5184  }
5185 
5186  conf->chunk_sectors = mddev->new_chunk_sectors;
5187  conf->level = mddev->new_level;
5188  if (conf->level == 6)
5189  conf->max_degraded = 2;
5190  else
5191  conf->max_degraded = 1;
5192  conf->algorithm = mddev->new_layout;
5193  conf->max_nr_stripes = NR_STRIPES;
5194  conf->reshape_progress = mddev->reshape_position;
5195  if (conf->reshape_progress != MaxSector) {
5196  conf->prev_chunk_sectors = mddev->chunk_sectors;
5197  conf->prev_algo = mddev->layout;
5198  }
5199 
5200  memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5201  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5202  if (grow_stripes(conf, conf->max_nr_stripes)) {
5204  "md/raid:%s: couldn't allocate %dkB for buffers\n",
5205  mdname(mddev), memory);
5206  goto abort;
5207  } else
5208  printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5209  mdname(mddev), memory);
5210 
5211  sprintf(pers_name, "raid%d", mddev->new_level);
5212  conf->thread = md_register_thread(raid5d, mddev, pers_name);
5213  if (!conf->thread) {
5215  "md/raid:%s: couldn't allocate thread.\n",
5216  mdname(mddev));
5217  goto abort;
5218  }
5219 
5220  return conf;
5221 
5222  abort:
5223  if (conf) {
5224  free_conf(conf);
5225  return ERR_PTR(-EIO);
5226  } else
5227  return ERR_PTR(-ENOMEM);
5228 }
5229 
5230 
5231 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5232 {
5233  switch (algo) {
5234  case ALGORITHM_PARITY_0:
5235  if (raid_disk < max_degraded)
5236  return 1;
5237  break;
5238  case ALGORITHM_PARITY_N:
5239  if (raid_disk >= raid_disks - max_degraded)
5240  return 1;
5241  break;
5242  case ALGORITHM_PARITY_0_6:
5243  if (raid_disk == 0 ||
5244  raid_disk == raid_disks - 1)
5245  return 1;
5246  break;
5251  if (raid_disk == raid_disks - 1)
5252  return 1;
5253  }
5254  return 0;
5255 }
5256 
5257 static int run(struct mddev *mddev)
5258 {
5259  struct r5conf *conf;
5260  int working_disks = 0;
5261  int dirty_parity_disks = 0;
5262  struct md_rdev *rdev;
5263  sector_t reshape_offset = 0;
5264  int i;
5265  long long min_offset_diff = 0;
5266  int first = 1;
5267 
5268  if (mddev->recovery_cp != MaxSector)
5269  printk(KERN_NOTICE "md/raid:%s: not clean"
5270  " -- starting background reconstruction\n",
5271  mdname(mddev));
5272 
5273  rdev_for_each(rdev, mddev) {
5274  long long diff;
5275  if (rdev->raid_disk < 0)
5276  continue;
5277  diff = (rdev->new_data_offset - rdev->data_offset);
5278  if (first) {
5279  min_offset_diff = diff;
5280  first = 0;
5281  } else if (mddev->reshape_backwards &&
5282  diff < min_offset_diff)
5283  min_offset_diff = diff;
5284  else if (!mddev->reshape_backwards &&
5285  diff > min_offset_diff)
5286  min_offset_diff = diff;
5287  }
5288 
5289  if (mddev->reshape_position != MaxSector) {
5290  /* Check that we can continue the reshape.
5291  * Difficulties arise if the stripe we would write to
5292  * next is at or after the stripe we would read from next.
5293  * For a reshape that changes the number of devices, this
5294  * is only possible for a very short time, and mdadm makes
5295  * sure that time appears to have past before assembling
5296  * the array. So we fail if that time hasn't passed.
5297  * For a reshape that keeps the number of devices the same
5298  * mdadm must be monitoring the reshape can keeping the
5299  * critical areas read-only and backed up. It will start
5300  * the array in read-only mode, so we check for that.
5301  */
5302  sector_t here_new, here_old;
5303  int old_disks;
5304  int max_degraded = (mddev->level == 6 ? 2 : 1);
5305 
5306  if (mddev->new_level != mddev->level) {
5307  printk(KERN_ERR "md/raid:%s: unsupported reshape "
5308  "required - aborting.\n",
5309  mdname(mddev));
5310  return -EINVAL;
5311  }
5312  old_disks = mddev->raid_disks - mddev->delta_disks;
5313  /* reshape_position must be on a new-stripe boundary, and one
5314  * further up in new geometry must map after here in old
5315  * geometry.
5316  */
5317  here_new = mddev->reshape_position;
5318  if (sector_div(here_new, mddev->new_chunk_sectors *
5319  (mddev->raid_disks - max_degraded))) {
5320  printk(KERN_ERR "md/raid:%s: reshape_position not "
5321  "on a stripe boundary\n", mdname(mddev));
5322  return -EINVAL;
5323  }
5324  reshape_offset = here_new * mddev->new_chunk_sectors;
5325  /* here_new is the stripe we will write to */
5326  here_old = mddev->reshape_position;
5327  sector_div(here_old, mddev->chunk_sectors *
5328  (old_disks-max_degraded));
5329  /* here_old is the first stripe that we might need to read
5330  * from */
5331  if (mddev->delta_disks == 0) {
5332  if ((here_new * mddev->new_chunk_sectors !=
5333  here_old * mddev->chunk_sectors)) {
5334  printk(KERN_ERR "md/raid:%s: reshape position is"
5335  " confused - aborting\n", mdname(mddev));
5336  return -EINVAL;
5337  }
5338  /* We cannot be sure it is safe to start an in-place
5339  * reshape. It is only safe if user-space is monitoring
5340  * and taking constant backups.
5341  * mdadm always starts a situation like this in
5342  * readonly mode so it can take control before
5343  * allowing any writes. So just check for that.
5344  */
5345  if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5346  abs(min_offset_diff) >= mddev->new_chunk_sectors)
5347  /* not really in-place - so OK */;
5348  else if (mddev->ro == 0) {
5349  printk(KERN_ERR "md/raid:%s: in-place reshape "
5350  "must be started in read-only mode "
5351  "- aborting\n",
5352  mdname(mddev));
5353  return -EINVAL;
5354  }
5355  } else if (mddev->reshape_backwards
5356  ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5357  here_old * mddev->chunk_sectors)
5358  : (here_new * mddev->new_chunk_sectors >=
5359  here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5360  /* Reading from the same stripe as writing to - bad */
5361  printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5362  "auto-recovery - aborting.\n",
5363  mdname(mddev));
5364  return -EINVAL;
5365  }
5366  printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5367  mdname(mddev));
5368  /* OK, we should be able to continue; */
5369  } else {
5370  BUG_ON(mddev->level != mddev->new_level);
5371  BUG_ON(mddev->layout != mddev->new_layout);
5372  BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5373  BUG_ON(mddev->delta_disks != 0);
5374  }
5375 
5376  if (mddev->private == NULL)
5377  conf = setup_conf(mddev);
5378  else
5379  conf = mddev->private;
5380 
5381  if (IS_ERR(conf))
5382  return PTR_ERR(conf);
5383 
5384  conf->min_offset_diff = min_offset_diff;
5385  mddev->thread = conf->thread;
5386  conf->thread = NULL;
5387  mddev->private = conf;
5388 
5389  for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5390  i++) {
5391  rdev = conf->disks[i].rdev;
5392  if (!rdev && conf->disks[i].replacement) {
5393  /* The replacement is all we have yet */
5394  rdev = conf->disks[i].replacement;
5395  conf->disks[i].replacement = NULL;
5396  clear_bit(Replacement, &rdev->flags);
5397  conf->disks[i].rdev = rdev;
5398  }
5399  if (!rdev)
5400  continue;
5401  if (conf->disks[i].replacement &&
5402  conf->reshape_progress != MaxSector) {
5403  /* replacements and reshape simply do not mix. */
5404  printk(KERN_ERR "md: cannot handle concurrent "
5405  "replacement and reshape.\n");
5406  goto abort;
5407  }
5408  if (test_bit(In_sync, &rdev->flags)) {
5409  working_disks++;
5410  continue;
5411  }
5412  /* This disc is not fully in-sync. However if it
5413  * just stored parity (beyond the recovery_offset),
5414  * when we don't need to be concerned about the
5415  * array being dirty.
5416  * When reshape goes 'backwards', we never have
5417  * partially completed devices, so we only need
5418  * to worry about reshape going forwards.
5419  */
5420  /* Hack because v0.91 doesn't store recovery_offset properly. */
5421  if (mddev->major_version == 0 &&
5422  mddev->minor_version > 90)
5423  rdev->recovery_offset = reshape_offset;
5424 
5425  if (rdev->recovery_offset < reshape_offset) {
5426  /* We need to check old and new layout */
5427  if (!only_parity(rdev->raid_disk,
5428  conf->algorithm,
5429  conf->raid_disks,
5430  conf->max_degraded))
5431  continue;
5432  }
5433  if (!only_parity(rdev->raid_disk,
5434  conf->prev_algo,
5435  conf->previous_raid_disks,
5436  conf->max_degraded))
5437  continue;
5438  dirty_parity_disks++;
5439  }
5440 
5441  /*
5442  * 0 for a fully functional array, 1 or 2 for a degraded array.
5443  */
5444  mddev->degraded = calc_degraded(conf);
5445 
5446  if (has_failed(conf)) {
5447  printk(KERN_ERR "md/raid:%s: not enough operational devices"
5448  " (%d/%d failed)\n",
5449  mdname(mddev), mddev->degraded, conf->raid_disks);
5450  goto abort;
5451  }
5452 
5453  /* device size must be a multiple of chunk size */
5454  mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5455  mddev->resync_max_sectors = mddev->dev_sectors;
5456 
5457  if (mddev->degraded > dirty_parity_disks &&
5458  mddev->recovery_cp != MaxSector) {
5459  if (mddev->ok_start_degraded)
5461  "md/raid:%s: starting dirty degraded array"
5462  " - data corruption possible.\n",
5463  mdname(mddev));
5464  else {
5466  "md/raid:%s: cannot start dirty degraded array.\n",
5467  mdname(mddev));
5468  goto abort;
5469  }
5470  }
5471 
5472  if (mddev->degraded == 0)
5473  printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5474  " devices, algorithm %d\n", mdname(mddev), conf->level,
5475  mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5476  mddev->new_layout);
5477  else
5478  printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5479  " out of %d devices, algorithm %d\n",
5480  mdname(mddev), conf->level,
5481  mddev->raid_disks - mddev->degraded,
5482  mddev->raid_disks, mddev->new_layout);
5483 
5484  print_raid5_conf(conf);
5485 
5486  if (conf->reshape_progress != MaxSector) {
5487  conf->reshape_safe = conf->reshape_progress;
5488  atomic_set(&conf->reshape_stripes, 0);
5493  mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5494  "reshape");
5495  }
5496 
5497 
5498  /* Ok, everything is just fine now */
5499  if (mddev->to_remove == &raid5_attrs_group)
5500  mddev->to_remove = NULL;
5501  else if (mddev->kobj.sd &&
5502  sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5504  "raid5: failed to create sysfs attributes for %s\n",
5505  mdname(mddev));
5506  md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5507 
5508  if (mddev->queue) {
5509  int chunk_size;
5510  bool discard_supported = true;
5511  /* read-ahead size must cover two whole stripes, which
5512  * is 2 * (datadisks) * chunksize where 'n' is the
5513  * number of raid devices
5514  */
5515  int data_disks = conf->previous_raid_disks - conf->max_degraded;
5516  int stripe = data_disks *
5517  ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5518  if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5519  mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5520 
5521  blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5522 
5523  mddev->queue->backing_dev_info.congested_data = mddev;
5524  mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5525 
5526  chunk_size = mddev->chunk_sectors << 9;
5527  blk_queue_io_min(mddev->queue, chunk_size);
5528  blk_queue_io_opt(mddev->queue, chunk_size *
5529  (conf->raid_disks - conf->max_degraded));
5530  /*
5531  * We can only discard a whole stripe. It doesn't make sense to
5532  * discard data disk but write parity disk
5533  */
5534  stripe = stripe * PAGE_SIZE;
5535  /* Round up to power of 2, as discard handling
5536  * currently assumes that */
5537  while ((stripe-1) & stripe)
5538  stripe = (stripe | (stripe-1)) + 1;
5539  mddev->queue->limits.discard_alignment = stripe;
5540  mddev->queue->limits.discard_granularity = stripe;
5541  /*
5542  * unaligned part of discard request will be ignored, so can't
5543  * guarantee discard_zerors_data
5544  */
5545  mddev->queue->limits.discard_zeroes_data = 0;
5546 
5547  rdev_for_each(rdev, mddev) {
5548  disk_stack_limits(mddev->gendisk, rdev->bdev,
5549  rdev->data_offset << 9);
5550  disk_stack_limits(mddev->gendisk, rdev->bdev,
5551  rdev->new_data_offset << 9);
5552  /*
5553  * discard_zeroes_data is required, otherwise data
5554  * could be lost. Consider a scenario: discard a stripe
5555  * (the stripe could be inconsistent if
5556  * discard_zeroes_data is 0); write one disk of the
5557  * stripe (the stripe could be inconsistent again
5558  * depending on which disks are used to calculate
5559  * parity); the disk is broken; The stripe data of this
5560  * disk is lost.
5561  */
5562  if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5563  !bdev_get_queue(rdev->bdev)->
5564  limits.discard_zeroes_data)
5565  discard_supported = false;
5566  }
5567 
5568  if (discard_supported &&
5569  mddev->queue->limits.max_discard_sectors >= stripe &&
5570  mddev->queue->limits.discard_granularity >= stripe)
5571  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5572  mddev->queue);
5573  else
5574  queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5575  mddev->queue);
5576  }
5577 
5578  return 0;
5579 abort:
5580  md_unregister_thread(&mddev->thread);
5581  print_raid5_conf(conf);
5582  free_conf(conf);
5583  mddev->private = NULL;
5584  printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5585  return -EIO;
5586 }
5587 
5588 static int stop(struct mddev *mddev)
5589 {
5590  struct r5conf *conf = mddev->private;
5591 
5592  md_unregister_thread(&mddev->thread);
5593  if (mddev->queue)
5594  mddev->queue->backing_dev_info.congested_fn = NULL;
5595  free_conf(conf);
5596  mddev->private = NULL;
5597  mddev->to_remove = &raid5_attrs_group;
5598  return 0;
5599 }
5600 
5601 static void status(struct seq_file *seq, struct mddev *mddev)
5602 {
5603  struct r5conf *conf = mddev->private;
5604  int i;
5605 
5606  seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5607  mddev->chunk_sectors / 2, mddev->layout);
5608  seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5609  for (i = 0; i < conf->raid_disks; i++)
5610  seq_printf (seq, "%s",
5611  conf->disks[i].rdev &&
5612  test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5613  seq_printf (seq, "]");
5614 }
5615 
5616 static void print_raid5_conf (struct r5conf *conf)
5617 {
5618  int i;
5619  struct disk_info *tmp;
5620 
5621  printk(KERN_DEBUG "RAID conf printout:\n");
5622  if (!conf) {
5623  printk("(conf==NULL)\n");
5624  return;
5625  }
5626  printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5627  conf->raid_disks,
5628  conf->raid_disks - conf->mddev->degraded);
5629 
5630  for (i = 0; i < conf->raid_disks; i++) {
5631  char b[BDEVNAME_SIZE];
5632  tmp = conf->disks + i;
5633  if (tmp->rdev)
5634  printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5635  i, !test_bit(Faulty, &tmp->rdev->flags),
5636  bdevname(tmp->rdev->bdev, b));
5637  }
5638 }
5639 
5640 static int raid5_spare_active(struct mddev *mddev)
5641 {
5642  int i;
5643  struct r5conf *conf = mddev->private;
5644  struct disk_info *tmp;
5645  int count = 0;
5646  unsigned long flags;
5647 
5648  for (i = 0; i < conf->raid_disks; i++) {
5649  tmp = conf->disks + i;
5650  if (tmp->replacement
5651  && tmp->replacement->recovery_offset == MaxSector
5652  && !test_bit(Faulty, &tmp->replacement->flags)
5653  && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5654  /* Replacement has just become active. */
5655  if (!tmp->rdev
5656  || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5657  count++;
5658  if (tmp->rdev) {
5659  /* Replaced device not technically faulty,
5660  * but we need to be sure it gets removed
5661  * and never re-added.
5662  */
5663  set_bit(Faulty, &tmp->rdev->flags);
5664  sysfs_notify_dirent_safe(
5665  tmp->rdev->sysfs_state);
5666  }
5667  sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5668  } else if (tmp->rdev
5669  && tmp->rdev->recovery_offset == MaxSector
5670  && !test_bit(Faulty, &tmp->rdev->flags)
5671  && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5672  count++;
5673  sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5674  }
5675  }
5676  spin_lock_irqsave(&conf->device_lock, flags);
5677  mddev->degraded = calc_degraded(conf);
5678  spin_unlock_irqrestore(&conf->device_lock, flags);
5679  print_raid5_conf(conf);
5680  return count;
5681 }
5682 
5683 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5684 {
5685  struct r5conf *conf = mddev->private;
5686  int err = 0;
5687  int number = rdev->raid_disk;
5688  struct md_rdev **rdevp;
5689  struct disk_info *p = conf->disks + number;
5690 
5691  print_raid5_conf(conf);
5692  if (rdev == p->rdev)
5693  rdevp = &p->rdev;
5694  else if (rdev == p->replacement)
5695  rdevp = &p->replacement;
5696  else
5697  return 0;
5698 
5699  if (number >= conf->raid_disks &&
5700  conf->reshape_progress == MaxSector)
5701  clear_bit(In_sync, &rdev->flags);
5702 
5703  if (test_bit(In_sync, &rdev->flags) ||
5704  atomic_read(&rdev->nr_pending)) {
5705  err = -EBUSY;
5706  goto abort;
5707  }
5708  /* Only remove non-faulty devices if recovery
5709  * isn't possible.
5710  */
5711  if (!test_bit(Faulty, &rdev->flags) &&
5712  mddev->recovery_disabled != conf->recovery_disabled &&
5713  !has_failed(conf) &&
5714  (!p->replacement || p->replacement == rdev) &&
5715  number < conf->raid_disks) {
5716  err = -EBUSY;
5717  goto abort;
5718  }
5719  *rdevp = NULL;
5720  synchronize_rcu();
5721  if (atomic_read(&rdev->nr_pending)) {
5722  /* lost the race, try later */
5723  err = -EBUSY;
5724  *rdevp = rdev;
5725  } else if (p->replacement) {
5726  /* We must have just cleared 'rdev' */
5727  p->rdev = p->replacement;
5728  clear_bit(Replacement, &p->replacement->flags);
5729  smp_mb(); /* Make sure other CPUs may see both as identical
5730  * but will never see neither - if they are careful
5731  */
5732  p->replacement = NULL;
5733  clear_bit(WantReplacement, &rdev->flags);
5734  } else
5735  /* We might have just removed the Replacement as faulty-
5736  * clear the bit just in case
5737  */
5738  clear_bit(WantReplacement, &rdev->flags);
5739 abort:
5740 
5741  print_raid5_conf(conf);
5742  return err;
5743 }
5744 
5745 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5746 {
5747  struct r5conf *conf = mddev->private;
5748  int err = -EEXIST;
5749  int disk;
5750  struct disk_info *p;
5751  int first = 0;
5752  int last = conf->raid_disks - 1;
5753 
5754  if (mddev->recovery_disabled == conf->recovery_disabled)
5755  return -EBUSY;
5756 
5757  if (rdev->saved_raid_disk < 0 && has_failed(conf))
5758  /* no point adding a device */
5759  return -EINVAL;
5760 
5761  if (rdev->raid_disk >= 0)
5762  first = last = rdev->raid_disk;
5763 
5764  /*
5765  * find the disk ... but prefer rdev->saved_raid_disk
5766  * if possible.
5767  */
5768  if (rdev->saved_raid_disk >= 0 &&
5769  rdev->saved_raid_disk >= first &&
5770  conf->disks[rdev->saved_raid_disk].rdev == NULL)
5771  first = rdev->saved_raid_disk;
5772 
5773  for (disk = first; disk <= last; disk++) {
5774  p = conf->disks + disk;
5775  if (p->rdev == NULL) {
5776  clear_bit(In_sync, &rdev->flags);
5777  rdev->raid_disk = disk;
5778  err = 0;
5779  if (rdev->saved_raid_disk != disk)
5780  conf->fullsync = 1;
5781  rcu_assign_pointer(p->rdev, rdev);
5782  goto out;
5783  }
5784  }
5785  for (disk = first; disk <= last; disk++) {
5786  p = conf->disks + disk;
5787  if (test_bit(WantReplacement, &p->rdev->flags) &&
5788  p->replacement == NULL) {
5789  clear_bit(In_sync, &rdev->flags);
5790  set_bit(Replacement, &rdev->flags);
5791  rdev->raid_disk = disk;
5792  err = 0;
5793  conf->fullsync = 1;
5794  rcu_assign_pointer(p->replacement, rdev);
5795  break;
5796  }
5797  }
5798 out:
5799  print_raid5_conf(conf);
5800  return err;
5801 }
5802 
5803 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5804 {
5805  /* no resync is happening, and there is enough space
5806  * on all devices, so we can resize.
5807  * We need to make sure resync covers any new space.
5808  * If the array is shrinking we should possibly wait until
5809  * any io in the removed space completes, but it hardly seems
5810  * worth it.
5811  */
5812  sector_t newsize;
5813  sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5814  newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5815  if (mddev->external_size &&
5816  mddev->array_sectors > newsize)
5817  return -EINVAL;
5818  if (mddev->bitmap) {
5819  int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5820  if (ret)
5821  return ret;
5822  }
5823  md_set_array_sectors(mddev, newsize);
5824  set_capacity(mddev->gendisk, mddev->array_sectors);
5825  revalidate_disk(mddev->gendisk);
5826  if (sectors > mddev->dev_sectors &&
5827  mddev->recovery_cp > mddev->dev_sectors) {
5828  mddev->recovery_cp = mddev->dev_sectors;
5830  }
5831  mddev->dev_sectors = sectors;
5832  mddev->resync_max_sectors = sectors;
5833  return 0;
5834 }
5835 
5836 static int check_stripe_cache(struct mddev *mddev)
5837 {
5838  /* Can only proceed if there are plenty of stripe_heads.
5839  * We need a minimum of one full stripe,, and for sensible progress
5840  * it is best to have about 4 times that.
5841  * If we require 4 times, then the default 256 4K stripe_heads will
5842  * allow for chunk sizes up to 256K, which is probably OK.
5843  * If the chunk size is greater, user-space should request more
5844  * stripe_heads first.
5845  */
5846  struct r5conf *conf = mddev->private;
5847  if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5848  > conf->max_nr_stripes ||
5849  ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5850  > conf->max_nr_stripes) {
5851  printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5852  mdname(mddev),
5853  ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5854  / STRIPE_SIZE)*4);
5855  return 0;
5856  }
5857  return 1;
5858 }
5859 
5860 static int check_reshape(struct mddev *mddev)
5861 {
5862  struct r5conf *conf = mddev->private;
5863 
5864  if (mddev->delta_disks == 0 &&
5865  mddev->new_layout == mddev->layout &&
5866  mddev->new_chunk_sectors == mddev->chunk_sectors)
5867  return 0; /* nothing to do */
5868  if (has_failed(conf))
5869  return -EINVAL;
5870  if (mddev->delta_disks < 0) {
5871  /* We might be able to shrink, but the devices must
5872  * be made bigger first.
5873  * For raid6, 4 is the minimum size.
5874  * Otherwise 2 is the minimum
5875  */
5876  int min = 2;
5877  if (mddev->level == 6)
5878  min = 4;
5879  if (mddev->raid_disks + mddev->delta_disks < min)
5880  return -EINVAL;
5881  }
5882 
5883  if (!check_stripe_cache(mddev))
5884  return -ENOSPC;
5885 
5886  return resize_stripes(conf, (conf->previous_raid_disks
5887  + mddev->delta_disks));
5888 }
5889 
5890 static int raid5_start_reshape(struct mddev *mddev)
5891 {
5892  struct r5conf *conf = mddev->private;
5893  struct md_rdev *rdev;
5894  int spares = 0;
5895  unsigned long flags;
5896 
5897  if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5898  return -EBUSY;
5899 
5900  if (!check_stripe_cache(mddev))
5901  return -ENOSPC;
5902 
5903  if (has_failed(conf))
5904  return -EINVAL;
5905 
5906  rdev_for_each(rdev, mddev) {
5907  if (!test_bit(In_sync, &rdev->flags)
5908  && !test_bit(Faulty, &rdev->flags))
5909  spares++;
5910  }
5911 
5912  if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5913  /* Not enough devices even to make a degraded array
5914  * of that size
5915  */
5916  return -EINVAL;
5917 
5918  /* Refuse to reduce size of the array. Any reductions in
5919  * array size must be through explicit setting of array_size
5920  * attribute.
5921  */
5922  if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5923  < mddev->array_sectors) {
5924  printk(KERN_ERR "md/raid:%s: array size must be reduced "
5925  "before number of disks\n", mdname(mddev));
5926  return -EINVAL;
5927  }
5928 
5929  atomic_set(&conf->reshape_stripes, 0);
5930  spin_lock_irq(&conf->device_lock);
5931  conf->previous_raid_disks = conf->raid_disks;
5932  conf->raid_disks += mddev->delta_disks;
5933  conf->prev_chunk_sectors = conf->chunk_sectors;
5934  conf->chunk_sectors = mddev->new_chunk_sectors;
5935  conf->prev_algo = conf->algorithm;
5936  conf->algorithm = mddev->new_layout;
5937  conf->generation++;
5938  /* Code that selects data_offset needs to see the generation update
5939  * if reshape_progress has been set - so a memory barrier needed.
5940  */
5941  smp_mb();
5942  if (mddev->reshape_backwards)
5943  conf->reshape_progress = raid5_size(mddev, 0, 0);
5944  else
5945  conf->reshape_progress = 0;
5946  conf->reshape_safe = conf->reshape_progress;
5947  spin_unlock_irq(&conf->device_lock);
5948 
5949  /* Add some new drives, as many as will fit.
5950  * We know there are enough to make the newly sized array work.
5951  * Don't add devices if we are reducing the number of
5952  * devices in the array. This is because it is not possible
5953  * to correctly record the "partially reconstructed" state of
5954  * such devices during the reshape and confusion could result.
5955  */
5956  if (mddev->delta_disks >= 0) {
5957  rdev_for_each(rdev, mddev)
5958  if (rdev->raid_disk < 0 &&
5959  !test_bit(Faulty, &rdev->flags)) {
5960  if (raid5_add_disk(mddev, rdev) == 0) {
5961  if (rdev->raid_disk
5962  >= conf->previous_raid_disks)
5963  set_bit(In_sync, &rdev->flags);
5964  else
5965  rdev->recovery_offset = 0;
5966 
5967  if (sysfs_link_rdev(mddev, rdev))
5968  /* Failure here is OK */;
5969  }
5970  } else if (rdev->raid_disk >= conf->previous_raid_disks
5971  && !test_bit(Faulty, &rdev->flags)) {
5972  /* This is a spare that was manually added */
5973  set_bit(In_sync, &rdev->flags);
5974  }
5975 
5976  /* When a reshape changes the number of devices,
5977  * ->degraded is measured against the larger of the
5978  * pre and post number of devices.
5979  */
5980  spin_lock_irqsave(&conf->device_lock, flags);
5981  mddev->degraded = calc_degraded(conf);
5982  spin_unlock_irqrestore(&conf->device_lock, flags);
5983  }
5984  mddev->raid_disks = conf->raid_disks;
5985  mddev->reshape_position = conf->reshape_progress;
5986  set_bit(MD_CHANGE_DEVS, &mddev->flags);
5987 
5992  mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5993  "reshape");
5994  if (!mddev->sync_thread) {
5995  mddev->recovery = 0;
5996  spin_lock_irq(&conf->device_lock);
5997  mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5998  rdev_for_each(rdev, mddev)
5999  rdev->new_data_offset = rdev->data_offset;
6000  smp_wmb();
6001  conf->reshape_progress = MaxSector;
6002  mddev->reshape_position = MaxSector;
6003  spin_unlock_irq(&conf->device_lock);
6004  return -EAGAIN;
6005  }
6006  conf->reshape_checkpoint = jiffies;
6007  md_wakeup_thread(mddev->sync_thread);
6008  md_new_event(mddev);
6009  return 0;
6010 }
6011 
6012 /* This is called from the reshape thread and should make any
6013  * changes needed in 'conf'
6014  */
6015 static void end_reshape(struct r5conf *conf)
6016 {
6017 
6018  if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6019  struct md_rdev *rdev;
6020 
6021  spin_lock_irq(&conf->device_lock);
6022  conf->previous_raid_disks = conf->raid_disks;
6023  rdev_for_each(rdev, conf->mddev)
6024  rdev->data_offset = rdev->new_data_offset;
6025  smp_wmb();
6026  conf->reshape_progress = MaxSector;
6027  spin_unlock_irq(&conf->device_lock);
6028  wake_up(&conf->wait_for_overlap);
6029 
6030  /* read-ahead size must cover two whole stripes, which is
6031  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6032  */
6033  if (conf->mddev->queue) {
6034  int data_disks = conf->raid_disks - conf->max_degraded;
6035  int stripe = data_disks * ((conf->chunk_sectors << 9)
6036  / PAGE_SIZE);
6037  if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6038  conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6039  }
6040  }
6041 }
6042 
6043 /* This is called from the raid5d thread with mddev_lock held.
6044  * It makes config changes to the device.
6045  */
6046 static void raid5_finish_reshape(struct mddev *mddev)
6047 {
6048  struct r5conf *conf = mddev->private;
6049 
6050  if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6051 
6052  if (mddev->delta_disks > 0) {
6053  md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6054  set_capacity(mddev->gendisk, mddev->array_sectors);
6055  revalidate_disk(mddev->gendisk);
6056  } else {
6057  int d;
6058  spin_lock_irq(&conf->device_lock);
6059  mddev->degraded = calc_degraded(conf);
6060  spin_unlock_irq(&conf->device_lock);
6061  for (d = conf->raid_disks ;
6062  d < conf->raid_disks - mddev->delta_disks;
6063  d++) {
6064  struct md_rdev *rdev = conf->disks[d].rdev;
6065  if (rdev)
6066  clear_bit(In_sync, &rdev->flags);
6067  rdev = conf->disks[d].replacement;
6068  if (rdev)
6069  clear_bit(In_sync, &rdev->flags);
6070  }
6071  }
6072  mddev->layout = conf->algorithm;
6073  mddev->chunk_sectors = conf->chunk_sectors;
6074  mddev->reshape_position = MaxSector;
6075  mddev->delta_disks = 0;
6076  mddev->reshape_backwards = 0;
6077  }
6078 }
6079 
6080 static void raid5_quiesce(struct mddev *mddev, int state)
6081 {
6082  struct r5conf *conf = mddev->private;
6083 
6084  switch(state) {
6085  case 2: /* resume for a suspend */
6086  wake_up(&conf->wait_for_overlap);
6087  break;
6088 
6089  case 1: /* stop all writes */
6090  spin_lock_irq(&conf->device_lock);
6091  /* '2' tells resync/reshape to pause so that all
6092  * active stripes can drain
6093  */
6094  conf->quiesce = 2;
6096  atomic_read(&conf->active_stripes) == 0 &&
6097  atomic_read(&conf->active_aligned_reads) == 0,
6098  conf->device_lock, /* nothing */);
6099  conf->quiesce = 1;
6100  spin_unlock_irq(&conf->device_lock);
6101  /* allow reshape to continue */
6102  wake_up(&conf->wait_for_overlap);
6103  break;
6104 
6105  case 0: /* re-enable writes */
6106  spin_lock_irq(&conf->device_lock);
6107  conf->quiesce = 0;
6108  wake_up(&conf->wait_for_stripe);
6109  wake_up(&conf->wait_for_overlap);
6110  spin_unlock_irq(&conf->device_lock);
6111  break;
6112  }
6113 }
6114 
6115 
6116 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6117 {
6118  struct r0conf *raid0_conf = mddev->private;
6119  sector_t sectors;
6120 
6121  /* for raid0 takeover only one zone is supported */
6122  if (raid0_conf->nr_strip_zones > 1) {
6123  printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6124  mdname(mddev));
6125  return ERR_PTR(-EINVAL);
6126  }
6127 
6128  sectors = raid0_conf->strip_zone[0].zone_end;
6129  sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6130  mddev->dev_sectors = sectors;
6131  mddev->new_level = level;
6132  mddev->new_layout = ALGORITHM_PARITY_N;
6133  mddev->new_chunk_sectors = mddev->chunk_sectors;
6134  mddev->raid_disks += 1;
6135  mddev->delta_disks = 1;
6136  /* make sure it will be not marked as dirty */
6137  mddev->recovery_cp = MaxSector;
6138 
6139  return setup_conf(mddev);
6140 }
6141 
6142 
6143 static void *raid5_takeover_raid1(struct mddev *mddev)
6144 {
6145  int chunksect;
6146 
6147  if (mddev->raid_disks != 2 ||
6148  mddev->degraded > 1)
6149  return ERR_PTR(-EINVAL);
6150 
6151  /* Should check if there are write-behind devices? */
6152 
6153  chunksect = 64*2; /* 64K by default */
6154 
6155  /* The array must be an exact multiple of chunksize */
6156  while (chunksect && (mddev->array_sectors & (chunksect-1)))
6157  chunksect >>= 1;
6158 
6159  if ((chunksect<<9) < STRIPE_SIZE)
6160  /* array size does not allow a suitable chunk size */
6161  return ERR_PTR(-EINVAL);
6162 
6163  mddev->new_level = 5;
6165  mddev->new_chunk_sectors = chunksect;
6166 
6167  return setup_conf(mddev);
6168 }
6169 
6170 static void *raid5_takeover_raid6(struct mddev *mddev)
6171 {
6172  int new_layout;
6173 
6174  switch (mddev->layout) {
6176  new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6177  break;
6179  new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6180  break;
6182  new_layout = ALGORITHM_LEFT_SYMMETRIC;
6183  break;
6185  new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6186  break;
6187  case ALGORITHM_PARITY_0_6:
6188  new_layout = ALGORITHM_PARITY_0;
6189  break;
6190  case ALGORITHM_PARITY_N:
6191  new_layout = ALGORITHM_PARITY_N;
6192  break;
6193  default:
6194  return ERR_PTR(-EINVAL);
6195  }
6196  mddev->new_level = 5;
6197  mddev->new_layout = new_layout;
6198  mddev->delta_disks = -1;
6199  mddev->raid_disks -= 1;
6200  return setup_conf(mddev);
6201 }
6202 
6203 
6204 static int raid5_check_reshape(struct mddev *mddev)
6205 {
6206  /* For a 2-drive array, the layout and chunk size can be changed
6207  * immediately as not restriping is needed.
6208  * For larger arrays we record the new value - after validation
6209  * to be used by a reshape pass.
6210  */
6211  struct r5conf *conf = mddev->private;
6212  int new_chunk = mddev->new_chunk_sectors;
6213 
6214  if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6215  return -EINVAL;
6216  if (new_chunk > 0) {
6217  if (!is_power_of_2(new_chunk))
6218  return -EINVAL;
6219  if (new_chunk < (PAGE_SIZE>>9))
6220  return -EINVAL;
6221  if (mddev->array_sectors & (new_chunk-1))
6222  /* not factor of array size */
6223  return -EINVAL;
6224  }
6225 
6226  /* They look valid */
6227 
6228  if (mddev->raid_disks == 2) {
6229  /* can make the change immediately */
6230  if (mddev->new_layout >= 0) {
6231  conf->algorithm = mddev->new_layout;
6232  mddev->layout = mddev->new_layout;
6233  }
6234  if (new_chunk > 0) {
6235  conf->chunk_sectors = new_chunk ;
6236  mddev->chunk_sectors = new_chunk;
6237  }
6238  set_bit(MD_CHANGE_DEVS, &mddev->flags);
6239  md_wakeup_thread(mddev->thread);
6240  }
6241  return check_reshape(mddev);
6242 }
6243 
6244 static int raid6_check_reshape(struct mddev *mddev)
6245 {
6246  int new_chunk = mddev->new_chunk_sectors;
6247 
6248  if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6249  return -EINVAL;
6250  if (new_chunk > 0) {
6251  if (!is_power_of_2(new_chunk))
6252  return -EINVAL;
6253  if (new_chunk < (PAGE_SIZE >> 9))
6254  return -EINVAL;
6255  if (mddev->array_sectors & (new_chunk-1))
6256  /* not factor of array size */
6257  return -EINVAL;
6258  }
6259 
6260  /* They look valid */
6261  return check_reshape(mddev);
6262 }
6263 
6264 static void *raid5_takeover(struct mddev *mddev)
6265 {
6266  /* raid5 can take over:
6267  * raid0 - if there is only one strip zone - make it a raid4 layout
6268  * raid1 - if there are two drives. We need to know the chunk size
6269  * raid4 - trivial - just use a raid4 layout.
6270  * raid6 - Providing it is a *_6 layout
6271  */
6272  if (mddev->level == 0)
6273  return raid45_takeover_raid0(mddev, 5);
6274  if (mddev->level == 1)
6275  return raid5_takeover_raid1(mddev);
6276  if (mddev->level == 4) {
6277  mddev->new_layout = ALGORITHM_PARITY_N;
6278  mddev->new_level = 5;
6279  return setup_conf(mddev);
6280  }
6281  if (mddev->level == 6)
6282  return raid5_takeover_raid6(mddev);
6283 
6284  return ERR_PTR(-EINVAL);
6285 }
6286 
6287 static void *raid4_takeover(struct mddev *mddev)
6288 {
6289  /* raid4 can take over:
6290  * raid0 - if there is only one strip zone
6291  * raid5 - if layout is right
6292  */
6293  if (mddev->level == 0)
6294  return raid45_takeover_raid0(mddev, 4);
6295  if (mddev->level == 5 &&
6296  mddev->layout == ALGORITHM_PARITY_N) {
6297  mddev->new_layout = 0;
6298  mddev->new_level = 4;
6299  return setup_conf(mddev);
6300  }
6301  return ERR_PTR(-EINVAL);
6302 }
6303 
6304 static struct md_personality raid5_personality;
6305 
6306 static void *raid6_takeover(struct mddev *mddev)
6307 {
6308  /* Currently can only take over a raid5. We map the
6309  * personality to an equivalent raid6 personality
6310  * with the Q block at the end.
6311  */
6312  int new_layout;
6313 
6314  if (mddev->pers != &raid5_personality)
6315  return ERR_PTR(-EINVAL);
6316  if (mddev->degraded > 1)
6317  return ERR_PTR(-EINVAL);
6318  if (mddev->raid_disks > 253)
6319  return ERR_PTR(-EINVAL);
6320  if (mddev->raid_disks < 3)
6321  return ERR_PTR(-EINVAL);
6322 
6323  switch (mddev->layout) {
6325  new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6326  break;
6328  new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6329  break;
6331  new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6332  break;
6334  new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6335  break;
6336  case ALGORITHM_PARITY_0:
6337  new_layout = ALGORITHM_PARITY_0_6;
6338  break;
6339  case ALGORITHM_PARITY_N:
6340  new_layout = ALGORITHM_PARITY_N;
6341  break;
6342  default:
6343  return ERR_PTR(-EINVAL);
6344  }
6345  mddev->new_level = 6;
6346  mddev->new_layout = new_layout;
6347  mddev->delta_disks = 1;
6348  mddev->raid_disks += 1;
6349  return setup_conf(mddev);
6350 }
6351 
6352 
6353 static struct md_personality raid6_personality =
6354 {
6355  .name = "raid6",
6356  .level = 6,
6357  .owner = THIS_MODULE,
6358  .make_request = make_request,
6359  .run = run,
6360  .stop = stop,
6361  .status = status,
6362  .error_handler = error,
6363  .hot_add_disk = raid5_add_disk,
6364  .hot_remove_disk= raid5_remove_disk,
6365  .spare_active = raid5_spare_active,
6366  .sync_request = sync_request,
6367  .resize = raid5_resize,
6368  .size = raid5_size,
6369  .check_reshape = raid6_check_reshape,
6370  .start_reshape = raid5_start_reshape,
6371  .finish_reshape = raid5_finish_reshape,
6372  .quiesce = raid5_quiesce,
6373  .takeover = raid6_takeover,
6374 };
6375 static struct md_personality raid5_personality =
6376 {
6377  .name = "raid5",
6378  .level = 5,
6379  .owner = THIS_MODULE,
6380  .make_request = make_request,
6381  .run = run,
6382  .stop = stop,
6383  .status = status,
6384  .error_handler = error,
6385  .hot_add_disk = raid5_add_disk,
6386  .hot_remove_disk= raid5_remove_disk,
6387  .spare_active = raid5_spare_active,
6388  .sync_request = sync_request,
6389  .resize = raid5_resize,
6390  .size = raid5_size,
6391  .check_reshape = raid5_check_reshape,
6392  .start_reshape = raid5_start_reshape,
6393  .finish_reshape = raid5_finish_reshape,
6394  .quiesce = raid5_quiesce,
6395  .takeover = raid5_takeover,
6396 };
6397 
6398 static struct md_personality raid4_personality =
6399 {
6400  .name = "raid4",
6401  .level = 4,
6402  .owner = THIS_MODULE,
6403  .make_request = make_request,
6404  .run = run,
6405  .stop = stop,
6406  .status = status,
6407  .error_handler = error,
6408  .hot_add_disk = raid5_add_disk,
6409  .hot_remove_disk= raid5_remove_disk,
6410  .spare_active = raid5_spare_active,
6411  .sync_request = sync_request,
6412  .resize = raid5_resize,
6413  .size = raid5_size,
6414  .check_reshape = raid5_check_reshape,
6415  .start_reshape = raid5_start_reshape,
6416  .finish_reshape = raid5_finish_reshape,
6417  .quiesce = raid5_quiesce,
6418  .takeover = raid4_takeover,
6419 };
6420 
6421 static int __init raid5_init(void)
6422 {
6423  register_md_personality(&raid6_personality);
6424  register_md_personality(&raid5_personality);
6425  register_md_personality(&raid4_personality);
6426  return 0;
6427 }
6428 
6429 static void raid5_exit(void)
6430 {
6431  unregister_md_personality(&raid6_personality);
6432  unregister_md_personality(&raid5_personality);
6433  unregister_md_personality(&raid4_personality);
6434 }
6435 
6436 module_init(raid5_init);
6437 module_exit(raid5_exit);
6438 MODULE_LICENSE("GPL");
6439 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6440 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6441 MODULE_ALIAS("md-raid5");
6442 MODULE_ALIAS("md-raid4");
6443 MODULE_ALIAS("md-level-5");
6444 MODULE_ALIAS("md-level-4");
6445 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6446 MODULE_ALIAS("md-raid6");
6447 MODULE_ALIAS("md-level-6");
6448 
6449 /* This used to be two separate modules, they were: */
6450 MODULE_ALIAS("raid5");
6451 MODULE_ALIAS("raid6");